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A tunnel boring machine (TBM) is a type of heavy load equipment that is widely used in underground tunnel construction. 'e
geological conditions in the tunneling process are decisive factors that directly affect the control of construction equipment.
Because TBM tunneling always takes place underground, the acquisition of geological information has become a key issue in this
field. 'is study focused on the internal relationships between the sequential nature of tunnel in situ data and the continuous
interaction between equipment and geology and introduced the long short-term memory (LSTM) time series neural network
method for processing in situ data. A method for predicting the geological parameters in advance based on TBM real-time state
monitoring data is proposed. 'e proposed method was applied to a tunnel project in China, and the R2 of the prediction results
for five geological parameters are all higher than 0.98.'e performance of the LSTMwas compared with that of an artificial neural
network (ANN). 'e prediction accuracy of the LSTM was significantly higher compared with that of the ANN, and the
generalization and robustness of LSTM are also better than those of ANN, which indicates that the proposed LSTMmethod could
extract the sequence properties of the in situ data. 'e rule of equipment-geology interaction was reflected by increasing the
memory structure of the model through the introduction of the “gate” concept, and the accurate prediction of geological
parameters during tunneling was realized. Additionally, the influence of time window and distance of prediction on the model is
discussed.'e proposedmethod provides a new approach toward obtaining geological information during TBM construction and
also provides a certain reference for the effective analysis of the in situ data with sequence properties.

1. Introduction

With the rapid development of sensing technology, variety
of large engineering equipment are using a large number of
sensors to monitor hundreds of equipment operating pa-
rameters in real time during service. 'e effective analysis
and modeling of in situ data are helpful in realizing the
intelligent perception and prediction of the service envi-
ronment and the equipment’s working state.

'e tunnel boring machine (TBM) is a heavy-duty
equipment with high construction efficiency and safety and
is widely used in modern tunnel construction. Additionally,
TBM tunneling is a process relying on the rotation of the
cutter head and continuously interacts with the geology
ahead. 'erefore, the geological conditions are the most

critical influencing factor throughout the equipment’s entire
construction process and are the most important reference
for TBM control and decision-making, which are directly
related to the construction efficiency and safety. However,
the TBM is underground during tunneling, and excavating
interface is not visible. 'erefore, the acquisition of geo-
logical information has become a key issue that is difficult to
solve.

A commonly used method is drilling geological detec-
tion, which means that some exploration holes are arranged
in the planned route, and the geological information is
obtained by geotechnical tests. In recent years, various other
geological detection methods for TBM construction have
been proposed, for example, the methods using seismic
waves [1–3]; the bore-tunneling electrical ahead monitoring
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(BEAM) technology based on electrical measurement [4];
the ground-penetrating radar (GPR) [5] method; and the
advanced prediction model of the tunnel geological radar
based on the cluster computing [6]. 'e above methods
require either to be carried out before construction [7–9], or
to interrupt the construction, or to install a large number of
special detection devices for TBM.

Nowadays, TBM tunneling equipment generally carries a
large number of sensors, and during the tunneling process,
hundreds of equipment airborne parameters, such as the
advance rate (AR), revolution per minute (RPM), cutter-
head torque (T), and total thrust (F), can be monitored in
real time. 'e monitoring data of these parameters can fully
reflect the operating status of the equipment in real time.
Since TBM tunneling is a process of continuous interaction
between the equipment and the surrounding geology, the
changes in the geology during tunneling are also reflected in
the changes of the airborne monitoring parameters [10–13].
'erefore, the relationship between monitoring parameters
and geology can be described by data analysis. However, the
coupling relationship of many parameters in the monitoring
data and the high-dimensional characteristics of the data
make it difficult to analyze these data using simple statistical
analysis methods [14, 15]. 'ese factors make the analysis of
such data challenging.

