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Prediction of Forces during Drilling of 
Composite Laminates Using Artificial 
Neural Network: A New Approach 
 
Drilling of fiber-reinforced plastics (FRP’s) is an inevitable machining 
operation, because it facilitates assembly of several components by means 
of mechanical fastening. But, drilling of FRP leads to delamination which 
results in reduced life and efficiency of the FRP part. The delamination 
that induced during drilling is directly affected by the thrust force and 
torque. In the present research endeavour, four different types of drill 
point geometries have been used for making of holes in two different types 
of composite laminates. The drilling of composite laminate has been 
conducted at three different levels of spindle speed and feed rate. A new 
artificial neural network (ANN) approach has been proposed to predict the 
drilling-induced thrust force and torque. The values of thrust force and 
torque predicted by the proposed ANN models are in close agreement with 
the experimental values. 
 
Keywords: Composites, laminates, drilling, thrust force, torque, artificial 
neural network. 

 
 

1. INTRODUCTION 
 

The use of FRP’s has increased to a great extent over the 
last few years due to their exceptional physical and 
mechanical properties such as, high strength to weight 
ratio, high impact resistance, excellent corrosion 
resistance and ease of manufacturing [1, 2]. The use of 
these materials has grown in the field of aerospace, 
aircrafts, automobiles etc. where they have replaced many 
conventional materials. Generally, primary production of 
FRP leads to near-net shape product. But, sometimes the 
product has to be made in parts due to the intricacy in the 
product design. Thus drilling of FRP’s is inevitable as it 
facilitates the assembly of FRP parts by means of 
mechanical fastening [3-5]. However, the damage-
induced during drilling is one of the major challenges that 
cannot be completely avoided. It has been found that the 
thrust force and torque produced during drilling directly 
affect the drilling-induced damage [6, 7]. It has been 
stated that high cutting speed and feed rate results in 
higher values of thrust force and delamination [8, 9]. El-
Sonbaty et al. [10] found that both the thrust force and 
torque increases with drill diameter and feed rate. The 
effect of tool geometry on the thrust force and torque has 
also been investigated [11]. The thrust force generated 
during drilling was identified as the root cause for the 
occurrence of delamination. Hence, the models for 
critical thrust force were developed using linear elastic 
fracture mechanics [12, 13]. A near-linear relationship 
was found between the delamination factor and average 
thrust force during drilling of carbon fiber-reinforced 

plastic (CFRP) composite [14]. On the contrary, it has 
been reported that it is not only the thrust force that 
influences the drilling-induced damage; torque also plays 
significant role [15]. 

A number of predictive models were developed to 
predict the critical thrust force during drilling of FRP’s [16-
18]. Hocheng and Tsao [19, 20] proposed an analytical 
approach to predict the critical thrust force for different 
drill point geometries. It was found that the core drill offers 
the highest critical feed rate followed by candle stick drill, 
saw drill, step drill and the traditional twist drill. The 
mathematical models to predict the thrust force, torque and 
delamination during drilling of composite laminates have 
also been developed [21, 22]. Various predictive models 
have been developed, but the need of the hour is to develop 
more generic models is an area of paramount importance. 
Hence, ANN predictive models are used to solve complex 
and non-linear problems, thus saving time and cost of 
conducting the experiments. Mishra et al. [23] developed 
an ANN model to predict the drilling-induced damage 
during drilling of glass fiber-reinforced plastic (GFRP) 
composites. Latha and Senthilkumar [24] developed a 
neural network model based on back propagation 
algorithm to predict the delamination factor during the 
drilling of GFRP laminates. Athijayamani et al. [25] 
developed an ANN and a regression model to predict the 
thrust force and torque during drilling of natural fiber-
reinforced hybrid composites. The results revealed that the 
ANN models are better than the regression models in 
predicting thrust force and torque. In order to develop the 
ANN models, the number of neurons in hidden layer and 
the values of learning rate and momentum factor are found 
using hit and trial method. Therefore, in the present 
research initiative, a new ANN approach in context of 
drilling of composite laminates has been suggested to find 
the number of neurons in the hidden layer and the values of 
momentum factor and learning rate. 
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2. EXPERIMENTAL DETAILS 
 

2.1 Preparation of composite specimen 
 

Composite laminates of 4 mm thickness were prepared 
using hand lay-up technique. Araldite LY556 along with 
hardener HY 951was used as resin.  Two different types 
of GFRP laminates were fabricated, namely, 
unidirectional GFRP and [(0/90)/0]s GFRP laminates. 
 
2.2 Drilling setup 
 
Drilling of the developed GFRP laminates was conducted 
on a radial drilling machine using solid carbide drills. 
Four different types of drill point geometries (4-facet, 8-
facet, Jo and parabolic drill) of 4 and 8mm diameter was 
used for making of holes in the developed laminates. 
Three different levels of spindle speed (750, 1500 and 
2250 rpm) and feed rate (10, 15 and 20 mm/min) were 
used to conduct the drilling experiments. 

