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1 Introduction

The recognition of antigenic peptides by T cells plays an essential role in trig-
gering a successful immune response that degrades detrimental foreign or self
proteins. While the sufficient conditions for a peptide to be recognized by T
cells are unknown, convincing evidence from experimental work suggests that
only peptides that bind to MHC (major histocompatibility complex) molecules
(the term Human Leukocyte Antigen, HLA, is used for human) can induce T
cell responses. These peptides are called T cell epitopes (Buus et al. (1987)).
Identification of such epitopes, in particular those that are conserved across
diverse pathogen strains, is fundamental for accelerating vaccine development
and improving immunotherapy. Accordingly, considerable effort has been in-
vested in predicting peptide binding to MHC. Much of this effort has been
computational/statistical since purely experimental approaches are practically
and combinatorially prohibitive (Sung and Simon (2004)).

There are two classes of MHC molecules. MHC class I molecules mostly bind
peptides originating from the cytoplasm (endogenous protein or intracellular
pathogens) whereas MHC class II molecules bind peptides derived from exoge-
nous antigens. X-ray crystallographic analysis has shown that both classes of
MHC molecule have a large peptide binding groove formed by two α-helices
overlaying a β sheet. Binding between antigenic peptides and MHC molecules
is stabilized by hydrogen bonds formed between MHC protein side-chains and
the peptide main chain carbonyl and amide groups, in addition to binding in-
teractions between peptide side-chains and pockets within the MHC peptide-
binding groove. For peptides that bind to HLA-A2, an allele of MHC class I in
human, the sides of the binding groove typically restrict the size of the bound
peptides to be nonamers (9mers). These frequently possess two hydropho-
bic amino acid anchor residues: Lysine at position 2 and Valine at position
9. There are six pockets (A-F) in the binding groove that can accomodate
specific side chains of the binding peptide. Pocket B and pocket F are impor-
tant for accomodating the primary anchor residues at postion 2 and position 9
(Ruppert et al. (1993); Kubo et al. (1994); Parker et al. (1992); Parker et al.
(1994); Falk et al. (1991)). However, these two anchors are necessary, but not
sufficient, for high affinity binding with several other position/residue combi-
nations playing important roles.

Experimentally determined structures of class II MHC-peptide complexes are
similar to class I complexes. One basic difference, however, is that the binding
groove is open at both ends which allows for the protrusion of bound pep-
tides. Consequentially, class II molecules are compatible with longer peptides



(10-mers to 20-mers) than class I, and a specific peptide can bind in differ-
ent registers (Rudensky et al. (1991); Chicz et al. (1993)). There is one deep
pocket in the binding groove that binds the side chain at the primary anchor
position, while several shallow pockets accommodate sides chains at secondary
anchor positions. The greater flexibility in binding of class II molecules has re-
sulted in lower prediction accuracy compared to class I molecules (Brusic et al.
(1997)).

Previously, T-cell epitopes have been identified by binding assays that ex-
amine T-cell responses to synthesized peptides generated from target anti-
gens. However, these approaches are too expensive and labour intensive for
genome scale study of viruses, bacteria or parasites. The development of
prediction rules for peptide binding to MHC molecules can appreciably re-
duce and refine subsequent experimental work. A wide variety of classifi-
cation/prediction methods have been used in this context. Initially, sim-
ple motif-based rules were proposed that specified the presence of particu-
lar amino acids in certain positions – peptides with such motifs being desig-
nated as binders. So-called position weight matrices provided an extension
of these motif-based methods, whereby a matrix of weights for each amino
acid at each peptide position was specified. Both these methods assume
independent contributions of individual peptide positions and consequently
had limited success in predicting MHC binding. This was especially true
for class II molecules, where motifs are less well defined due to the complex
nature of its binding. To obtain improved predictive performance a mul-
titude of data mining / classification procedures have been applied to this
problem. These include artificial neural networks (ANN; Brusic et al. (1997);
Milik et al. (1998)), hidden Markov models (HMM; Mamitsuka (1998)), clas-
sification trees (Segal et al. (2004)), discriminant analysis (Mallios (2001)),
multivariate regression (Lin et al. (2004)) and support vector machines (SVM;
Dönnes and Elofsson (2002); Bhasin and Raghava (2004)).

While some comparative studies of the aforementioned methods have been
reported, these have been limited to demonstrating the superiority of one or
two particular methods over motif-based approaches. A more comprehensive
comparison of techniques in the context of MHC - peptide binding prediction
has not been conducted. Part of the purpose of this paper is to report on such
a study. We investigate six methods: classification trees, ANNs and SVMs,
as well as the more recently devised aggregate/ensemble methods bagging,
random forest and boosting. To our knowledge, ensemble classifiers have not
been applied in this setting despite demonstrated exceptional performance in
benchmark studies (Breiman (1996); Breiman (2001a); Hastie et al. (2001)).



Ensemble approaches synthesize results from weak and/or unstable base classi-
fiers to develop an improved classifier. The mechanism whereby such improve-
ment is realized is transparent for bagging and random forests: averaging over
the constituent base classifiers reduces prediction variance. Differing explana-
tions have been proffered for the success of boosting; see Hastie et al. (2001),
Breiman (2001a) and Bühlmann and Yu (2003). It is notable that the base
classifiers most frequently employed by ensemble methods are classification
trees. We have previously contended (Segal et al. (2004); Segal et al. (2001))
that tree-based methods are natural for handling amino acid sequence pre-
dictors since they are adept at dealing with multi-level (here 20), unordered
categorical covariates. Arguably, it is the inability of select classifiers to read-
ily handle such covariate types that has led, at least in part, to the use of other
representations of peptide sequence as described next.

