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Abstract

We perform a large-scale RNA sequencing study to experimentally identify genes that are downregulated by 25

miRNAs. This RNA-seq dataset is combined with public miRNA target binding data to systematically identify miRNA

targeting features that are characteristic of both miRNA binding and target downregulation. By integrating these

common features in a machine learning framework, we develop and validate an improved computational model

for genome-wide miRNA target prediction. All prediction data can be accessed at miRDB (http://mirdb.org).
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Background

MicroRNAs (miRNAs) are small noncoding RNAs that

are extensively involved in many diverse biological pro-

cesses, and dysregulation of miRNA expression may lead

to a variety of diseases [1]. To date, over 2000 human

miRNAs have been reported in miRBase [2]. Both com-

putational and experimental analyses indicate that most

human protein-coding genes are regulated by one or

more miRNAs [3–5]. For functional miRNA analysis,

one critical first step is to identify genes targeted by the

miRNA. To this end, most studies rely on computational

tools to initially identify promising target candidates,

which are subject to experimental validation at a later

stage. Given the critical role of target prediction in

miRNA functional characterization, many computational

tools have been developed in the past 10 years, with

gradually improved performance on target identification.

In particular, in recent years, new models have been

developed based on breakthroughs in experimental

methods as well as novel insights into the mechanisms

of miRNA target regulation [6]. Many common features

have been discovered for miRNA target regulation, such

as perfect pairing of the miRNA 5′-end (seed region) to

the target site, as well as relatively low GC content of

the target site, which results in increased site accessibil-

ity for miRNA binding [7–13].

Despite steady progress in the field of miRNA target

prediction, available prediction algorithms still have sub-

optimal performance, leading to frequent false predic-

tions that are experimentally costly at the validation

stage. Thus, further improvement in computational tar-

get prediction is of high practical importance. However,

efforts in model improvement are greatly hindered by

the lack of high-quality training data from experimental

studies. For computational target analysis, high-quality

training data are essential not only to identify relevant

target features but also to properly weight and combine

these features for building the final prediction models.

In fact, all commonly used target prediction algorithms

were trained with various high-throughput profiling

data, including microarray profiling data [14, 15], or

more recently with crosslinking and immunoprecipita-

tion (CLIP) sequencing data [16–18]. Of note, CLIP is

able to identify transcript targets associated with func-

tional miRNA-RNA-induced silencing complex (RISC)

complex [19–21]. In a typical CLIP experiment, short

transcript sequences that are bound to the Ago protein

are identified by crosslinking the target RNA to the RISC

protein complex, followed by immunoprecipitation and

high-throughput RNA-seq analysis [20]. Recent im-

provements in CLIP studies further allow unambiguous

identification of paired miRNA-target transcripts that
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reside in the same RISC complex by direct ligation of

the miRNA and its cognate target transcript [22, 23]. Al-

though CLIP data have been widely used to train

miRNA target prediction models, one major concern is

that miRNA target binding, as revealed by CLIP, does

not necessarily result in functional target suppression

[15, 24]. Thus, a large number of predicted miRNA tar-

gets based on CLIP training data may not be functionally

relevant in gene expression regulation.

Besides CLIP-seq, another popular strategy for target

analysis is to identify downregulated transcripts resulting

from miRNA overexpression [3, 25, 26]. Targets identified

in this way are more likely to be functionally relevant as

implied by significant expression downregulation. How-

ever, there are also concerns about the miRNA overex-

pression strategy, as it is often challenging to distinguish

direct miRNA targets from indirect targets (i.e., genes that

are indirectly downregulated due to suppression of direct

targets). Another concern is that some targets identified

under miRNA overexpression in cell culture may not be

physiologically relevant. Furthermore, miRNA overexpres-

sion analysis is also greatly limited by the lack of

high-quality transcriptome-wide profiling data. Specific-

ally, most existing datasets are of small scale, focusing only

on a few miRNAs in any single study, and thus are not

ideal for training a general target prediction model. Al-

though it is possible to combine data from multiple

small-scale studies, significant heterogeneity among differ-

ent experiments poses a major concern for accurate target

modeling. Despite the aforementioned challenges, micro-

array data from miRNA overexpression studies have been

proven valuable for target analysis and have been used to

train several widely used target prediction models [14, 15].