 
2.3 Measurements 

 
Four-component piezoelectric drill dynamometer 
(Make: Kistler, Type: 9272) was used to record the 
thrust force and torque signals. The dynamometer is 
attached to the charge meters (Make: Kistler, Type: 
5015) and the output of the charge meters is supplied as 
an input to the personal computer using an analogue/ 
digital card. 

 
3. ARTIFICIAL NEURAL NETWORKS: AN 

INTRODUCTION 
An ANN is a computational technique which is inspired 
by biological neural network system. An ANN is a fast, 
efficient, accurate and cost effective process-modeling 
tool. The working principle of an ANN is similar to the 
human brain. The neurons transmit the information from 
one to another through synaptic weights of the links [26]. 
A general symbol of neuron consisting of processing 
nodes and synaptic connections is shown in Figure 1. 

 
Figure 1. General symbol of an artificial neuron 

The weight (wij) associated with the link is 
multiplied with the input signal (xi) transmitted through 
that link to calculate the weighted function. The net 
input function is calculated by adding the weighted 
function with a bias b. The bias is much like a weight, 
except that it has a constant input of 1. The net 
activation input for jth neuron is given by: 

1
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j ij i
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net w x b
=

= +∑  (1) 

Where, wij is the weight of link connecting neuron j to i, 
and xi is the input of ith

 neuron. 
Finally, the net input is passed through the transfer 

function , which produces the scalar output . The 
neuron output is given by;  
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The function f = (netj) is referred to as activation 
function. There are different activation functions like, 
uni-polar sigmoid function, bi-polar sigmoid function, 
pure linear etc. The ANN can be trained from a set of 
training data to find the solution of complex non-linear 
problems in which the output parameter is depends on 
one or more input parameters. The predictive models 
developed on the basis of ANNs are more generic in 
nature. Moreover, any number of input parameters can 
be considered without knowing the interrelationship 
among them. The network is built directly from the 
experimental data by its self-organizing capabilities. 
ANN can be easily applied to solve the problems 
difficult to solve or cannot be solved using 
mathematical techniques [27]. 

The working of a neural network is shown in Figure 
2. Conceptually, the working principle of a neural 
network is similar to the mechanical feedback servo 
control system. A neural network can be trained to 
perform a particular function by adjusting the values of 
the connections (weights) between the elements. 
Generally, neural networks are adjusted, or trained, so 
that a particular input leads to a specific target output. 
The difference between the output and the target is 
called error. The training of the network is stopped 
when the network output matches the target, or reached 
the maximum number of iterations, or reached the 
minimum acceptable error value.  

 
Figure 2. Working principle of a neural network 

 
4. APPLICATION OF ARTIFICIAL NEURAL 

NETWORKS: A NEW APPROACH 
 
Most of the engineering problems are modeled using 
neural networks with one hidden layer. Generally, hit 
and trial method is used to find the number of neurons 
in the hidden layer and the values of momentum factor 
and learning rate. Moreover, the ANN is trained for 
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minimum error and the resulting ANN is tested using 
the test data. In the present research initiative, it is 
proposed that the ANN should be trained for three 
different approaches to fit the requirements. 
 
4.1 First approach 
 
The training error should be reduced and then the 
testing should be done. The training error is given by: 

 ( )21
1 target output
2

p
p ppE == −∑   (3)          

where, p is the total number of training pairs.  
 

4.2 Second approach 
 

The overall mean percentage error during the testing of 
test data should be minimized. The mean percentage 
error (MPE) is given by;  

( )2

1

target output
100
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Q q q

qq
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−
= ×∑  (4) 

where, Q is the total number of test data pairs. 
 
4.3 Third approach 

 

The maximum percentage error Max_PE should be 
reduced during the testing of test data pairs. 

Max_PE = maximum {error_percent} (5) 

where, {error_percent} is a set consisting of percentage 
error for each test data input. 
Here, {error_percent} = {p1, p2 ... pq} and  

( )target output
100

target
q q

q
q

P
−

= × , for q = 1, 2, 3 ... Q 

When a set of new data is presented to the trained 
neural network the second and third approach is very 
important in order to reduce the error. It is sometimes 
difficult to train and design the ANN for a particular 
problem as it takes much time to decide the number of 
neurons in hidden layer and the values of learning rate 
and momentum factor. Hence, a new approach has been 
proposed to design the ANN with one hidden layer. The 
training phase is based on error back propagation 
algorithm. The proposed procedure helps to find the 
number of neurons in a hidden layer and the values of 
momentum factor and learning rate for three different 
approaches. The principal steps involved in this new 
ANN approach are as follows: 

Figure 3. New ANN approach 
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Step 1: Initialize the number of neurons in hidden layer 
(J), learning rate (η), momentum factor (α), 
maximum number of epochs ηmax and the 
minimum acceptable error Emax. 