The binding affinity of a given peptide to MHC is dictated by biophysical
properties of the amino acids composing the peptide. Accordingly, Milik et al.
(1998) employed hand-picked property variables, such as hydrophobicity, po-
larity, charge and volume as inputs to their ANN models. Lin et al. (2004)
chose two QSAR (quantitative structure-activity relationship) molecular struc-
ture descriptors, isotropic surface area (ISA; measures the side chain surface
area) and electronic charge index (ECI; sum of absolute electronic charge
of the side chain), on the basis of their presumed importance to binding.
Sung and Simon (2004), adopted a more comprehensive strategy to represent-
ing amino acid sequence data via properties. They extracted ten orthogonal
factors obtained from 188 physical properties of the 20 amino acids via prin-
cipal components analysis (Kidera et al. (1985)). These ten factors account
for 86% of the total variance. The first four factors (in order of explained
variance) load heavily on individual properties: alpha-helix preference, bulk,
beta-structure preference, and hydrophobicity. The first factor shows mod-
erate association with ISA, whereas the fourth factor is strongly associated
with both ISA and ECI. So, in addition to investigating impact of classifier
choice, we also contrast the differing peptide representation schemes by com-
paring four specifications: amino acid sequence (hereafter denoted AA), the
10 orthogonal biophysical properties (denoted 10-P), the two QSAR descrip-
tors (denoted QSAR) and the combined set of 12 property variables (denoted
(10+QSAR)-P).

We undertake these comparisons of predictive performance for both an MHC
class I molecule (HLA-A2) and an MHC class II molecule (HLA-DR4), classifi-
cation being relatively harder for the latter (Brusic et al. (1997); Sung and Simon
(2004)). However, we go beyond just summarizing error rates for the respec-



tive model × representation × allele fits. Consideration is given to eliciting
variable importance in order to enhance interpretation of results. Further,
using classifier predictions for HLA-DR4, we pursued genomewide epitope
profiling of HIV-1. We obtained and aligned sequence from 30 diverse HIV-
1 strains and assessed the conservation of predicted epitopes across strains.
These predictions were further validated against known T-cell epitopes as
identified in the literature and the JenPep database (Blythe et al. (2002);
Doytchinova and Flower (2003)).

The paper is organized as follows. Section 2 presents details on obtaining and
preprocessing the pertinent HLA-A2 and HLA-DR4 binding and non-binding
datasets. Descriptions of the six competing classifers and their implementa-
tions are also provided. Results obtained from contrasting the six methods
and four representation schemes, along with the epitope profile and validation
study findings, are presented in Section 3. In broad terms we find that the
amino acid representation is as good as any and that ensemble and SVM clas-
sifiers perform best. Finally, Section 4 provides some concluding discussion.

2 Materials and Methods

2.1 Data Acquisition

HLA-A2

The public database MHCPEP (http://wehih.wehi.edu.au/mhcpep/) was
used to build a working pool of binders. MHCPEP is a curated database
comprising over 13,000 peptide sequences known to bind MHC molecules
(Brusic et al. (1996)). Entries in MHCPEP are compiled from published re-
ports as well as from direct submissions of experimental data. Duplicate entries
of HLA-A2 binders were deleted as were non-9-mer peptides, resulting in a to-
tal of 485 binders. Since experimentally confirmed non-binders are relatively
sparse, we generated 9-mers utilizing amino acid frequencies as in SwissProt
(Emmert et al. (1994)) and make the assumption that such randomly gener-
ated 9mers are highly unlikely to bind to the MHC. This was reinforced by
deleting any generated peptide (from the non-binder pool) that was present
in the binding pools, giving rise to a total of 500 non-binders. Figure 1 gives
barplots that illustrate specific amino acid frequencies at each 9mer position
for our binding and non-binding peptides for HLA-A2.

HLA-DR4

http://wehih.wehi.edu.au/mhcpep/


Peptides binding HLA-DR4 in the MHCPEP database have variable lengths.
Brusic et al. (1997) used position weight matrices to locate the 9-mer core for
each binding sequence. Sung and Simon (2004) employed an iterative algo-
rithm to identify the 9-mer core for each binding sequence by excluding, in
each cycle, the subsequence that is farthest from the centroid of the binding
pool. In order to facilitate comparisons of the predictive performance of our
six classification methods and Sung and Simon’s “peptide property model”,
we used the same 621 9-mer core binding sequences as obtained from the last
cycle of their algorithm. Our non-binding pool comprises 600 synthesized 9-
mer peptides, generated analogously to the HLA-A2 non-binders described
above. Amino acid frequencies at each position for both HLA-DR4 binders
and non-binders are contrasted in Figure 2.

2.2 Classification Techniques

We are now confronted with a two class classification problem – discriminate
between binding and non-binding peptides on the basis of (one of the represen-
tations of) their sequence. We next give a brief description of the classification
approaches employed, further detail being available in the respective citations,
with Hastie et al. (2001) providing a good overview.

Classification Trees

The classification tree paradigm is described in Breiman et al. (1984). Tree
construction involves four components. These are: (1) A set of binary (yes/no)
questions, or splits, phrased in terms of the covariates that serve to partition
the covariate space. A tree structure derives from splitting recursively. The
subsamples created by assigning cases according to these splits are termed
nodes; (2) A split function, that can be evaluated for any split of any node,
which is used to evaluate competing splits; (3) A means for determining appro-
priate tree size; and (4) Statistical summaries for the nodes of the tree. The
first item deals with handling covariates and so is germane to which sequence
representation is adopted. In most implementations (e.g., Therneau and Anderson
(1997)) allowable splits are defined as follows: (a) each split depends upon the
value of only a single covariate; (b) for ordered (continuous or categorical)
covariates – cf properties – only order preserving splits are permitted; (c) for
unordered categorical covariates – cf amino acids – all possible splits into dis-
joint category subsets are theoretically allowed. A computational shortcut
(see Breiman et al. (1984), Theorems 4.5 and 9.4) reduce the number of splits
actually examined from an impractical 2L−1 − 1 to L − 1 for a covariate with



L levels. It is this exhaustive handling of groups of amino acids that makes
classification trees attractive in this setting. Additionally, by the very recur-
sive nature of tree construction, trees are geared to detecting interactions and
so can capture between (peptide) position dependencies.

We employed the common strategy of growing an initial tree to maximal depth
(by appropriately specifying tuning parameters), so that each terminal node
only contains instances from a single class (e.g. binders). This strategy avoids
the need to prespecify stopping rules and can uncover unanticipated structure.
The likely over-fitting is then remedied by pruning back to an appropriate size
as determined either by cross validation or use of an independent test dataset.
We implemented classification trees via the R package rpart.