In this study, we analyzed both CLIP binding data and

miRNA overexpression data to identify common features

that are characteristic of both miRNA binding and target

downregulation. As the first step, we performed a

large-scale miRNA overexpression study that is specific-

ally designed to identify transcripts downregulated by 25

individual miRNAs. To our knowledge, this is the largest

RNA-seq study of its kind for miRNA target identifica-

tion. This comprehensive dataset allowed us to quantita-

tively re-characterize the previously reported features in

the context of target downregulation at the transcrip-

tome level. miRNA targeting features identified from

overexpression data were also compared to those identi-

fied from public CLIP binding data, and both datasets

were integrated into the same machine learning frame-

work for model development. In this way, our final tar-

get prediction model, MirTarget v4.0, possesses common

features that are important for both miRNA binding and

functional target downregulation. Comparative analysis

indicates that MirTarget has improved performance over

other state-of-the-art target prediction tools.

Results
RNA-seq to identify transcripts downregulated by miRNA

overexpression

It is well established that the binding of a miRNA to its

target transcript does not necessarily result in gene ex-

pression downregulation. In fact, most observed miRNA

binding events, as revealed by CLIP analysis, have little

functional consequences [15, 24]. Thus, focusing on

miRNA binding alone has limited value for the predic-

tion of functional miRNA targets, i.e., downregulated

targets. To alleviate this concern, we directly determined

the target downregulation by miRNA with RNA-seq.

The overall study design is summarized in Add-

itional file 1: Figure S1. As the first step, 25 miRNAs,

along with a negative control RNA, were individually

overexpressed in HeLa cells by transfection. These 25

miRNAs are listed in Table 1. The impact of miRNA

overexpression was profiled at the transcriptome level by

RNA-seq experiments. To control for experimental

variations, each miRNA was transfected into cells in

Table 1 Twenty-five miRNAs analyzed in the RNA-seq

experiments

miRNA name miRNA sequence Identified targets

hsa-let-7c-5p UGAGGUAGUAGGUUGUAUGGUU 31

hsa-miR-107 AGCAGCAUUGUACAGGGCUAUCA 35

hsa-miR-10a-5p UACCCUGUAGAUCCGAAUUUGUG 32

hsa-miR-124-3p UAAGGCACGCGGUGAAUGCC 151

hsa-miR-126-3p UCGUACCGUGAGUAAUAAUGCG 11

hsa-miR-126-5p CAUUAUUACUUUUGGUACGCG 48

hsa-miR-133b UUUGGUCCCCUUCAACCAGCUA 108

hsa-miR-142-3p UGUAGUGUUUCCUACUUUAUGGA 108

hsa-miR-145-5p GUCCAGUUUUCCCAGGAAUCCCU 82

hsa-miR-146a-5p UGAGAACUGAAUUCCAUGGGUU 42

hsa-miR-155-5p UUAAUGCUAAUCGUGAUAGGGGU 154

hsa-miR-15a-5p UAGCAGCACAUAAUGGUUUGUG 108

hsa-miR-16-5p UAGCAGCACGUAAAUAUUGGCG 122

hsa-miR-17-5p CAAAGUGCUUACAGUGCAGGUAG 74

hsa-miR-193b-3p AACUGGCCCUCAAAGUCCCGCU 102

hsa-miR-200a-3p UAACACUGUCUGGUAACGAUGU 35

hsa-miR-200b-3p UAAUACUGCCUGGUAAUGAUGA 126

hsa-miR-200c-3p UAAUACUGCCGGGUAAUGAUGGA 93

hsa-miR-206 UGGAAUGUAAGGAAGUGUGUGG 206

hsa-miR-210-3p CUGUGCGUGUGACAGCGGCUGA 43

hsa-miR-21-5p UAGCUUAUCAGACUGAUGUUGA 11

hsa-miR-31-5p AGGCAAGAUGCUGGCAUAGCU 85

hsa-miR-34a-5p UGGCAGUGUCUUAGCUGGUUGU 155

hsa-miR-9-3p AUAAAGCUAGAUAACCGAAAGU 182

hsa-miR-9-5p UCUUUGGUUAUCUAGCUGUAUGA 106
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duplicate on different days, and RNA-seq library con-

struction and sequencing runs were also performed in

duplicate on different days. In total, 1.5 billion reads

were generated for expression profiling of 52 RNA sam-

ples. The profiling data are presented in Additional file 2:

