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�e proposed research work is focused on forecasting the future requirements of water supply based on the current requirement of
water and also identifying the possibility of occurrences of cracks and leaks using the ARIMA (autoregressive integrated moving
average) model. �e experiments were conducted using real-time experimental hardware. �e pressure data obtained and their
p-value is less than 0.05, which represents the stability of the data in the ARIMAmodel. �e forecasted pressure data range between
0.451379N/m2 and 2.022273N/m2. �e frequency of the forecasted pressure ranges between 1.706869N/m2 and 3.065836N/m2

(maximum peak) and − 0.81046N/m2 and 1.042164N/m2 (minimum peak). Forecasted data of pressure at damaged condition lie
between 2.880788N/m2 and 3.29797N/m2 and frequency ranges between 4.866227N/m2 and 5.664348N/m2. Similarly, future
forecasted data of water requirement for the next 1 year range between 614.6292 (liters/week) and 620.0099 (liters/week), the
frequency of the forecast value with maximum ranging from 617.0086 (liters/week) to 628.5465 (liters/week), and the minimum
peaks ranging from 611.0967 (liters/week) to 612.2914 (liters/week). �e above data are for a single water distribution pipeline.

1. Introduction

Water pipelines face signi�cant problems as a result of
chemical leaks, �res, and deformations such as particle ac-
cumulation, corrosion, and cracks caused by a variety of
factors. �e above leads to serious consequences, as the
distribution of clean water is one of the major objectives and
the whole world depends on it. Hopkins states that the water
supply framework today comprises of foundation that
gathers, oversees, stores, and conveys water from water
sources to shoppers. Because of the absence of new common
water sources and an inexorably developing populace, in-
ventive water assets the executive’s approaches are required.

[1] Water conveyance frameworks are right now confronting
various signi�cant di¡culties, including maturing founda-
tion, the interest for consumable water, protecting consum-
able water quality, debased foundation because of framework
failures, ecological concerns, and rising energy costs [2].
Another signi�cant issue facing water utilities is spillage;
when it is not noticed long ago, most endeavors address this
issue happened after a break or hole had happened. [3, 4]
Many researchers studied on the mean-shift algorithm with
Gaussian’s pro�le and made applications in the tracking
system for better performance in the �eld of tracking objects.
[5, 6] Monica et al. brief that the breaks and holes were
fundamentally brought about by enormous varieties in pipe
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pressure inside a water conveyance framework [7, 8]. *is
proposed research is related to [9–12] oil pipeline trans-
portation monitoring using a machine learning algorithm,
which is the base work to carry out the present research.
What’s more, subsequently, in this task, research has been led
to recognize the issues that might be happening in the water
circulation frameworks ahead of time utilizing time ar-
rangement estimation calculation. *e ARIMAmodel is used
for predicting the future based on the past history of varia-
tions in datasets. However, it cannot be used to predict highly
uncertain long predictions [13]. Jianbin Huang et al. clarify
that the time arrangement anticipation is the way toward
fitting models to chronicled information and afterward uti-
lizing those models to foresee future perceptions. [14] In the
initial step, past perceptions are accumulated and dissected to
make a numerical model that catches the arrangement of
hidden information-age measures. *e model has been uti-
lized to conjecture future occasions in the subsequent stage.
*is technique is particularly helpful when there is no suf-
ficient logical model accessible. [15, 16] *ere are various
kinds of time-series forecasting broadly utilized. [17] A study
used an integrated genetic algorithm (GA), an algorithm
which is used for forecasting monthly electrical energy
consumption. [18] A detailed review study has been carried
out by the authors [19] about the different furcating models.
Among them, the ANN models, support-vector machine
models, and ARIMA models were mostly preferable. *e
present research work uses the ARIMAmodel for anticipating
the future requirements of the water management system.
*is examination of the line breaks and harms is used to
screen the gas or oil pipelines that regularly get harmed and
dirty the climate. [20–22] Ling Yang et al. state that the
anticipation should be possible by utilizing the both occa-
sional and nonoccasional ARIMA models. [23]. Time ar-
rangements are utilized in the assortment of fields, including
numerical money, fabricating, occasion information, IoT
information, and some other space of applied science and
designing that require worldly estimations. [24–26] As the
quickest developing fragment of the information-based in-
dustry, time arrangement DBMS will bear witness to the
business’ developing requirement for time arrangement de-
termination. [27, 28]. Stormwater and drainage management
system with an IoTmodule was developed by the researchers
to predict the drainage using machine learning algorithms.
*e results show that a well-trained algorithm can predict the
drainage situations. Hence, the proposed research work is
focused on using a time series-based ARIMAmodel explored
through the R studio software, which is one of the widely used
platforms for stock predictions. *e detailed mathematical
study and the results are provided in the subsequent sections
to ensure the prediction accuracy.