Despite the abovementioned utility of classification trees with regard to han-
dling sequence-based predictors, these techniques have some general deficien-
cies. Foremost amongst these is modest prediction performance when com-
pared with more flexible methods, such as ANNs or SVMs. Bagging and
random forests, described next, were devised to address these shortcomings.

Bagging and Random Forests

In a series of recent papers, Breiman has demonstrated that consequential
gains in classification or prediction accuracy can be achieved by using (large)
ensembles of trees, where each tree in the ensemble is grown corresponding to
some introduced randomness. Final classifications are obtained by aggregating
(plurality voting) over the ensemble, typically using equal weights. Bagging
(Breiman (1996)) represents an early example in which each tree is constructed
from a bootstrap (Efron and Tibshirani (1993)) sample drawn with replace-
ment from the (training) data. The simple mechanism whereby bagging re-
duces prediction error (for squared error loss) for unstable predictors, such as
trees, is well understood in terms of variance reduction resulting from averaging
(Hastie et al. (2001)). Such variance gains can be enhanced by reducing the
correlation between the quantities being averaged. It is this principle that mo-
tivates random forests, which effect such correlation reduction by a further in-
jection of randomness. Instead of determining the optimal split of a given node
of a (constituent) tree by evaluating all allowable splits on all covariates, as is
done with single tree methods or bagging (item 2 above), a subset of the covari-
ates drawn at random is used. The size of this subset, mtry, constitutes the pri-
mary tuning parameter of the random forest procedure. Breiman (2001b) ar-
gues that random forests enjoy exceptional prediction accuracy for a wide range
of settings of mtry. Here, we used ensembles of size 100 and the recommended
value of mtry, which is the square root of the number of variables. Results were



largely insensitive to varying these quantities. We implemented bagging using
the R package ipred and random forests using standalone FORTRAN software
available from http://www.stat.berkeley.edu/users/breiman/rf.html.

Boosting

Boosting has enjoyed considerable recent success as an effective “off-the-shelf”
classifier. While boosting was originally presented as a procedure that com-
bines outputs from many so-called weak classifiers (learners) to produce an en-
semble, it is fundamentally distinct from bagging and random forests (Hastie et al.
(2001)). Insights into the basis for boosting’s success, including its tendency
to avoid overfitting, have been provided by viewing the method as additive
modeling (Friedman et al. (2000)) and stagewise functional gradient descent
(Friedman (2001), Bühlmann and Yu (2003)). We adopt the AdaBoost for-
mulation (exponential loss) which was one of the earlier proposed boosting
algorithms (Freund and Schapire (1997)). After tuning, we used classification
trees that have a maximum depth of 4 (root node is counted as depth 0) as
the weak learner and 100 iterations. We implemented AdaBoost using custom
software and the R package gbm.

Support Vector Machines

Extensive descriptions of SVMs can be found in Christianini and Shaw-Taylor
(2000) and Hastie et al. (2001). A key component of SVM methodology is
basis expansion, effected by transforming the input vector (here a sequence
representation) into a high dimensional feature space via use of a prescribed
kernel. There are some standard choices for the kernel including polynomial,
radial basis function (RBF) and sigmoid. Since prior work in the peptide
– MHC binding context found that RBF kernels gave optimal performance
(Bhasin and Raghava (2004)) and these have been recommended as a good
default (Hsu et al. (2003)) we adopt this choice. We determined remaining
tuning parameters of the SVM (penalty/cost and width of the RBF kernel)
by cross-validation. For the amino acid sequence (AA) representation we em-
ployed (19) indicator variables - we obtained these using treatment contrasts
(R default in package e1071) with A (arginine) as the baseline group (also the
default). This gave an input vector of length 171(= 19 × 9) for the 9-mer
peptides, while 10-P and (10+QSAR)-P had 90(= 10 × 9) and 108(= 12 × 9)
inputs respectively. Fitting made recourse to the R package e1071.

Artificial Neural Networks

Informative overviews of ANNs are provided by several monographs including
Bishop (1995) and Ripley (1996). In most, if not all, ANN applications to



MHC - peptide binding classification problems a fully-connected, feed-forward
architecture with one hidden layer is chosen for the network. As noted by
Hastie et al. (2001), there are many delicacies surrounding training neural net-
works as the associated model is generally overparameterized and the optimiza-
tion problem is nonconvex and potentially unstable. We employed three-fold
cross validation to effect such training, focusing on optimizing the number of
hidden nodes and weight decay (momentum) parameters. The inputs were
the same as used for SVMs above. Implementation was effected using the R

package nnet.

2.3 Model Training, Validation and Performance

Due to the absence of designated test datasets, we used multiple levels of
cross-validation to tune the above classifiers and evaluate their predictive per-
formance. The following scheme was used: a) randomly split the data into
10 parts and reserve (set aside) one part as a (pseudo) test dataset with the
remaining parts constituting the learning dataset; b) develop predictive mod-
els using the respective classifiers using the learning dataset; c) obtain test
error rates by applying the models to the test dataset; d) cycle through all
10 possible withheld test datasets, repeating steps a)-c); e) repeat the entire
procedure, steps a) through d), 10 times corresponding to differing random
partitions of the data. For the SVM and ANN classifiers, tuning parame-
ters were, determined using three-fold cross validation of each learning set as
constructed in step a). For the other classifiers (limited) sensitivity analyses
indicated that default settings were adequate.

The predictive performance of each classifier and sequence representation scheme
was assessed using receiver operating characteristic (ROC) curves, generated
by thresholding classifier class predictions. An ROC curve was derived for
each test dataset and the corresponding area under the ROC curve (aROC)
was computed. To summarize the performance of each method we calculated
the mean aROC and its associated standard error over the differing cross-
validation folds. Values of aROC = 50% indicate random choice; aROC >

80% indicate moderate accuracy; and aROC > 90% indicates high prediction
accuracy. In addition, for comparability with prior summaries (Sung and Simon
(2004)), we also compared sensitivities that correspond to 80% specificity
(sensitivity80).



