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Herring and mackerel are two of the most important pillars of Scottish fisheries. In recent years, global warming has caused a gradual
rise in ocean temperatures. In order to survive and reproduce, herring and mackerel populations will migrate. /is will have a huge
impact on Scotland’s fisheries. /erefore, we need to predict the relocation of fish stocks in advance, make timely adjustments to the
fishing range, and minimize the loss of the fishing industry. In this article, we subdivide the research target sea area into 39 regions,
establish the optimal SARIMA model for each region based on the collected seawater temperature time series data, and take region 13
and region 15 as examples to fit the ARIMA (3, 3, 1) (1, 2, 1) and ARIMA (2, 3, 1) (0, 2, 1) models with a period of 12. /e results show
that the SARIMA model fits well in all regions and predicts the temperature changes in the studied sea area from 2021 to 2050. Finally,
according to the predicted sea temperature in different periods, the migration position of the fish school is predicted.

1. Introduction

Scotland is the largest marine fishery country in the United
Kingdom. In 2020, the landing volume of Scottish caught
fish products increased by 32.7% to 600 million pounds. As a
specialty of Scotland, herring and mackerel have increased
their output value by 42.8%, having extremely important
economic significance. Many fishing companies in Scotland
depend on them for a living. However, with the advance-
ment of industrialization, the global greenhouse gas con-
centration has increased rapidly, and the ocean has absorbed
a large amount of heat and atmospheric gases. Data from
NOAA shows that the average temperature of the global
ocean surface has increased by approximately 0.13°C every
10 years in the past 100 years. /e change of global ocean
average temperature is shown in Figure 1. Since 2015, the
Northeast Atlantic Ocean in Scotland has risen by 0.048°C
per year [1–7]. Marine organisms often live in relatively
stable temperature environments and are very sensitive to
temperature changes. Because this will directly affect its
survival, metabolism, reproduction, development, and im-
mune response, which will lead to the migration of habitats
of marine life near Scotland, especially herring and mackerel

[8–12]. /is is undoubtedly a crisis for a large number of
small Scottish fishing companies. Due to the lack of ad-
vanced refrigeration technology and ships, coupled with the
changes in the location of the fish stocks, it will greatly
increase the difficulty of fishing and face the danger of in-
sufficient fuel. It will cause great losses to the fishing industry
in Scotland. /erefore, we urgently need a method that can
accurately predict the migration location of herring and
mackerel in order to minimize the losses of the fishery
company and improve fishing efficiency.

2. Research Ideas

In order to accurately predict the migration location of
herring and mackerel in the waters near Scotland, we first
need to understand the marine environment suitable for
herring and mackerel. /e outline drawing of herring and
mackerel is shown in Figure 2. By consulting related liter-
ature, we learned that herring and mackerel live in shallow
waters. /e temperature suitable for the growth of herring is
about 8.8∼9.8°C and for mackerel is about 8.86∼9.6°C
[11, 13–16]. According to the authoritative data of the
Scottish Navy, the herring near Scotland in 2019 is mainly
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distributed around (1.3°W, 60°N), and the mackerel is mainly
distributed around (5°E, 58.5°N) and (0°E, 58.5°N). /e main
distribution areas of herring and sturgeon in England are
shown in Figure 3.

Secondly, over time, the global ocean temperature is
gradually changing. We need to predict the changes in sea
temperature within the maximum distance that herring and
mackerel fish can migrate [17–21]. /erefore, the scope of
the sea area we studied is shown in Figure 4. At the same
time, since the seawater temperature will change with the
changes in latitude and longitude, in Figure 5, we subdivided
the target research sea area into 39 regions, each of which is a
rectangle with a width of 2.5 latitude and a length of 5
longitude. And we take the seawater temperature at the
center of each region as the average seawater temperature in
each region. Finally, the temperature change of the target sea
area from 2021 to 2050 is predicted.

For the prediction of ocean temperature changes, we use
the seasonal ARIMA time series model, which can effectively
predict the overall seasonal temperature changes in the
target sea area in the next 30 years [22–27], and then we can
determine the future annual average temperature of the
target sea area and compare it with the suitable ocean
temperature for herring and mackerel; we can get the target
migration position of the future fish school.