Step 2: Specify the maximum number of neurons in 
hidden layer (Jmax), the maximum learning rate 
(ηmax) and the maximum momentum factor αmax. 

Step 3: Initially, set minimum error during training 
(ET), minimum mean percentage error during 
testing (Min_MPE) and minimu-maximum 
percentage error during testing (Min_Max_PE) 
is equal to infinity. 

Step 4: Train the ANN for J neurons in hidden layer, 
learning rate (η) and momentum factor (α) till 
the network reached the maximum number of 
epochs (ηmax) or the minimum acceptable error 
value (Emax). Compute the training error. 

Step 5: If, training error is less than ET than set ET as 
training error and record J, η and α along with 
weights on connection to the hidden layer V and 
weights on connections to the hidden layer of 
the output layer W. 

Step 6: Calculate the outputs for the test data with the 
trained ANN. 

Step 7: Calculate the MPE and (Max_MPE) for the test 
data. 

Step 8: If, MPE < Min_MPE then set Min_MPE = MPE 
and record J, η, α, V and W. 

Step 9: If, Max_PE < Min_Max_PE then set 
Min_Max_PE = Max_PE and record J, η, α, V 
and W. 

Step 10: If, α < αmax then α = α + Δα and go to Step 4 
else go to Step 11. 
Note: Δα is a small increment in the momentum 
factor. 

Step 11: If, η < ηmax then η = η + Δη and go to Step 4 else 
go to Step 12. 
Note:  Δη  is a small increment in the learning 
rate. 

Step 12: If, J < Jmax then J = J+1 and go to Step 4 else go 
to Step 13. 

Step 13: Display the values recorded in Step 5, 8 and 9. 
 
The new ANN approach is presented with the help of a 
flow chart as shown in Figure 3. 
 
5. PREDICTIVE MODELLING OF THRUST FORCE 

AND TORQUE USING NEW ANN APPROACH 
 
A code based on proposed algorithm was written in 
MATLAB. Three layer network architectures were used to 
predict the thrust force and torque as shown in Figure 4. 
The numbers of neurons in input layer is six. Five for the 
number of input variables (material, drill point geometry, 
drill diameter, feed rate and spindle speed) and one for 
bias. The modelling of thrust force and torque was carried 
out one at a time. Hence, the output layer consists of one 
neuron corresponding to one output variable. It is worthy 
to note that the training of the ANN for one output leads to 
less complexities and better results. 

Assuming that the activation function used in the 
hidden and the outer layer is sigmoidal, the outputs of 
the hidden and outer layer were calculated using the 
following equation: 

( ) 1
1 netf net

e−
=

+
 (6) 

 
Figure 4. Neural architecture 

Initially, a pilot running of the program was done 
by varying the neurons of hidden layer from four to 
fifty using 0.1 as value for the learning rate and 0.9 for 
the momentum factor. This was done in order to obtain 
the idea of the neurons in the hidden layer. The 
number of neurons in the hidden layer was finally 
varied from 10 to 45. The learning rate was kept low 
and was varied from 0.05 to 3 at intervals of 0.025. 
The momentum factor was varied between 0.7 and 0.9 
at intervals of 0.05.  

The data sets were first normalized and a sigmoidal 
function was used as an activation function. The 
number of iterations used was 15000. The weights 
were randomly chosen and were kept below 1, both in 
the input and the hidden layers.  First, 130 data sets 
were chosen randomly for the purpose of training the 
algorithm, whereas the remaining 14 data sets were 
used to test the program.  

 
6. PREDICTION OF THRUST FORCE AND TORQUE  

 
Using the new ANN approach, the modelling was done 
for both the thrust force and torque. The number of 
hidden layers and the values of momentum factor and 
the learning rate were calculated for all the three 
approaches (first approach: minimum error in training, 
second approach: minimum mean percentage error 
during testing, and third approach: minimum-maximum 
percentage error during testing). The details of the 
developed ANN models for thrust force and torque are 
shown in Table 1. 

The results obtained from the developed thrust 
force model based on three different approaches of 
ANN application, as shown in Figure 5. The model 
fails during testing when the non-linearity in the data 
is more and the error during training is minimum.  