2.4 Prediction of HIV-1 Epitopes

Our epitope profiling of HIV-1 is focused on predictions obtained for HLA-DR4
binding. This emphasis derives from the fact that binding to HLA-DR4 is more
complex than for HLA-A2 and accordingly we see more variation in predictive
performance across classifiers and representations. We obtained the accession
numbers of 32 full genome-length reference HIV-1 strains from Los Alamos Na-
tional Laboratory HIV Sequence Database (http://www.hiv.lanl.gov/content/index)).
This diverse collection of strains span subtypes A, B, C, D, E, F, H, J and O.
The corresponding gag, pol and env amino acid sequences were retrieved from
GenBank (http://www.ncbi.nlm.nih.gov/Genbank/). Two pol sequences
were incomplete and were therefore excluded from further analysis. To detect
conserved epitopes, all sequences were aligned using Clustal W (Thompson et al.
(1994)) with default settings. We showcase results for a single classifier (bag-
ging) but examine each of the four sequence codifications. For each of these
models we construct image plots displaying (thresholded) binding affinity at
each (including overlaps) 9-mer of the aligned HIV-1 sequences. Hits that
straddle the different strains represent highly conserved epitopes that con-
stitute putative vaccine targets. Informal validation of the epitope predic-
tions is assessed by recourse to the HIV Molecular Immunology Database
(http://www.hiv.lanl.gov/content/immunology/index), which contains a
comprehensive list of experimentally confirmed HIV-1 T cell epitopes.

2.5 Validation Using Known Epitopes

To further evaluate the impact of differing peptide representation schemes we
obtained a benchmark dataset that has previously been used for model valida-
tion in this context (Doytchinova and Flower (2003)). Peptide sequences, of
lengths ranging from 12 to 20 amino acids, for 25 known T-cell epitopes bind-
ing to HLA-DR4, were downloaded from the JenPep database (Blythe et al.
(2002)). Bagging classifiers, based on each of the four representations, were
trained using HLA-DR4 binders collected from MHCPEP and synthesized non-
binders (see Section 2.1). These were then tested on each 9-mer subsequnce of
the 25 known epitopes. We score each peptide for each representation using the
highest scoring 9-mer subsequence based on the corresponding classifier. To
determine a binding threshold for these scores we generated a set of 2,500 non-
binding 9-mer peptides according to amino acid frequencies from SwissProt.
These, in turn, were queried against the four classifiers and the maximum
score within the synthetic dataset for each model was identified and used as



the threshold: peptides with scores exceeding the corresponding threshold are
predicted as “binders”.

3 Results

Figure 1 and 2 illustrate frequencies (by binding status) of the 20 amino acids
at positions 1-9 for HLA-A2 and HLA-DR4 respectively. For HLA-A2, amino
acids A, I, L, M, T and V are over-represented in binders at (known) anchor
postions 2 and 9. However, such frequency disparities are not apparent for
HLA-DR4, underlying the greater complexity of class II binding.

We evaluated the impact of classifier and sequence representation choices by
examining all 24 = 6× 4 combinations of classifiers (single tree, bagging, ran-
dom forest, boosting, SVM and ANN) and sequence representation schemes
(AA, QSAR, 10-P and (QSAR+10)-P). Performance evaluation made recourse
to cross-validation and ROC curves, as described in Section 2.3. Tables 1 and
2 present areas under the ROC curves (aROC) and the sensitivity rates at
80% specificity for HLA-A2, with the corresponding ROC curves displayed in
Figure 3. The tree ensemble methods – bagging, random forests and boost-
ing – exhibit excellent performance irrespective of data representation. SVM
is comparably accurate, except when solely QSAR properties were used for
peptide representation. ANNs and single tree were poorer, with the latter
being the worst. Peters et al. (2003) show similar results for HLA-A2, with
single tree, ANN and SVM providing increasingly better performance in that
order. The same ordering with respect to sensitivity (as opposed to aROC)
are obtained by Zhao et al. (2003). Variable importance measures for boosting
(extracted from the R package gbm coincide with those obtained from random
forest. Postions 2 and 9 are found to be the most important for binding, cor-
responding to known anchor positions. However, using only anchor positions
for classification degrades predictive performance significantly for all classifiers
except the single tree.

Analogous results fro HLA-DR4 are given in Tables 3 and 4 and Figure 4.
Here, there were slightly more marked differences in predictive performance
according to which sequence representation scheme was used. Overall, the
amino acid coding gave consistently (across classifiers) best results. As for
HLA-A2, use of solely QSAR properties fared worst indicating that, for the
broad spectrum of classifiers examined, this selection is inadequate for cap-
turing the complexities of binding for HLA-DR4 molecules. Again, the tree
ensemble methods and SVM provided superior performance to a single tree



and ANN. Bhasin and Raghava (2004) also show better performance of SVM
over ANN in their comparison studies of HLA-DR4 binding. All classifiers,
except for the single tree, performed significantly better than the classifier
developed by Sung and Simon (2004) for which the corresponding aROC is
0.84 and Sensitivity80% is 0.72. Variable importance measures for boosting
(extracted from the R package gbm) coincide with those obtained from ran-
dom forest, and positions 9, 8 and 6 are found to be the most important for
binding, whereas anchor positions reported previously are positions 1,4,6 and
9 (Muntasell et al. (2002)).

3.1 Illustration of Representation Impact

To further showcase differences deriving from using different sequence repre-
sentations we focus on single trees as applied to HLA-DR4 peptide binding.
Single trees were selected despite their inferior predictive performance (see Ta-
ble 3) since (i) results were sensitive to representation scheme; and (ii) output
readily facilitates interpretation.