2. Methodology

2.1. Experimental Hardware for Water Distribution System.
*e real-time data are collected from the experimental
hardware for the water distribution system, which consists of
various components’ process tank, reservoir tank, I/P
converter, pressure control valve, gate valve, manual hand

valve drain valve, pressure gauge, flow control valve, orifice
flow meter, etc., [29] as shown in Figure 1. *e experimental
hardware comprises three different water control loops from
the reservoir to the distribution station for measuring
pressure, flow, and level in the water distribution system
[30]. Pressure, flow, and level are measured using sensors,
and their corresponding data will be monitored using a
master control engineering station [31, 32]. *e control
mechanism involves two-layer control, namely, operator
work station and engineering station.*e former one has the
highest control capability than the second one.

*e output of the transmitters is fed as input to the
input/output hub module, which is interfaced with the field
control station. *e process flow diagram for the experi-
mental setup is shown in Figure 2. *e flowing water in the
setup shown in Figure 2 is discussed as follows [33, 34]. *e
water is sucked from the water reservoir and is fed into the
process level tank with the use of a pump and transmitted to
the pipeline system. Different setups for level recording, flow
recording, and pressure recording are made to record the
real-time data from the water distribution system [35, 36] as
shown in Figures 3, 4, and 5.*e water distribution system is
pilot scaled and used for real-time data monitoring based on
pressure and flow sensors’ feedback.

*e data are obtained in the form of graphs and datasets
by using the front end of HMI [37] as shown in Figures 4 and
6. *e water is again drained into the water reservoir after the
recordings are made, and the total system is shut down. Auto-
tuning PID controller is used in the experimental hardware,
and it is used for flow and pressure control [38, 39].

2.1.1. /e ARIMA Model for the Future Prediction. *e
autoregressive integrated moving average (ARIMA) model
is used for future predicted time-series values based on
current pressure and flow data in the water distribution
system. *e ARMA model and ARIMA models have many
similarities. However, the general autoregressive model
estimates predictions using previous values of the dependent
variable [40, 41]. *e ARIMA uses the linear regression
model, which uses lags as predictors. *e ARIMA model
uses a forecasting equation based on the time-series re-
gression equation, and it is represented as follows:

Predicted value M�weighted sum of recent values of
M+weighted sum of recent values of the errors.

*e time-series forecasting functional equation is con-
structed as follows [33, 34]. First, let the predicted value M
indicates n, which is the nth difference of M, and it can be
represented as follows:

When, n � 0: Mt � Mt,

When, n � 1: Mt � Mt − Mt− 1.
(1)

When n� 2,

Mt � Mt − Mt− 1( 􏼁 − Mt− 1 − Mt− 2( 􏼁

� Mt − 2Mt− 1 + Mt− 2.
(2)

From equation (2), it is pointed out that, when n� 2, it
gives a discrete version of the analog second derivative value.
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It represents the local acceleration of the time-series fore-
casting values instead of a normal trend.

Hence, for the future predicted value M, the forecasting
formula is represented as follows:

Mt � μ +∅1Mt− 1 + · · · +∅pMt− p − θ1et− 1 − · · · − θqet− q,

(3)

where θ is the moving average parameter, M is the predicted
value, and e is the error terms sampled with zero mean.
Equation (3) can be rewritten and represented as the
autoregressive model equation as follows:

1 − 􏽘

p

i�1
∝ iL

i⎛⎝ ⎞⎠Mt � 1 + 􏽘

q

i�1
θiL

i⎛⎝ ⎞⎠et, (4)

Figure 1: Experimental hardware for water distribution system.

Figure 2: Process flow diagram for the experimental setup.
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where L represents the lag operator, and α represents the
parameters of all autoregressive part as mentioned in
equation (3). An ordinary least squares called as OLS is used
to for predicting the slope coefficients in the ARIMAmodel.
*e unit test root method is used for this purpose. From

equation (4), (1 − 􏽐
p

i�1 ∝ iL
i) is involved with the unit root

1 − Li with the multiple factor U as follows:

1 − 􏽘

p

i�1
∝ iL

i⎛⎝ ⎞⎠ � 1 − 􏽘

p− u

i�1
∝ iL

i⎛⎝ ⎞⎠(1 − L)
u
. (5)

Figure 3: Pressure control loop for water distribution system.