The results obtained from the thrust force model, 
which was based on the second approach, have shown 
exceptional compliance with the experimental values, as 
can be seen in Figure 5. The results of the thrust force 
model presented in Table 2 clearly indicate that the 
second approach is better in copmarison with the other 
two approaches in terms of predicting drilling-induced 
thrust force. 
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Table 1. Details of the ANN models 

Approach Model Characteristics values 
First  Second Third 

Number of neurons in 
hidden layer 35 36 42 

Learning rate 0.25 0.27 0.12 

Th
ru

st
 fo

rc
e 

Momentum factor 0.90 0.80 0.85 
Number of neurons in 
hidden layer 36 35 20 

Learning rate 0.30 0.15 0.12 To
rq

ue
 

Momentum factor 0.90 0.85 0.90 

Table 2. Results of the thrust force model 

Approach Characteristics values 
First  Second  Third  

Mean percentage error in 
predicted values of training 
data inputs 

2.5103 4.5081 4.7241 

Mean percentage error in 
predicted values of test data 
inputs 

8.2366 3.7436 5.4568 

Coefficient of correlation 
among predicted values and 
training data outputs 

0.9972 0.9888 0.9886 

Coefficient of correlation 
among predicted values and 
test data outputs 

0.9646 0.9851 0.9880 

Table 3. Results of the torque model 

Approach Characteristics values 
First  Second  Third  

Mean percentage error in 
predicted values of training 
data inputs 

2.3569 5.2011 5.3088 

Mean percentage error in 
predicted values of test 
data inputs 

20.5329 7.0732 9.2711 

Coefficient of correlation 
among predicted values 
and training data outputs 

0.9983 0.9889 0.9883 

Coefficient of correlation 
among predicted values 
and test data outputs 

0.8349 0.9749 0.9633 

 
Figure 6. Experimental and predicted values of thrust force 
for test data sets  

 
Figure 8. Experimental and predicted values of torque for 
test data sets  

The results obtained from the developed torque 
model based on three different ANN approaches is 
shown in Figure 6. It is quite clear from the figure that 
the torque model based on the second approach gives 
better results. The results presented in Table 3 also 
indicate that the second approach is better than the other 
two approaches in predicting drilling-induced torque. 
 
7. CONCLUSION 

 
In the present research endeavour, the drilling of 
unidirectional GFRP and [(0/90)/0]s GFRP laminates 
were conducted using four different carbide drills of 4 
and 8mm diameter at three different levels of spindle 
speed and feed rate. A new ANN approach (first 
approach: minimum error in training, second approach: 
minimum mean percentage error during testing, and 
third approach: minimum-maximum percentage error 
during testing) has been proposed to develop the 
predictive thrust force and torque models. The 
suggested new ANN approach can be easily used to find 
the number of neurons in a hidden layer and the values 
of momentum factor and learning rate. The cumbersome 
hit and trial method used to find the parametric values 
of the neural network can be avoided if the proposed 
ANN approach is used to solve the problem. The testing 
of the developed models using test data reveals that the 
thrust force and torque model based on the second ANN 
approach, i.e. minimum mean percentage error is better 
than the other two approaches. The three approaches 
suggested are realistic in nature and can be used to 
develop ANN models for different engineering 
problems. Furthermore, the predictive force models can 
be utilized commercially to save time and cost. Further 
increase in data sets may lead to a better predictive 
model. 
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 NOMENCLATURE 

FRP’s fiber reinforced plastics 
GFRP glass fiber reinforced plastic 
CFRP carbon fiber reinforced plastic 
ANN artificial neural network 
p number of training data pair 
q number of test data pair 
(zp, tp) pth training pair 
(aq, bq) qth testing pair 
J  number of neurons in hidden layer 
η learning rate 
α momentum factor 
n number of epochs 
nmax maximum number of epochs 
Emax minimum acceptable error 
Jmax maximum number of neurons in hidden layer 
ηmax maximum learning rate 
αmax maximum momentum factor 
ET minimum error during training 
MPE mean percentage error 
Max_PE maximum percentage error 
Min_MPE minimum mean percentage error during 

testing 
Min_Max_P minimum-maximum percentage error during 

E testing 
TPE total percentage error 
V weights on connections of input layer with 

hidden layer 
W weights on connections of the hidden layer 

with output layer 

 
 

ПРЕДВИЂАЊЕ СИЛА ТОКОМ ОБРАДЕ 
БУШЕЊЕМ КОМПОЗИТНИХ ЛАМИНАТА  
ПРИМЕНОМ ВЕШТАЧКЕ НЕУРОНСКЕ 

МРЕЖЕ: НОВИ ПРИСТУП 
 

Vikas Dhawan, Kishore Debnath, Inderdeep Singh, 
Sehijpal Singh 

 
У раду се проучава  осносиметрично, изотермско, 
стишљиво струјање гаса са клизањем, при малим 
вредностима Рејнолдсовог броја. Проблем је решен 
применом једначине континуитета и Навије-Стоксових 
једначина, заједно са Максвеловим граничним 
условом првог реда. Аналитички резултати су 
добијени применом пертурбационе методе. Добијена 
решења се добро слажу са познатим експеримен–
талним резултатима других аутора. 

 

 

 
 

 
  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 