The trees depicted in Figures 5 were obtained by (cost-complexity) pruning
of initial trees grown to maximal depth. For comparison purposes we contrast
trees with 4 or 5 terminal nodes. In the tree diagrams ovals designate internal
nodes and rectangles designate terminal nodes. Within each node both the
predicted class (0: non-binding or 1: binding) and sample size ratio (#{non-
binding}/#{binding}) is given. For the AA coding (see Figure 5a), the root
node 1 is partitioned on the basis of position 8 – peptides having amino acids A
or L at this position are assigned to the right daughter node which is enriched
with binders (87 non-binders and 354 binders). For comparison, both of the
property trees use two consecutive splits to achieve a similar enrichment. For
the 10-P tree (Figure 5b), the first split partitions on “α-helix preference” at
position 8, which corresponds to assigning amino acids A, E, F, L and M to the
right daughter node. The subsequent split of this node uses bulkiness to assign
amino acids A and L to recover above enrichment. The QSAR tree (Figure
5c) first splits on postion 8 using ECI and assigns amino acids G, A, V, L, I
to the right daughter. This node is further split based on ISA of position 9 to
produce a terminal node with 91 non-binders and 328 binders. Thus, the AA
tree requires fewer splits to achieve either the same or better separation.

As mentioned in Section 2.2, classification trees are theoretically exhaustive
in determining the optimal split for an unordered categorical covariate. For
the AA representation, there are 219 − 1 = 524, 287 such splits per position



whereas for 10-P and QSAR-property encoding there are 19 × 10 = 190 and
19× 2 = 38 possible splits per position. Further, any property based split can
be captured via an AA split but not vice versa.

3.2 HIV-1 Epitope Profiling

To appraise predictive models based on differing sequence representations and
assess effects on T-cell epitope identification on a genomewide scale, we ana-
lyzed a set of HIV-1 reference sequences. Extensive research has shown that
HIV-1 specific CD4+ T cells play an important role in the control of HIV-1
replication. To identify T-cell epitopes in HIV-1 that might serve as vac-
cine targets, it is purposeful to determine conservation of HIV-1 derived pep-
tides that display affinity to multiple MHC molecules. Sung and Simon (2004)
adopted such an approach, using their “peptide property model” to scan ref-
erence HIV-1 genomes for MHC binding potential. We mimic their analysis,
albeit focused on contrasting results from the four different sequence represen-
tations. Accordingly, we do not attempt to investigate multi-allele antigenicity,
but direct attention solely to HLA-DR4 in view of its complex binding pat-
terns. Initially, HLA-DR4 training data were used to fit the ensemble classifier
bagging, which was chosen among the six classifiers (see Table 3) for (i) its
overall good predictive performance and (ii) its relative sensitivity toward the
four different sequence representations. Subsequently, overlapping 9-mers from
the reference HIV-1 strains were queried via the binding model, giving rise to a
series of binding potentials spanning the entire sequence of the HIV-1 strains.
Unlike Sung and Simon (2004), we used ClustalW (Thompson et al. (1994))
to align the set of HIV-1 strains, which enhances the ability to gauge epitope
conservation.

Figure 6 (a) gives image plots of the affinity of gag proteins of a diverse set of
(aligned) HIV-1 strains to HLA-DR4. For the bagging classifier the binding
probability was estimated by the percentage of trees (in the ensemble) that
classify the target sequence as a “binder”, where target sequence at postition
n (in the image plot) corresponds to the 9-mer peptide spanning positions
n to n + 8 along the aligned gag sequence. These probabilities were thresh-
olded so as to display a similar number of binders (in red) to Sung and Simon
(2004) and across the four different sequence representations. Results for pro-
teins pol and env are shown in Supplementary Data. Correlations between
the binding probabilities predicted based on the different sequence representa-
tions are schematically illustrated in Figure 6(b). Predictions based on QSAR
properties showed the worst association with the others whereas, as expected,



correlation between 10-P and (10+QSAR)-P is the highest ( 0.9). AA is more
strongly correlated with 10-P and (10+QSAR)-P (0.75-0.77) than with QSAR
(0.51-0.59).

A red line spanning the different strains of HIV-1 in Figure 6(a) suggests a
highly conserved epitope that could be a vaccine target against HIV-1. We
listed such peptides derived from gag, pol and env in Table 5, which are con-
served in at least 90% of the strains and are classified as binders by any of
the four representation schemes. Note that the use of alignment generates
far more hits of conserved binders compared to the unaligned approach of
Sung and Simon (2004) (see their corresponding Table 2), even though the
number of binders per strain were conditioned to be the same. The identities
of the representations against which the peptides exhibited significant binding
are given in parentheses next to the target peptides. To gauge the accuracy of
these epitope predictions we used the HIV Molecular Immunology Database
(http://hiv-web.lanl.gov/content/immunology/index.html), which pro-
vides a comprehensive collection of annotated and searchable HIV-1 T-cell
epitopes, to identify known and experimentally confirmed MHC binding pep-
tides in gag, pol and env from within our list of binders. Such peptides are
marked with the corresponding references in Table 5. Overall, the classifi-
cation model based on AA had the highest hit rate with 41 experimentally
confirmed binders, whereas for QSAR, 10-P and (10+QSAR)-P, the numbers
are 28, 33 and 31 respectively.

3.3 Validation Using Known T-cell Epitopes

We performed further validation using 25 known T-cell epitopes binding to
DRB1*0401 collected from the JenPep database (Blythe et al. (2002)) as de-
scribed in Section 2.5. Results are presented in Table 6 which lists binding
scores from the four different sequence representations. Those peptides that
are predicted as non-binders (false negatives) are indicated in italics. Using
the AA representation identified 21 (of the 25) epitopes, whereas using QSAR,
10-P and (10+QSAR)-P identified 19, 20 and 20 respectively.

4 Discussion

The objectives of this paper have been two-fold: (i) to compare classification
techniques in the context of peptide binding to MHC molecules; and (ii) to



illustrate the impact of differing peptide respresention schemes on classification
accuracy. We based our evaluation on both an MHC class I molecule (HLA-
A2) and an MHC class II molecule (HLA-DR4).