Figure 4: Front-end HMI for pressure data recording.

Figure 5: Flow control loop for water distribution system.
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*e ARIMA (p, u, q) process is represented, and then,
equation (4) can be rewritten based on equation (5) as
follows:

1 − 􏽘

p

i�1
∝ iL

i⎛⎝ ⎞⎠(1 − L)
u
Mt

� 1 + 􏽘

q

i�1
θiL

i⎛⎝ ⎞⎠et.

(6)

From equation (5), the generalized ARIMA equation is
defined by the following term, ARIMA (P,Q+1) process with
“u” roots.

1 − 􏽘

p

i�1
φiL

i⎛⎝ ⎞⎠(1 − L)
u
Mt

� δ + 1 − 􏽘

q

i�1
θiL

i⎛⎝ ⎞⎠et.

(7)

*e following steps are involved in data processing using
the ARIMA model for future prediction using R software
functions.

(i) *e dataset values obtained are first imported to the
environment part in R studio software and then
tested for class. *e class should be in a time-series
format to predict and forecast future data.

(ii) *e dataset is then converted to .ts from .xlsx
format and checked for autocorrection func-
tion—acf (), partial autocorrection function—pacf
(), augmented Dickey-Fuller test adf.test () to check
the significant stationarity of the time-series
dataset values.

(iii) *e time-series dataset values are partially or
completely converted into a simple or fully formed
statistical model by using the ARIMA model, and
the p-value is checked for the newly formed model
to check the sustainability of the formed statistical
model.*e p-value should be less than alpha 0.05 to
conclude that the model is statistically significant
[9, 10].

(iv) acf (), pacf(), and ADF.test() functions are used to
check the newly formed ARIMAmodel to check the
significant nature of the framed model.

(v) *e responses with the forecasted value are obtained
from the R studio, and the predicted data are col-
lected from the execution of the comments in the
console part of the R studio.

3. Results

In order to predict the future needs in supplying water
through a pipeline, historical output data of the water
pipeline system have been regularly taken. With the help
of experimental hardware, a certain amount of data has
been periodically collected and those data can be used as
datasets for future prediction of water requirements.
*ose pressure datasets and flow datasets are going to
play a vital role in future predictions and forecasting
[11, 12].

3.1. Forecasting the Possibility of Occurrence of Cracks and
Leaks Based on Pressure Datasets

3.1.1. Input Time-Series Data Graph. *e input dataset
values obtained from the Excel by controlling the pressure
control valve attached to the pipeline over equal intervals of
time for three different conditions, namely, normal, crack,
and damaged, which are fed to the R studio, are plotted and
shown in Figure 7.

3.1.2. Forecasting Process-Normal Condition. *e input
dataset values of normal condition are imported through the
SCADA system to the R studio. *e plot of the values as-
sociated with the pressure at normal condition is shown in
Figure 8. *e input dataset values of pressure at the normal
condition are fed to the R studio; as the forecasting process
requires statistical data, the R studio converts the input data
into a time-series data with the time-series function and the
plot of the time-series dataset values associated with the
pressure at the normal condition with respect to the time
[42].

*e stability and sustainability of the time-series data of
pressure at normal condition are checked, and the results of
acf() and pacf() plots are shown in Figure 9.

Figure 10 shows that the data are not within the range of
expectations of the stability, so here comes the necessity of
making the data into an ARIMAmodel to obtain statistically
stable data. *e ARIMA model is built for prediction; the

Figure 6: Front-end HMI for flow data recording.
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stability and sustainability of the ARIMA model of the
pressure residuals at normal condition are checked; and the
results of acf() and pacf() plots are shown in Figure 10.

Figure 11 shows that the data are within the range of
expectations of the stability, and the p-value is less than 0.05,
which represents the stability of the data in the ARIMA
model of pressure at normal condition over a period of time,
which can be used for forecasting. *e lag value represents
the lead time period over which the average of moving values
obtained from the preceding data values remains to be same
for the same lead time period in the succeeding data. *e
predicted value of the ARIMA model of pressure forecast at
damaged condition is plotted on the graph as shown in
Figure 11.