Table S1. All sequencing data were combined to identify

the genes downregulated by miRNA overexpression. In

our analysis, transcripts that contain at least one miRNA

seed binding site and were downregulated by at least

40% in both of the duplicated experiments are desig-

nated as miRNA targets. In contrast, transcripts that

contain at least 1 seed site but had no expression change

are designated as non-target controls. In this way, 2240

and 4127 miRNA targets and non-target controls were

identified by RNA-seq, respectively. Specifically, there

were 90 targets identified for each miRNA on average,

and the target numbers vary considerably among indi-

vidual miRNAs (ranging from 11 to 206, Table 1).

The impact of miRNA seed types on target

downregulation

Previous studies have identified several major types of

canonical miRNA target sites, including those matching

to the 6-mer, 7-mer, or 8-mer miRNA seed sequences

(Table 2). Sequence conservation analysis suggested that

target sites pairing to longer miRNA seeds are more

conserved across species and thus are more likely to be

bona fide miRNA targets [27]. This hypothesis on the

seed type strength has also been confirmed by analyzing

heterogeneous microarray datasets in the context of tar-

get downregulation [15, 28]. However, further analysis is

needed to accurately quantify the contribution of each

seed type. Our newly generated large-scale RNA-seq

dataset, encompassing 25 miRNAs assessed under uni-

form experimental conditions, provided a unique oppor-

tunity to quantitatively evaluate the strength of different

miRNA seeds on target downregulation. Specifically, we

evaluated the enrichment of each seed type in downreg-

ulated target sites as compared to non-target sites.

As shown in Table 2 and Fig. 1a, seed6 is the most

prevalent type, identified in 86% of all downregulated

targets. However, due to its short length, seed6 is also

present non-specifically in 36% of non-target sites,

resulting in the lowest seed enrichment ratio (2.40 in

Table 2). On the other end, seed8A1 is the most select-

ive type, with an enrichment ratio of 6.83 and is present

in 30% of downregulated targets. Among all 7-mer

seeds, seed7b and seed7A1 have similar enrichment ra-

tios, both of which are higher than the ratio for seed7a.

Another type of 8-mer seed, seed8, has the second

highest enrichment ratio of 5.48, which is higher than

the ratios for all 7-mer seeds. To further distinguish the

potential contribution of the terminal base match from

terminal A base in the target site, we exclusively focused

on 8 miRNAs that do not have a 5′-end U (Fig. 1b).

When compared with all 25 miRNAs, we observed simi-

lar enrichment ratios for seed7b and seed8A1, respect-

ively, from this subset of miRNAs (Table 2). These

results suggest that terminal A-U perfect match has little

impact on target recognition, as the presence of terminal

A in target sites, regardless of its pairing status to the

miRNA, is associated with target downregulation. Inter-

estingly, we also observed a dramatically decreased en-

richment ratio for seed8 from this miRNA subset. In

fact, the seed8 ratio (3.32) is even lower than that for

seed7b (Table 2). Thus, a perfect terminal match other

than A-U is detrimental (rather than contributing) to

target recognition. Based on the seed analysis, we

decided to focus on 3 strongest seed types, including

seed8A1, seed7b, and seed7A1, for target prediction

modeling. Combined together, these 3 seed types

were identified in the 3′-UTR of 76% of downregu-

lated transcripts.