The MHC - peptide binding classification problem is characterized by the
following features: (1) short (9-mer) peptides providing multilevel (20) un-
ordered categorical covariates (amino acids); (2) peptide anchor positions
and complex between-position interactions influencing binding affinity; and
(3) a premium on interpretable classification rules. Many “strong learners”
(Bühlmann and Yu (2003)), such as ANNs and SVMs, that are suitable for
handling the challenges posed by item (2), do not efficiently handle covariate
types as in (1). Accordingly, this has resulted in many analyses making re-
course to select biophysical properties of amino acids, rather than using the
amino acids themselves. For example, Lin et al. (2004) use two hand-picked
QSAR molecular structure descriptors, Milik et al. (1998) use six hand-picked
properties, while Sung and Simon (2004) use ten factors derived from principal
components analysis (PCA) of 188 biophysical properties. Not only do these
contrasting approaches immediately beg questions of which, and how many,
properties to employ but, more importantly, concerns surrounding informa-
tion loss arise. Such concerns extend to the situation where pre-selection of
properties is based on PCA and a large proportion of total variation is ac-
counted for: variation not captured may be important for classification. Our
results on representation scheme are unequivocal. The use of amino acids (AA)
themselves does at least as well (and in several cases significantly) better than
the other representation schemes, irrespective of classifier employed and/or
epitope validation approach used, and avoids altogether the above selection
issues. Therefore, it is our recommended representation.

Some clear-cut conclusions can also be drawn with regard to classifier choice.
That single classification trees fare uniformly worst is not surprising, since such
relatively poor performance has been well documented (Friedman et al. (2000);
Breiman (2001a); Hastie et al. (2001); Bühlmann and Yu (2003)). However,
the fact that ANNs are dominated by the remaining methods is notable, as they
have been the most widely used method in the MHC - peptide binding setting.
While ANNs, in turn, dominate simple motif-based classifiers (Brusic et al.
(1997); Yu et al. (2002)), our results indicate that they are not competitive
with more credible approaches such as SVMs and ensemble methods. This
poor performance is compounded by the tuning sensitivity and black-box na-
ture of ANNs. SVMs have seen more recent application to peptide binding pre-
diction (Dönnes and Elofsson (2002); Zhao et al. (2003); Bhasin and Raghava
(2004)) where, as was the case for our investigation, good prediction perfor-



mance results were obtained. Differing recommendations have been advanced
regarding choice of kernel, with Zhao et al. (2003) advocating a linear kernel
whereas Bhasin and Raghava (2004) found the radial basis kernel performed
best. This disparity might reflect target application as the former is based on
simpler MHC class I binding, while the latter pertains to more complex MHC
class II molecules. We used radial basis kernels for both classes and achieved
competitive performance.

We have introduced the use of random forests and boosting to MHC - pep-
tide binding classification problems and our results demonstrate that these
techniques are consistently more accurate than heretofore used alternatives.
Furthermore, they are relatively robust with respect to tuning. Random forests
readily provide accurate estimates of test set error and measures of covariate
importance, making them all the more appealing. For these reasons we be-
lieve they constitute the classifier of choice for problems with sequence-based
predictors.

While our comparisons of the differing peptide representation schemes with
regard to epitope prediction indicated that the AA representation was at least
as effective as properties, this constitutes only partial validation. Far more
compelling would be demonstration that predicted epitopes not (yet) identified
in a relevant pathogen – here we have focused on HIV-1 – database are true
epitopes as opposed to false positives. Of course, this requires experimental
verification. However, such confirmation can at least be directed by considering
degrees of conservation, akin to the depiction in Figure 6.
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Table 1: Comparisons of various models and coding methods on HLA-A2
classification: aROC

aROC on test set
Models AA QSAR 10 properties (QSAR+10) properties

single tree 0.898 (0.008) 0.904 (0.010) 0.904 (0.005) 0.895 (0.008)
bagging 0.965 (0.002) 0.954 (0.002) 0.963 (0.001) 0.963 (0.002)

random forest 0.970 (0.002) 0.971 (0.001) 0.972 (0.002) 0.974 (0.001)
boosting 0.969 (0.002) 0.963 (0.001) 0.969 (0.002) 0.968 (0.002)

svm 0.968 (0.001) 0.923(0.01) 0.972 (0.001) 0.970 (0.001)
neural net 0.953 (0.003) 0.906 (0.005) 0.937 (0.004) 0.938 (0.003)

Table 2: Comparisons of various models and coding methods on A2 classifica-
tion: Sensitivity80%

Sensitivity80%

Models AA QSAR 10 properties (QSAR+10) properties

single tree 0.882 0.882 0.882 0.872
bagging 0.950 0.927 0.945 0.939

random forest 0.958 0.957 0.961 0.967
boosting 0.952 0.939 0.945 0.948

svm 0.954 0.885 0.959 0.960
neural net 0.940 0.847 0.916 0.916



Table 3: Comparisons of various models and coding methods on HLA-DR4
classification: aROC

aROC on test set
Models AA QSAR 10 properties (QSAR+10) properties

single tree 0.804 (0.011) 0.746 (0.008) 0.755 (0.011) 0.763 (0.010)
bagging 0.911 (0.003) 0.877 (0.003) 0.891 (0.002) 0.891 (0.003)

random forest 0.916 (0.003) 0.911 (0.002) 0.914 (0.004) 0.919 (0.004)
boosting 0.917 (0.002) 0.907 (0.004) 0.914 (0.004) 0.914 (0.003)

svm 0.917 (0.002) 0.846(0.003) 0.919 (0.002) 0.917 (0.002)
neural net 0.881 (0.006) 0.772 (0.009) 0.870 (0.004) 0.846 (0.009)

Table 4: Comparisons of various models and coding methods on HLA-DR4
classification: Sensitivity80%

Sensitivity80%

Models AA QSAR 10 properties (QSAR+10) properties

single tree 0.724 0.605 0.670 0.682
bagging 0.850 0.796 0.809 0.818

random forest 0.857 0.843 0.855 0.861
boosting 0.862 0.842 0.850 0.854

svm 0.865 0.725 0.865 0.855
neural net 0.808 0.592 0.784 0.749



Table 5: Conserved HLA-DR4 epitopes in gag, pol and env of HIV-1 predicted by the bagging
model. Amino acid sequence encoding is denoted as ”1”, and encodings based on QSAR
properties, 10- and (10+QSAR)-P are labeled ”2”, ”3” and ”4” respectively.