3. Problem Sources and Model Assumptions

/e question studied in this article comes from the A question
of the 2020 American College Students Mathematical Contest
in Modeling. In order to ensure the rigor of the research, we

also need to make the following assumptions to eliminate the
interference of other factors on the research results: (i) it is
assumed that the seawater temperature changes are only
affected by the seasonal changes of its own ocean currents and
the greenhouse gas effect. (ii) It is assumed that the migration
of fish schools is only affected by changes in sea temperature
and not affected by other environmental factors, such as waste
discharge, natural enemies, and other factors. (iii) It is as-
sumed that the suitable living temperature of herring and
mackerel schools is always constant, and there will be no
mutations due to environmental changes. (iv) Suppose that, in
the next 30 years, the global warming problem will not be
significantly improved. /e temperature change of the sea-
water will not be affected by policies such as limiting the
emission of greenhouse gases [28–30].

4. SARIMA Model and Data Selection

4.1. SARIMA Model. /e SARIMA model, the seasonal
autoregressive integrated moving average model, is the in-
troduction of seasonal terms in the ARIMA model, denoted
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Figure 1: /e map of global ocean average temperature change.
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Figure 2: Herring and mackerel.
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Figure 3: Main distribution areas of herring and sturgeon.
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as ARIMA (p, d, q) (P, D, Q) s, where p, d, and q represent
the parameters of the nonseasonal part of the model. P, D,
and Q represent the parameters of the seasonal part of the
model, and s is the seasonal period. Since the temperature of
seawater is affected by not only long-term greenhouse gas
emissions but also seasonal changes due to fluctuations in
climate and ocean currents; we constructed a 12-month
SARIMA model to study future temperature changes in the
target sea area and predict the migration position of the fish
school [31–40]. /e model building process is as follows:

ϕ(B)∇dXt � Θ(B)εt,
E εt( ) � 0, Var εt( ) � σ2, E εtεx( ) � 0, s � 12,

E X, εt( ) � 0,∀s< t,

 (1)

in the above formula:

∇d �(1 − B)d, (2)

where B is the delay operator and∇dXt is the time series after
finite-order difference. εt is the white noise sequence, Θ (B)
is the stable and reversible ARMA (p, q) model’s moving
smoothing coefficient polynomial, and Φ (B) is the sta-
tionary and reversible ARMA (p, q) model’s autoregressive
coefficient polynomial.

Expressed as a linear function of preliminary
observations,

Xt
� εt + ψ1εt− 1 + ψ2εt− 2 + · · · � φ(B)εt, (3)

where the values of ψ1 and ψ2 are determined by the fol-
lowing equation:

ϕB(1 − B)dψ(B) � θ(B). (4)

If Φ∗(B) is defined as a generalized autocorrelation
function, we have

ϕ∗(B) � ψ(B)(1 − b)d � 1 − ϕ1B − ϕ2B
2
− · · · . (5)

It is easy to verify that the values of ψ1, ψ2 . . . satisfy the
following recurrence formula:

ψ1 � ϕ1 − θ1,

ψ2 � ϕ1ψ1 + ϕ2 − θ2,

. . . ,

ψj � ϕ1ψj− 1 · · · + ϕp+dψj− p+d − θj.


(6)

In this formula,

ψj �
0, j< 1,

1, j � 0,
{ (7)

where j is the autoregressive coefficient and θj is the moving
average coefficient. /en, the predicted temperature value of
each area is expressed as follows:

XI+1 � εi+1 + ψiεi+l− 1 + · · · + ψl− 1ϵt+1( ) + ψiεt + ψl+1εi− 1 + · · ·( ).
(8)

/erefore, the SARIMA model is expressed as

∇d∇Ds xt �
Θ(B)Θs(B)
ϕ(B)ϕs(B)

εt, (9)

where ϕs(B) � 1 − φ1B
s − · · · − φpB

ps;Θ(B) � 1 − θ1 B − · · ·
− θqB

q; and Θs(B) � 1 − θ1B
s − . . . − θpB

QS.
After the model is established, the model needs to be

tested for adaptability, that is, whether the residual sequence
of the model is a white noise sequence. If the residual se-
quence of the model is a white noise sequence, the model
passes the white noise sequence to represent the model’s
information extraction of the time series. Sufficiently, the
fitting effect to historical data is good, in line with the trend
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of time series development; otherwise, the model needs to be
optimized and the data refitted.