Combining target downregulation and CLIP binding data

to identify common targeting features

One common concern with miRNA overexpression

studies is that it is challenging to locate the exact

miRNA binding site within the target transcript. To

Table 2 Enrichment of miRNA seed match in the target sites

Seed type Matching positions in miRNA Downregulated targets Non-targets Enrichment ratio

Seed6 pos 2–7 0.86 0.36 2.40

Seed7a pos 1–7 0.46 0.13 3.45

Seed7b pos 2–8 0.62 0.15 4.18

Seed7A1 pos 2–7 + A at target pos 1 0.52 0.13 4.10

Seed8 pos 1–8 0.26 0.05 5.48

Seed8A1 pos 2–8 + A at target pos1 0.30 0.04 6.83

Seed7b_not_U Exclude miRNAs with 5′-U 0.60 0.15 3.97

Seed8_not_U Exclude miRNAs with 5′-U 0.19 0.06 3.32

Seed8A1_not_U Exclude miRNAs with 5′-U 0.34 0.05 6.95
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alleviate this concern, we identified candidate target sites

based on the presence of canonical 7-mer or 8-mer seed

sites. In contrast to miRNA overexpression analysis,

CLIP-ligation studies are able to unambiguously identify

miRNA binding sites in the target transcript by cross-

linking the miRNA and its cognate target site in the

same RISC complex. However, the functional conse-

quence of miRNA target binding, as identified by CLIP,

cannot be easily determined. Thus, both CLIP binding

and miRNA overexpression methods have pros and

cons, and each method alone depicts only one important

aspect of miRNA target regulation, i.e., target binding

and functional suppression, respectively.

In our analysis, we are interested in identifying com-

mon features that are characteristic of functional target

regulation, including both miRNA binding and subse-

quent target downregulation. In a recent target predic-

tion analysis [18], we have compiled a miRNA target

binding dataset derived from multiple public CLIP

ligation studies [22, 23]. The CLIP ligation method is

considered advantageous over traditional CLIP methods,

as both the miRNA and its cognate binding site in the

target transcript can be unambiguously identified by

crosslinking to the same RISC complex. In the present

study, the CLIP binding dataset was further combined

with new miRNA overexpression data to identify target-

ing features that are common to both miRNA binding

and target suppression. In this way, 4774 target sites and

8081 non-target sites, identified from both CLIP and

miRNA overexpression studies, were combined and

evaluated in subsequent feature analysis.

Target and non-target sites in the combined dataset

were compared to identify the features that are com-

monly associated with miRNA target regulation. These

features are listed in Additional file 3: Table S2. It is

well-established that miRNA target sites are evolutionar-

ily conserved [7, 28]. In our study, we evaluated target

conservation using two complementary approaches.

First, we calculated the difference in conservation scores

between seed binding positions and flanking positions,

as determined by phyloP scores from 100-way

multi-genome alignment [29]. Second, we also deter-

mined whether the entire seed site (7-mer or 8-mer) is

found across multiple species by word search. Both con-

servation analyses indicated that target sites were very

significantly conserved as compared to non-target sites.

In fact, seed conservation was among the most signifi-

cantly enriched features, whether miRNA overexpression

and CLIP binding data were analyzed separately, or in

combination. Specifically, conserved seed8A1 was the

most enriched in target sites (p = 2.8E−245 by

cross-species seed match and p = 7.3E−218 by phyloP

score, respectively). On the other end, non-conserved

seed7A1 was the most depleted seed type (9.5E−134 by

seed match and p = 1.3E−138 by phyloP score, respect-

ively). Besides seed conservation, there were many other

features commonly found in both datasets. For example,

miRNA target sites were preferentially associated with

shorter 3′-UTR sequences (p = 4.7E−126), and they were

more likely to be found toward the end of the 3′-UTR

sequence (p = 5.4E−66) and away from the center of long

transcripts (p = 2.5E−87).

Despite many similarities, there are also distinct differ-

ences between miRNA overexpression and CLIP binding

data. One prominent example is related to the GC con-

tent of the target site. Compared to non-target sites, tar-

get site GC content was much lower in CLIP binding

data (p = 1.9E−146), but only modestly lower in miRNA

overexpression data (p = 2.1E−10). The depletion of C

A

B

Fig. 1 The impact of miRNA seed types on target downregulation.