# Sequence(Model) # Sequence(Model) # Sequence(Model)

GAG
1 MGARASVLS(all) 34 IVWASRELE(234) 42 ERFAVNPGL(124)

57 CRQILGQLQ(4) 75 LRSLYNTVA(12) 78 LYNTVATLY(134)

81 TVATLYCVH(2) 94 IKDTKEALD(2) 140 GQMVHQAIS(2)A

152 LNAWVKVVE(2) 168 VIPMFSALS(134)B 171 MFSALSEGA(1)B

172 FSALSEGAT(34)B 184 LNTMLNTVG(2) C 194 HQAAMQMLK(13)D

201 LKETINEEA(13) D 206 NEEAAEWDR(1) 213 DRVHPVHAG(2)E

229 REPRGSDIA(2)E 233 GSDIAGTTS(3) 234 SDIAGTTST(134)E

266 IILGLNKIV(2) AB 276 MYSPTSILD(234)B 297 VDRFYKTLR(2)C

298 DRFYKTLRA(1)C 300 FYKTLRAEQ(4) 301 YKTLRAEQA(1)

302 KTLRAEQAS(34) 310 SQEVKNWMT(34) 314 KNWMTETLL(1)F

315 NWMTETLLV (134)F 319 ETLLVQNAN (14)F 330 CKTILKALG(34)

334 LKALGPAAT(134) 336 ALGPAATLE(2) 346 MMTACQGVG(2)

353 VGGPGHKAR(2) 357 GHKARVLAE(24) 359 KARVLAEAM(all)

360 ARVLAEAMS(all)

POL
73 GQLKEALLD(234) 76 KEALLDTGA(1) 77 EALLDTGAD(134)

79 LLDTGADDT(1) 105 GIGGFIKVR(2) 122 ICGHKAIGT(2)

125 HKAIGTVLV(13) 128 IGTVLVGPT(4) 130 TVLVGPTPV(1)

131 VLVGPTPVN(2) 139 NIIGRNLLT(all) 142 GRNLLTQIG(2)

146 LTQIGCTLN(all) 153 LNFPISPIE(2) 154 NFPISPIET(1)

160 IETVPVKLK(3) 181 LTEEKIKAL(34) 185 KIKALVEIC(2)

215 VFAIKKKDS(134) 223 STKWRKLVD(2) 225 KWRKLVDFR(4)

226 WRKLVDFRE(234) 231 DFRELNKRT(1) 232 FRELNKRTQ(2)

257 KKKSVTVLD(all) 281 KYTAFTIPS(124)A 284 AFTIPSINN(1)A

286 TIPSINNET(1) 297 IRYQYNVLP(13) 316 QSSMTKILE(2)G

341 DLYVGSDLE(134) 357 IEELRQHLL(13)H 387 YELHPDKWT(4)

412 IQKLVGKLN(134)I 415 LVGKLNWAS(all)H 430 KVRQLCKLL(4)

431 VRQLCKLLR(2)H 437 LLRGTKALT(1234)HI 440 GTKALTEVI(2)H

443 ALTEVIPLT(134)H 447 VIPLTEEAE(134)H 451 TEEAELELA(134)H

452 EEAELELAE(34) 503 NLKTGKYAR(1) 523 LTEAVQKIT(2)

526 AVQKITTES(4) 555 TWWTEYWQA(34) 556 WWTEYWQAT(1)

560 YWQATWIPE(3) 565 WIPEWEFVN(2) 568 EWEFVNTPP(34)

continued. . .