Figure 11 represents the future forecasted data of
pressure at normal condition for the next 1 hour where the
blue line represents the average of the forecast value, which
ranges with a minimum peak of 0.451379N/m2 and
2.022273N/m2 as the maximum peak. *e shaded region
represents the frequency of the forecast value with maxi-
mum peaks ranging from 1.706869N/m2 to 3.065836N/m2

and the minimum peaks ranging from − 0.81046N/m2 to
1.042164N/m2. *e average of the forecast value reduces in
its frequency as the pressure from the pressure control valve
is reduced over equal intervals of time, and it is assumed to
be constant when the pressure from the pressure control
valve remains constant. *e predicted time-series data are
based on the pressure data collected with very less frequency
say 125minutes of cumulative data. In case if the frequency
is high, say a month or early data the prediction accuracy will
be more.

3.1.3. Forecasting Process-Crack Condition. *e input
dataset values of the crack condition are fed to the R studio,
and the plot of the values associated with the pressure at the
crack condition is shown in Figure 12.

*e input dataset values of pressure at the normal
condition in the pipe are fed to the R studio; as the fore-
casting process requires statistical data, the R studio converts
the input data into a time-series data with the time-series

function and the plot of the time-series dataset values as-
sociated with the pressure at the normal condition with
respect to the time that is shown in Figure 13.

*e stability and sustainability of the time-series data of
pressure at crack condition are checked, and the results of
acf() and pacf() plots are shown in Figure 14.

Figure 14 shows that the data are not within the range of
expectations of the stability, so here comes the necessity of
making the data into an ARIMAmodel to obtain statistically
stable data. *e ARIMA model is built for prediction; the
stability and sustainability of the ARIMA model of the
pressure residuals at crack condition are checked; and the
results of acf() and pacf() plots are shown in Figure 15.

Figure 15 shows that the data are within the range of
expectations of the stability, and the p-value is less than 0.05,
which represents the stability of the data in the ARIMA
model of pressure at crack condition over a period of time,
which can be used for forecasting. *e lag value represents
the lead time period over which the average of moving values
obtained from the preceding data values remains to be same
for the same lead time period in the succeeding data. *e
predicted value of the ARIMA model of pressure forecast at
crack condition is plotted on the graph as shown in
Figure 16.

Figure 16 represents the future forecasted data of
pressure at crack condition for the next 1 hour where the
blue line represents the average of the forecast value remains
same as 0.144865N/m2 as the pressure remains the same at
the crack region without any rise or fall in pressure irre-
spective of the change in pressure made by the pressure
control valve. *e minimum peak of the forecast value
remains at -0.02742N/m2, and the maximum peak of the
forecast value remains at 0.317153N/m2. *is infers that the
pressure remains unchanged over a period of time till the
crack is sealed in the pipeline.*e estimated value seems like
constant with respect to time, since less frequency pressure
data are taken for the forecasting analysis. *e dataset’s
quantitative expansion improves prediction accuracy.

3.1.4. Forecasting Process-Damaged Condition. *e input
dataset values of normal condition are fed to the R studio,
and the plot of the values associated with the pressure at
normal condition is shown in Figure 17.

*e input dataset values of pressure at the normal
condition in the pipe are fed to the R studio; as the
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Figure 7: Input time-series data graph obtained from Excel.
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forecasting process requires a statistical data, the R studio
converts the input data into a time-series data with the time-
series function and the plot of the time-series dataset values

associated with the pressure at the normal condition with
respect to the time that is shown in Figure 18.

*e stability and sustainability of the time-series data of
pressure at damaged condition are checked, and the results
of acf() and pacf() plots are shown in Figure 19.

Figure 19 shows that the data are not within the range of
expectations of the stability, so here comes the necessity of
making the data into an ARIMAmodel to obtain statistically
stable data. *e ARIMA model is built for prediction; the
stability and sustainability of the ARIMA model of the
pressure residuals at damaged condition are checked, and
the results of acf() and pacf() plots are shown in Figure 20.

Figure 20 shows that the data are within the range of
expectations of the stability, and the p-value is less than 0.05,
which represents the stability of the data in the ARIMAmodel
of pressure at damaged condition over a period of time, which
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can be used for forecasting. *e lag value represents the lead
time period over which the average of moving values obtained
from the preceding data values remains to be same for the
same lead time period in the succeeding data. *e predicted
value of the ARIMA model of pressure forecast at damaged
condition is plotted on the graph as shown in Figure 21.