Six seed types were evaluated (see Table 2 for seed definitions). a

Percentage of downregulated genes containing individual seed

types in relation to gene expression changes. All 25 miRNAs were

included in the analysis. b Analysis of a subset of 8 miRNAs that do

not contain 5′-U
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nucleotide was moderate in both datasets. Thus, the

drastic difference in GC content between the two data-

sets was mainly the result of a much stronger bias

against G nucleotide in the CLIP data (p = 7.7E−137), in

contrast to the overexpression data (p = 1.2E−19). One

possible explanation could be related to RNase T1 used

in CLIP studies, which preferentially cuts at G nucleo-

tide, resulting in the depletion of internal G in sequen-

cing reads. However, it could also be true that

enrichment of G hinders target site binding by the miR-

ISC complex, as G was also depleted in miRNA overex-

pression data, although only moderately. Another

interesting feature is the seed binding stability, as deter-

mined by the free energy of the seed/target duplex. Seed

binding stability was favored in miRNA overexpression

data (p = 2.5E−12), but disfavored in CLIP binding data

(p = 5.4E−26). Overall, this feature was no longer signifi-

cant when the two datasets were combined (p = 0.26).

Developing a target prediction model with common

targeting features

All miRNA targeting features, as listed in Add-

itional file 3: Table S2, were modeled in a support vector

machine (SVM) framework for algorithm development.

Furthermore, we also performed recursive feature elim-

ination (RFE) analysis to rank the relative importance of

each feature for its independent contribution to model

performance. In this RFE evaluation, all the features

were analyzed collectively using SVM. Specifically, as the

first step, the least important feature was identified and

subsequently removed from the model. Next, the

remaining features were evaluated to identify the second

least important feature for elimination. This evaluation

process was repeated with one feature eliminated from

each iteration until only one feature remained. The RFE

approach helps to understand the independent contribu-

tion of individual features that are included in the

model. Table 3 summarizes 20 top-ranking targeting

features by RFE analysis. The complete RFE ranks of all

the features are listed in Additional file 3: Table S2. Con-

sistent with the feature analysis presented in the previ-

ous section, multiple seed conservation features ranked

among the highest by RFE analysis, with conserved

seed8A1 as the most impactful feature. In our final SVM

model, all 96 features, including both statistically signifi-

cant and non-significant ones, were integrated for build-

ing the prediction model, which we named MirTarget

v4.0. Fivefold cross-validation was performed to deter-

mine the optimal parameters for the SVM kernel func-

tion using the grid.py tool in the libsvm package. A

scoring scheme was then developed to represent the

confidence of prediction. For each candidate target site,

MirTarget computes a probability score (in the range of

0–1) derived from the SVM modeling tool, libsvm, as

Table 3 Summary of top-ranking miRNA targeting features identified by RFE analysis

Feature name RFE rank Targets Non-targets P value

Seed 8A1, conserved 1 0.184 0.018 2.8E−245

Seed7b, low phyloP score 2 0.273 0.445 3.2E−84

GC content of target site 3 1.554 1.901 4.9E−117

UTR length (log2) 4 10.960 11.430 1.5E−114

Seed7A1, non-conserved 5 0.142 0.341 9.5E−134

Seed7A1, low phyloP score 6 0.137 0.339 1.3E−138

AG count 7 0.517 0.774 2.6E−73

Seed8A1, low phyloP score 8 0.200 0.126 1.5E−29

Pentamer motif match 9 0.052 0.022 2.2E−19

Free energy of seed binding (log2) 10 − 2.583 − 2.596 2.6E−01

Distance to UTR end (log2) 11 8.403 9.125 4.7E−126

Seed8A1, moderate phyloP score 12 0.047 0.006 7.5E−53

CA count 13 0.758 0.743 2.7E−01

Seed7b, conserved 14 0.124 0.048 8.7E−55

Seed8A1, high phyloP score 15 0.146 0.009 7.3E−218

Seed7A1, high phyloP score 16 0.036 0.014 1.0E−15

Seed7b, high phyloP score 17 0.093 0.022 8.7E−74

CT count 18 0.893 0.829 3.5E−05

CG count 19 0.106 0.128 6.4E−04

TA count 20 0.871 0.655 2.1E−45
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previously described [30]. This target site score reflects

the statistical assessment of the prediction accuracy.