569 WEFVNTPPL(1)A 577 LVKLWYQLE(all)AI 593 ETFYVDGAA(124)I

627 TTNQKTELQ(13) 633 ELQAIYLAL(all) 636 AIYLALQDS(1)

644 SGLEVNIVT(24) 651 VTDSQYALG(134) 654 SQYALGIIQ(2)

681 IKKEKVYLA(134) 690 WVPAHKGIG(2)A 716 FLDGIDKAQ(2)

731 HSNWRAMAS(14)A 733 NWRAMASDF(3) 734 WRAMASDFN(2)

745 PVVAKEIVA(2) 776 WQLDCTHLE(2) 781 THLEGKVIL(2)

785 GKVILVAVH(2) 787 VILVAVHVA(2) 788 ILVAVHVAS(234)

792 VHVASGYIE(2) 799 IEAEVIPAE(34) 810 QETAYFLLK(134)

813 AYFLLKLAG(all) 836 FTGATVRAA(13) 854 FGIPYNPQS(4)

877 IGQVRDQAE(34) 883 QAEHLKTAV(4) 884 AEHLKTAVQ(12)

887 LKTAVQMAV(all)A 912 GERIVDIIA(2) 937 NFRVYYRDS(1)A

949 LWKGPAKLL(13) 956 LLWKGEGAV(2) 983 IRDYGKQMA(234)

ENV
34 LWVTVYYGV(13)J 35 WVTVYYGVP(4)J 44 VWKEATTTL(1)J

45 WKEATTTLF(13)JK 48 ATTTLFCAS(3)J 51 TLFCASDAK(4)J

52 LFCASDAKA(14)J 86 LVNVTENFN(2)J 201 ITQACPKVS(2)JKL

251 IRPVVSTQL(134)HJ 254 VVSTQLLLN(1)HJ 256 STQLLLNGS(1)HJ

257 TQLLLNGSL(34)HJ 258 QLLLNGSLA(134)J 342 LKQIASKLR(3)J

447 SNITGLLLT(3)M 494 LGVAPTKAK(1)J 516 GALFLGFLG(3)K

518 LFLGFLGAA(12)K 519 FLGFLGAAG(34)K 520 LGFLGAAGS(all)K

523 LGAAGSTMG(4)K 530 MGAASMTLT(3)K 533 ASMTLTVQA(1)K

538 TVQARQLLS(34) 541 ARQLLSGIV(2) 548 IVQQQNNLL(13)E

549 VQQQNNLLR(134)E 552 QNNLLRAIE(2)E 555 LLRAIEAQQ(2)

558 AIEAQQHLL(1) 559 IEAQQHLLQ(3) 561 AQQHLLQLT(134)

574 KQLQARILA(34) 575 QLQARILAV(1) 605 TTAVPWNAS(1)N

654 EKNEQELLE(14) 660 LLELDKWAS(1)N 666 WASLWNWFN(2)

669 LWNWFNITN(2)E 681 YIKLFIMIV(2) 685 FIMIVGGLV(2)E

686 IMIVGGLVG(2)E 688 IVGGLVGLR(2)E 691 GLVGLRIVF(2)

695 LRIVFAVLS(all) 698 VFAVLSIVN(2) 708 VRQGYSPLS(all)

711 GYSPLSFQT(4) 752 SLALIWDDL(1) 753 LALIWDDLR(2)

764 CLFSYHRLR(3) 771 LRDLLLIVT(2) 793 LKYWWNLLQ(2)

804 SQELKNSAV(4) 811 AVSLLNATA(14) 814 LLNATAIAV(2)J

816 NATAIAVAE(all)J 818 TAIAVAEGT(34)J 845 RRIRQGLER(34)E

847 IRQGLERIL(2)E

AWilson et al. (2001) BRosenberg et al. (1989) CAdams et al. (1997) DGahery-Segard et al.
(2000) EWahren et al. (1989) F Bedford et al. (1997) GLivingston et al. (2002)
HManca et al. (1995) Ivan der Burg et al. (1999) JGeretti et al. (1994) KNehete et al.
(1998) LGoudebout et al. (1997) MSitz et al. (1999) NSchrier et al. (1989)



Table 6: Comparisons of HLA-DR4 binding prediction using a set of 25 know T-cell epitopes

T-cell epitope source AA QSAR 10-P 10+QSAR

QNLLKAEKGNKAAAQR Histone H1-like protein HC1A 0.12 0.15 0.17 0.16
LLESIQQNLLKAEKGN Histone H1-like protein HC1A 0.11 -0.04 0.08 0.02
EYLNKIQNSLSTEWSPCSVT Circumsporozoite proteinB 0.31 0.12 0.13 0.07
AGFKGEQGPKGEP Collagen alpha1 (II) chainC 0.24 0.17 0.28 0.25
FFRMVISNPAATHQDIDFLI Glutamate decarboxylaseD 0.27 0.17 0.06 0.07
LPRLIAFTSEHSHF Glutamate decarboxylaseD 0.08 0.02 0.07 -0.05

MNILLQYVVKSFD Glutamate decarboxylaseD -0.15 0.11 -0.07 -0.07

IAFTSEHSHFSLK Glutamate decarboxylaseD 0.10 0.08 0.07 0.02
PKYVKQNTLKLATGMRNVP Hemagglutinin [Fragment]E 0.41 0.40 0.44 0.45
GYKVLVLNPSVAAT Genome polyproteinF 0.11 0.12 0.18 0.20
KHKVYACEVTHQGLSS Ig kappa chain C regionG 0.17 0.11 0.17 0.17
KVQWKVDNALQSGNS Ig kappa chain C regionG 0.28 0.03 0.17 0.24
KVDNALQSGNS Ig kappa chain C regionH 0.01 -0.01 -0.08 -0.14

QPLALEGSLQK InsulinI -0.17 -0.04 -0.12 -0.11

YVIEGTSKQ Integrin alpha-LJ -0.05 -0.32 -0.14 -0.07

EFVVEFDLPGIKA 18kDa antigenK 0.04 0.08 0.21 0.20
LSRFSWGAEGQRPGFGYGG Myelin basic proteinL 0.17 0.18 0.22 0.20
WNRQLYPEWTEAQRLD Melanocyte protein Pmel 17M 0.24 -0.04 0.23 0.19
AKYDAFVTALTE Major pollen allergen Pha a 5.3N 0.29 0.17 0.25 0.28
AFNDEIKASTGG Pollen allergen Phl p 5aN -0.13 -0.04 -0.02 0.04

VIVMLTPLVEDGVKQC Protein-tyrosine phosphatase-like NO 0.17 0.19 0.20 0.20
AKFYRDPTAFGSG Proteoglycan link proteinP 0.27 0.23 0.24 0.29
QYIKANSKFIGITEL Tetanus toxinQ 0.13 0.11 0.13 0.10
QNILLSNAPLGPQFP TyrosineR 0.41 0.40 0.44 0.45
DYSYLQDSDPDSFQD TyrosineR 0.40 0.34 0.43 0.42
AGaston et al. (1996) BCalvo-Calle et al. (1997) CFugger et al. (1996)
DEndl et al. (1997) ECarmichael et al. (1996) F Diepolder et al. (1997) GKovats et al. (1997)
HDong et al. (2000) ICongia et al. (1998) JGross et al. (1998) KMcNicholl et al. (1995)
LMuraro et al. (1997)M Li et al. (1998) Nde Lalla et al. (1999) OHoneyman et al. (1998)
P Hammer et al. (1995) QReece et al. (1993) RTopalian et al. (1996)
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Figure 1: Amino acid frequencies for HLA-A2 at postions 1-9.
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Figure 2: Amino acid frequencies for HLA-DR4 at postions 1-9.
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Figure 3: The ROC curves for prediction of HLA-A2 binding.
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Figure 4: The ROC curves for prediction of HLA-DR4 binding.
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Figure 5: CART trees for prediction of HLA-DR4 peptide binding. Trees are
built based on (a) amino acid sequence encoding; (b) 10 orthogonal biophysical
property variables; (c) Two QSAR structural descriptors. Trees are pruned to
4-5 terminal nodes for easy comparisons.
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Figure 6: HLA-DR4 epitope profiles of the HIV-1 strains. (a) HLA-DR4
profiles of the gag protein of 32 HIV-1 strains. The x axis represents the aligned
amino acid positions and the y axis displays the HIV-1 strains. Predicted
binders are illustrated in red, non-binders in grey and gaps in aligned sequences
in white. (b) Correlation matrices of binding affinities of gag, pol and env to
HLA-DR4 between the four different amino acid codings.
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