4.2. Data Analysis and Processing. /is paper selects the
monthly average water temperature data in shallow waters
from 2004 to 2020 in the seas near Scotland and part of the
North Atlantic Ocean (target research sea area) and converts
them into fixed-base data. /e data comes from the Scottish
Marine Information Agency and the UK Met Office
network.

We use the above data to establish the SARIMA model
and use the reserved data to test the accuracy of the model.
All data processing is completed by Ri386 4.0.2.

5. Empirical Analysis of Temperature
Changes in the Research Sea Area

5.1. Model Identification and Establishment. We draw the
autocorrelation and partial autocorrelation diagrams of the
seawater temperature series (CST) at the center of each
region. /e 12-order delayed autocorrelation and partial
autocorrelation coefficients are significantly larger than 2
times the standard deviation range and are significantly not
0. /erefore, the seawater temperature series in various
regions are seasonal, with a 12-month cycle. In order to
eliminate the seasonality of the sequence, we performed the
first-order difference of the period length of S� 12 on the
seawater temperature series at the center of each region, and
the differenced sequence was recorded as SCST. Figures 6
and 7 are time series diagrams of the seawater temperature
data of region 13 and area 15 after first-order difference.
Figures 8–11 are the diagrams showing the relationship
between autocorrelation and partial autocorrelation of SCST
in region 13 and region 15. It can be seen from Figures 8–11
that after the first-order seasonal difference, the seasonality
is greatly reduced, but not completely eliminated. /erefore,
we carry out the second-order difference but still cannot
eliminate it, so we still only carry out the first-order dif-
ference. It has been verified that all regions meet this
characteristic.

Taking regions 13 and 15 as examples, it can be seen from
Figures 8–11 that, in one cycle of the SCST of region 13, the
number of partial autocorrelations that are significantly not
0 is 3 (K� 1, K� 8, K� 9), so consider choosing p � 13; the
number of autocorrelations that are significantly not 0 is 3
(K� 1, K� 2, K� 7); consider choosing q� 3; and when
K� 12, the partial autocorrelation coefficient is not signifi-
cantly 0, so choose P � 1; when K� 12, K� 24, the auto-
correlation coefficient is significantly not 0. So, choose Q� 2.

In one cycle of SCST in area 15, the number of partial
autocorrelations that are significantly not 0 is 2 (K� 1,
K� 8), so consider choosing p � 2; the number of auto-
correlations that are significantly not 0 is 3 (K� 1, K� 2,
K� 7); consider choosing q� 3; when K� 12, the partial
autocorrelation coefficient is significantly close to 0, so
choose P � 0; when K� 12, and K� 24 when the autocor-
relation coefficient is significantly not 0. So, choose Q� 2.

/erefore, the primary model for region 13 is ARIMA (3,
3, 1) (1, 2, 1), ARIMA (2, 3, 1) (1, 2, 1), ARIMA (3, 4, 1) (1, 2,
1). /e primary model for region 15 is ARIMA (2, 3, 1) (0, 2,
1), ARIMA (2, 4, 1) (0, 2, 1), and ARIMA (2, 5, 1) (0, 2, 1).
After the model is initially selected, the parameter signifi-
cance test of the model is carried out, and the optimal model
is selected according to the minimum AIC index criterion.
After comparative analysis, the optimal model for area 13 is
ARIMA (3, 3, 1) (1, 2, 1); the optimal model for area 15 is
ARIMA (2, 3, 1) (0, 2, 1). By analogy, we obtained the
optimal seasonal model for all regions according to this
method.

5.2. Model Test. In order to determine whether the seasonal
model is effective, we need to test whether the residual
sequence of the seasonal model in each region is a white
noise sequence. If the residual sequence is a white noise
sequence, it means that the model has fully extracted the
information contained in the data, and the seasonal model
has passed the adaptability test. We use the Q statistic to test
the correlation of the model residual series. After testing, the
autocorrelation and partial autocorrelation coefficients of
each lag order of the optimal seasonal model in each region
are close to 0. And the P values are all greater than 0.94,
indicating that the residual sequence is a white noise se-
quence. /erefore, the optimal seasonal model in each re-
gion has passed the test, and the model is significantly
established and can be used to predict the temperature
change of seawater.