Based on individual target site scores, MirTarget predicts

whether a gene is a miRNA target by combining all site

scores within the 3′-UTR using the following formula:

S ¼ 100� 1− Π
n

i¼1
Pi

� �

where n represents the number of candidate target sites

in the 3′-UTR, and Pi represents the probability score

for each site as estimated by MirTarget. Most target

genes contain only one site, and thus, the final target

score is computed using the same equation with n = 1.

MirTarget scores were used to rank the relative signifi-

cance of the predicted targets. In this way, we employed

MirTarget for genome-wide prediction of miRNA tar-

gets. All predicted targets are presented in miRDB

(http://mirdb.org) [31].

Algorithm evaluation with independent experimental

data

One common concern in algorithm development is that

a model may work well on the training data, but not as

well on independent unseen data. Thus, the best way to

evaluate the performance of MirTarget would be to

apply it to independent experimental data. In the present

study, heterogeneous experimental data were analyzed

for algorithm evaluation, including those generated from

both CLIP binding and miRNA knockdown experiments.

The performance of MirTarget was also compared to

four other well-established algorithms, including Tar-

getScan 7.0, DIANA-MicroT, miRanda (mirSVR), and

PITA. These algorithms are among the most popular

miRNA target prediction tools, and transcriptome-wide

prediction data are readily downloadable from the re-

spective websites.

Validation with CLIP-seq data

Chi et al. pioneered the HITS-CLIP method for experi-

mental identification of miRNA target transcripts [20].

With this method, they performed crosslinking immuno-

precipitation to pull down mRNA transcripts that were

associated with the miRISC in mouse brain. High-

throughput sequencing was then performed to identify

these mRNA transcript tags, i.e., short RNA fragments

protected by Ago from RNase digestion. Chi et al. dem-

onstrated that in general, the transcript tags are centered

on the seed binding sites [20]. This HITS-CLIP dataset

was further analyzed in our study to identify potential

miRNA target sites. Altogether, 886 potential target sites

were identified based on the seed-matching sequences

for the six most abundantly expressed miRNAs. As

negative controls, a set of potential non-target sequences

was also selected based on the following criteria: (1) they

do not overlap with any sequence tags identified in the

HITS-CLIP experiment and (2) they are from transcripts

with detectable expression levels as revealed by microar-

rays. From these non-target sites, 889 with seed-matching

sequences were selected as negative controls.

In our analysis, the performance of five computational

algorithms, including MirTarget, TargetScan, DIANA-

MicroT, miRanda, and PITA, was evaluated by compar-

ing their ability to distinguish targets from non-targets

as revealed by HITS-CLIP. ROC analysis was performed

to evaluate the overall sensitivity and specificity of the

prediction algorithms. As shown in Fig. 2a, MirTarget

has the best performance, with an area under the ROC

curve (AUC) of 0.78. DIANA-MicroT has the second

best performance (AUC = 0.73). Interestingly, DIANA-

MicroT was developed by training with CLIP binding

data, whereas other public algorithms were trained with

miRNA overexpression data. Thus, it is not surprising

that DIANA-MicroT fits relatively well on CLIP testing

data. Beside ROC analysis, we also constructed

precision-recall (PR) curves to evaluate the accuracy of

prediction. PR curves are commonly used in algorithm

evaluation to determine prediction precision (proportion

of true positives among all predicted positives) in rela-

tion to the recall rate (proportion of identified true posi-

tives among all true positives). As shown in Fig. 2b,

MirTarget has the best performance among all five algo-

rithms. In particular, the precision for MirTarget is over

90% when the recall rate is below 20%. This indicates

that MirTarget is especially accurate for high-confidence

predictions (i.e., high prediction scores).