Figure 21 represents the future forecasted data of pressure
at damaged condition for the next 1 hour where the blue line
represents the average of the forecast value, which increases
from the minimum peak of 2.880788N/m2 to the maximum
peak of 3.29797N/m2 and becomes constant. *e shaded
region represents the frequency of the forecast value with
maximum peaks ranging from 4.866227N/m2 to 5.664348N/
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m2 and the minimum peaks ranging from 0.895349N/m2 to
0.931593N/m2. *e constant average value of the forecast
infers that the pressure remains unchanged over a period of
time till the damaged pipeline is replaced with a new pipeline.

3.2. Flow Forecasting

3.2.1. Input Time-Series Data Graph. *e input dataset
values obtained from Excel by monitoring the flow over a
pipeline on a weekly basis, which are fed to the R studio, are
plotted and shown in Figure 22.

3.2.2. Forecasting Process. *e input dataset values of flow
in the pipe are fed to the R studio; as the forecasting process

requires a statistical data; the R studio converts the input
data into a time-series data with the time-series function;
and the plot of the time-series dataset values associated
with the flow with respect to the time that is shown in
Figure 23.

*e stability and sustainability of the time-series data of
flow are checked, and the results of acf() and pacf() plots are
shown in Figure 24. *e data are not within the range of
expectations of the stability, so here comes the necessity of
making the data into an ARIMAmodel to obtain statistically
stable data.

Figure 24 shows that the data are not within the range of
expectations of the stability, so here comes the necessity of
making the data into an ARIMAmodel to obtain statistically
stable data. *e ARIMA model is built for prediction; the
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stability and sustainability of the ARIMA model of the flow
residuals are checked, and the results of acf() and pacf() plots
are shown in Figure 25.

Figure 25 shows that the data are within the range of
expectations of the stability, and the p-value is less than 0.05,
which represents the stability of the data in the ARIMA model
of flow over a period of time, which can be used for forecasting.
*e lag value represents the lead time period over which the
average of moving values obtained from the preceding data
values remains to be same for the same lead time period in the
succeeding data. *e predicted value of the ARIMA model of
flow forecast is plotted on the graph as shown in Figure 26.

Figure 26 represents the future forecasted data of water
requirement for the next 1 year where the blue line repre-
sents the average of the forecast value, which increases from
the minimum peak of 614.6292 (liters/week) to the maxi-
mum peak of 620.0099 (liters/week) and becomes constant.
*e shaded region represents the frequency of the forecast
value with maximum peaks ranging from 617.0086 (liters/
week) to 628.5465 (liters/week) and the minimum peaks
ranging from 611.0967 (liters/week) to 612.2914 (liters/
week). *is infers that the requirement of water quantity in
the next year increases as represented by the average of the
forecast data.
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4. Conclusions

*e identification of the crack, pressure difference, leakages,
and blockages with the help of abnormal pressure rise or drop
in the municipal water distribution system was analyzed
[43, 44]. On the other side, the water flow in the pipeline was
monitored and prediction for the future requirements was
made by analyzing its present utilization of the flow datasets
obtained from the preceding two years. With the help of the
time-series forecasting algorithm, the collection of datasets
for the flow periodically was made [45, 46]. *ose datasets
have been used as a source of input to the R studio under the
time-series forecasting algorithm.*e flow rate datasets of the
past two years were recorded, and the datasets are analyzed on
the time-series forecasting algorithm. As an output of the
algorithm, the need for the next year was predicted and
figured out in the form of a graph.*is provides a strategy for
forecasting the needs for the upcoming year. *e stability of
the statistical data was confirmed by using the p-value (less
than 0.05) provided by the ARIMA model of data for both
pressures and flow datasets. *e future prediction of the
pressure concerning the flow in damaged conditions would
range between 2.880788 and 3.29797N/m2. *e future pre-
diction of the pressure concerning flow in normal conditions
would range between 0.451379 and 2.022273N/m2. *e fu-
ture prediction of the pressure concerning flow in crack
condition would remain unchanged but lower than the
normal condition. *e future prediction of the flow re-
quirement would range between 614.6292 and 620.0099 liters/
week. Furthermore, future studies may be incorporated based

on the smart pig for the identification of fault and data
transmission in oil pipelines.
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