5.3. Model Prediction. Use the obtained optimal seasonal
model for each region to fit and predict the monthly average
shallow sea temperature in each region from January 2021 to
December 2050. Take area 13 and area 15 as examples and
use R software to fit seasonal models ARIMA (3, 3, 1) (1, 2, 1)
and ARIMA (2, 3, 1) (0, 2, 1), sequence diagram as shown in
Figures 12 and 13.

5.4. 7e Location of Fish Migration. Because herring and
mackerel live in seas with relatively stable temperatures, they
will not migrate with seasonal temperature changes but will
only migrate due to changes in the overall temperature of the
sea. /erefore, we need to calculate the annual average sea
temperature of each region in the next 30 years. /e formula
is

Tjk �
1

s
∑n�12

i�1

Tjk′ , j � 1, 2, . . . , 39, k � 1, 2, . . . , 30. (10)

Among them, s� 12, Tjk is the annual average sea
temperature of the jth area in the kth year and Tjki

′ is the
predicted average sea temperature of the “j”th area in the “i”th

month of the “k”th year. After calculation, the annual average
sea temperature of each area of the study sea area in 2030,
2040, and 2050 is shown in Figures 14–16.

It can be seen from Figures 14–16 that the temperature of
the sea near Scotland gradually rises and increases with time.
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Figure 6: /e time series diagram of the seawater temperature data of region 13 after first-order difference.
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Figure 7: /e time series diagram of the seawater temperature data of region 15 after first-order difference.
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Figure 8: /e autocorrelation diagram of SCST in region 13 (ACF).
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Figure 9: /e partial autocorrelation diagram of SCST in region 13 (PACF).
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Figure 10: /e autocorrelation diagram of SCST in region 15 (ACF).
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Figure 11: /e partial autocorrelation diagram of SCST in region 15 (PACF).
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Figure 12: Time series forecast of monthly average sea temperature in region 13.
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Figure 13: Time series forecast of monthly average sea temperature in region 15.
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By 2030, the shallow water temperature in the northeastern
Atlantic Ocean and the Norwegian Sea will reach 6.5 degrees
and 4 degrees. By 2050, the temperature in these two regions
will reach 7 degrees and 5 degrees, respectively. At the same

time, the temperature near the Celtic Sea and the English
Channel will rise to 9 degrees.

From this, we can see that the temperature of the sea
area where the herring and mackerel fish originally lived
has changed, and with the increase of time, the range of
changes will become greater and greater, it is no longer
suitable for the survival of the fish, and the fish will migrate
to a temperature suitable for the sea. Since the migration
process of fish schools is very long, we consider that the
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Figure 15: /e predicted annual average sea temperature of the
study area in 2030 temperature of the study area in 2040.
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Figure 16: /e predicted annual average sea temperature of the
study area in 2050.

Table 1: Predicted migration positions of herring and mackerel.

Time Herring Mackerel

2030 (2°W, 61°N) (5°W, 58°N) (9°E, 55°N) (1°W, 54°N)
2040 (8°E, 64°N） (2°W, 57°N) (3°W, 62°N) (9°E, 58°N)
2050 (2°E, 60°N） (24°W, 58°N) (9°E, 67°N) (4°W, 62°N)

(a)

(b)

Figure 17: Predicted migration positions of herring and mackerel:
(a) herring migration illustration and (b) mackerel migration
illustration.
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fish schools will have a complete migration activity once
every ten years at an interval of 10 years and predict their
migration locations. /e results are shown in Table 1 and
Figure 17.

6. Conclusion

Based on the characteristics of seawater temperature changes
with latitude and longitude, the study area is subdivided into
39 regions, and the time series data of seawater temperature
from January 2004 to December 2020 are used for modeling.
By using the mature time series modeling technique, a
hybrid seasonal model with high prediction accuracy is
established for each region, such as ARIMA (3, 3, 1) (1, 2, 1)
and ARIMA (2, 3, 1) (0, 2, 1) models for region 13 and region
15 and pass the white noise test. Based on the forecast results,
we can see that the average annual sea temperature in the
study area will rise continuously in the next 30 years, which
will lead to the migration of herring and mackerel pop-
ulations. According to the living environment of herring and
mackerel, the future migration location of Shad was pre-
dicted accurately, and the migration route was planned. /is
would significantly improve the efficiency of Scottish small-
scale fisheries with respect to herring and mackerel, reduce
fishing costs, and minimize the heavy losses to the fishing
industry caused by the migration of fish stocks, to further the
development of Scotland’s fishing industry.
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