Validation with miRNA knockdown data

Target prediction algorithms were also evaluated in the

context of target expression changes. In this comparative

analysis, we evaluated the algorithms by employing a

public miRNA knockdown study by Hafner et al. [21]. In

that public study, the authors concurrently suppressed

the functions of 25 miRNAs by antisense inhibitors and

evaluated the impact on target RNA expression with mi-

croarrays. Genes targeted by these miRNAs were ex-

pected to be upregulated due to miRNA inhibition. In

our analysis, we evaluated the correlation between target

prediction scores and target expression upregulation. As

shown in Fig. 3a, compared to other algorithms, the pre-

diction scores computed by MirTarget have the highest

correlation to gene expression upregulation. Further-

more, we also assessed gene expression changes for

top-ranking predictions by individual algorithms, as re-

searchers are particularly interested in high-confidence

target candidates. To this end, we evaluated 100

top-ranking predicted targets per miRNA on average by

each algorithm. Consistent with the correlation analysis,
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the targets predicted by MirTarget were upregulated the

most on average as compared to those predicted by

other algorithms (Fig. 3b).

Discussion

Progress in miRNA target prediction is largely

dependent on the availability of high-quality training

datasets. In recent years, the advent of innovative

CLIP-seq methods allows us to directly identify target

transcripts that are bound to the miRISC complex. Al-

though very useful, there are also concerns when CLIP

data are applied to the training of target prediction

algorithms. One major concern is that most targeting

binding events observed in CLIP experiments have a little

functional impact, as measured by target expression

changes [15, 24]. It is likely that many transcripts identi-

fied by CLIP are only transiently recognized by miRISC

but soon dissociated from it, without resulting in expres-

sion changes. It is also possible that binding by miRISC is

functionally relevant in ways other than target downregu-

lation, such as impacting the cytoplasmic distribution of

miRNAs. For most miRNA studies, the researchers are in-

terested in identifying target transcripts that are downreg-

ulated by the miRNA of interest. Thus, in the present

study, we have combined CLIP binding data with miRNA

overexpression data to systematically identify functional

miRNA targets. Compared to CLIP studies, it is possible

that overexpression of miRNAs may distort target regula-

tion under normal physiological conditions. Thus, both

CLIP and miRNA overexpression have major advantages

and disadvantages for miRNA target analysis. Based on

A

B

Fig. 2 Comparison of miRNA target prediction algorithms using the

HITS-CLIP dataset. MirTarget and four other target prediction algorithms

were included in the analysis. a Receiver operating characteristic (ROC)

curve analysis to evaluate the rate of false positive prediction in relation

to the rate of true positive prediction. b Precision-recall (PR) curve

analysis to evaluate prediction precision in relation to the recall rate

A

B

Fig. 3 Comparison of target prediction algorithms using microarray

data. Microarray profiling data were analyzed to identify target

upregulation resulting from concurrent inhibition of 25 miRNAs. a

Correlation of target upregulation and target prediction scores

computed by 5 individual algorithms, as measured by Pearson

correlation coefficient. b Average level of expression upregulation

for predicted targets. For each algorithm, 100 top-scoring predicted

targets per miRNA on average were included in the analysis
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our analysis, CLIP binding and miRNA overexpression

data share many common features, especially those related

to seed conservation. However, we also observed signifi-

cant differences in certain features, indicating that the two

processes reflect different aspects of miRNA target regula-

tion. We believe that, by modeling with both types of data,

the prediction algorithm can be more generally applied to

various experimental settings.

In the present study, we have experimentally generated

a large RNA-seq dataset to study the functional impact

of individual miRNAs. To our knowledge, our dataset,

including 1.5 billion reads from 52 RNA samples, is the

largest of its kind for miRNA target analysis. The newly

generated RNA-seq dataset is not only crucial for this

study but also enables further algorithmic improvement

in future studies by us as well as other researchers in

this field.

Conclusions
We have developed a new miRNA target prediction al-

gorithm, MirTarget, by combining CLIP binding and tar-

get downregulation data. Comparative analysis showed

that MirTarget has improved performance over existing

algorithms when applied to independent experimental

data. All the target prediction data can be accessed at

miRDB (http://mirdb.org) [31].

Materials and methods
RNA-seq experiments

RNA-seq was performed to evaluate the impact on the

transcriptome by individual miRNAs. Specifically, each

miRNA mimic (Nawgen) as well as a negative control

RNA was individually transfected into HeLa cell with

Lipofectamine 2000 (Life Technologies). Total RNA was

then isolated 24 h post-transfection with mirVana kit

(Life Technologies) for transcriptome analysis by

RNA-seq. Details of the RNA-seq experimental protocol

has been described previously [32]. In brief, ribosomal

RNA was first removed using the RiboMinus kit (Life

Technologies) and custom-designed oligonucleotide

probes. Then, the RNA was used to construct RNA-seq

libraries with the NEBNext mRNA Library Prep kit

(New England Biolabs). The resulting cDNA libraries

were PCR amplified with indexed primers and subject

for sequencing with Illumina HiSeq 3000 at the Genome

Technology Access Center of Washington University. In

total, 1.5 billion reads were generated and each RNA

sample received a coverage of 27 million raw sequence

reads (50 n.t.) on average after demultiplexing the sam-

ple index. These raw reads were mapped to the human

transcriptome with Bowtie [33] and then normalized by

computing the gene expression count per million reads,

followed by trimmed median normalization. A floor

value of 5 was set for low readings (< 5). Normalized

read counts from the miRNA overexpression samples

were compared to those from negative control as well as

other miRNA overexpression samples to identify gene

expression changes at the transcriptome level. A gene

was denoted as a miRNA target if, compared to the me-

dian of all samples, its expression level was reduced by

at least 40%; a gene was denoted as a non-target if its

gene expression level was at least 100%, but no more

than 110% of the median.

Public data retrieval

CLIP data

Details on CLIP-ligation data retrieval were described

previously [18]. In brief, we collected and combined the

data from the Helwak study [22] and the Grosswendt

study [23]. Raw RNA-seq data from the Helwak study

were downloaded from the NCBI GEO database (acces-

sion# GSE50452) [34]. Lists of curated miRNA/target

pairs were downloaded from the journals’ website [22,

23]. The HITS-CLIP data [20] were downloaded from

http://ago.rockefeller.edu. Raw sequence tags were

aligned to the transcriptome with BLAT [35].

miRNA sequences were downloaded from miRBase

[2]. RefSeq transcript sequences and related gene map-

ping index files were downloaded from NCBI [36]. The

NCBI HomoloGene database [36] was used to map

orthologous gene relationships across species. Basewise

conservation was determined by computing phyloP con-

servation scores with PHAST [29] and downloaded from

UCSC Genome Browser (https://genome.ucsc.edu/).

miRNA target prediction data generated by public tools

were retrieved from the respective websites (TargetScan

7.0 [15], http://targetscan.org; DIANA-MicroT [16],

http://diana.imis.athena-innovation.gr; miRanda-mirSVR

[14], http://microrna.org; PITA [13], https://genie.weiz-

mann.ac.il/pubs/mir07/). The target transcript IDs from

all the algorithms were mapped to NCBI Gene IDs for

direct comparison.

Microarray data

We retrieved the microarray data reported by Hafner et

al. [21]. In this microarray analysis, 25 miRNAs were

inhibited by antisense oligonucleotide inhibitors, and the

impact on gene expression was assessed with Affymetrix

Human U133Plus2 chips. Raw microarray data were

downloaded from the NCBI GEO database (accession#

GSE21577), and then normalized using the Bioconductor

RMA method (http://www.bioconductor.org). We fo-

cused our analysis only on genes with detectable expres-

sion. Changes in gene expression due to miRNA

inhibition were determined by comparing to the negative

controls.
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Computational data analysis

Statistical analysis was mainly performed with the R

package (http://www.r-project.org/). Statistical signifi-

cance for individual miRNA targeting features was cal-

culated with Student’s t test or χ
2 test. LIBSVM was

used to train miRNA target prediction models based on

the support vector machines (SVMs) (http://www.csie.n-

tu.edu.tw/~cjlin/libsvm/). For the SVM analysis, radial

basis function (RBF) was used for kernel transformation.

The RBF kernel parameters were optimized with grid

search and cross-validation according to the recom-

mended protocol by LIBSVM. We also performed recur-

sive feature elimination (RFE) analysis with Weka

(http://www.cs.waikato.ac.nz/ml/weka/) to evaluate the

independent contribution of each feature in the SVM

model.
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