In recent years, rapidly developing information analysis
methods, such as machine learning, have provided powerful
tools for analyzing engineering monitoring data. Various
studies have carried out basic analysis of relationship be-
tween the airborne monitoring parameters and the geo-
logical parameters based on machine learning methods.
Many of these studies have established predictive models for
control parameters by analyzing this relationship. For ex-
ample, Mahdevari et al. [16] developed a regression model to
predict penetration rate of TBM in hard rock conditions
based on support vector regression (SVR). Other studies
have shown that the tunneling monitoring data have the
characteristics of sequence [17], and researchers used the
long short-term memory (LSTM) neuron network related to
time series to analyze the TBM tunneling monitoring data.
For example, Gao et al. [17] proposed a TBM penetration
rate (PR) prediction model based on LSTM. Li et al. [18], in
order to predict the performance of the TBM, developed a
long short-term memory model to predict the total thrust
and the cutter-head torque of TBM in a real-timemanner. In
addition, some scholars have tried to classify and identify
geology by analyzing the relationship between airborne
parameters and geological parameters. For example, Wang
et al. [19] used the extreme gradient boosting (XGBoost)
algorithm to establish a model for predicting the level of the
rock around the TBM. Galende-Hernández et al. [20]
considered the rotation speed and penetration rate to per-
form the unsupervised clustering of geology and predict the
rock mass rating (RMR). Cuĺı et al. [21] considered the
cutting wheel torque, penetration rate, and other parameters
to assess the surrounding hydrological characteristics.

'e above-mentioned studies indicate that airborne data
contain important information about geology and demon-
strate the feasibility of using machine learning method to

analyze and extract this kind of information. However, the
existing works related to geological information mainly
aimed to use historical construction data to identify and
classify the geology. 'e underground environment during
TBM construction process is sophisticated, and the geo-
logical characteristics in front of the tunneling face con-
tinuously change during the entire tunneling process [22]. A
kind of research demand for tunneling construction is to
predict the specific future geological parameters in front of
the excavation interface during the tunneling process. With
the increasing distance of TBM continuous construction, the
geological changes during construction are more obvious,
and this demand is increasingly urgent. 'erefore, how to
analyze and model the monitoring data on the basis of
matching the essential characteristics of the problem to
realize the real-time prediction of the geology during tun-
neling is a key problem that needs to be solved.

Aiming at the above research demand of the engineering
problems, this paper analyzed and seized the characteristics
of continuity in the interaction between equipment and
geology and proposed a method for the prediction of
geological parameters based on the time series analysis of the
monitoring data. In this paper, we make the following
contributions:

(1) Considering the sequence characteristics of TBM in
situ data and geology, the LSTM neural network with
time series analysis ability was selected, and the
various parameters recorded during the TBM con-
struction were analyzed to predict the geological
parameters of the unexcavated part of the tunnel.

(2) 'e proposed method was applied to the in situ
dataset of a subway project in China, and the
learning and prediction of five geological parameters,
including the bulk density, cohesion, static earth
pressure coefficient, internal friction angle, and
elastic modulus, were carried out.

(3) 'e prediction results obtained by the LSTMmethod
were compared with the results obtained by the
artificial neural network (ANN) method under
identical conditions, and the rationality of using
LSTM in geological prediction problems is explained
from the viewpoints of accuracy, generalization, and
robustness.

(4) 'e influence of the time window and the distance of
the advance prediction of the geological parameters
on the proposed method was investigated, and the
rationality of the results was analyzed based on
theoretical knowledge.

'e remainder of the paper is organized as follows:
Section 2 explains the reasons for selecting the LSTM
method for geological prediction based on theoretical
analysis and the problem characteristics. 'e principle of
this method and the specific process of its application are
briefly introduced. Section 3 presents an overview of the in
situ dataset used in this study, the prediction results of the
LSTM method, the comparative analysis of the LSTM
method and the ANN method, and the analysis of the
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influence of the time window and distance of the advance
prediction on the prediction results. Section 4 summarizes
the main findings and significance of this study.

2. Methods

2.1. Analysis of Geological Prediction of TBM Tunneling.
Geological prediction during TBM construction is a process
of predicting the unknown geology ahead of the construction
by using the TBM monitoring parameters obtained from the
excavated sections to construct appropriate models.'e TBM
construction is an orderly process [17], and the collected in
situ data have a sequential nature. Otherwise, owing to the
characteristics of the continuity of the TBM construction, the
geology passed by the TBM is continuous; that is, the current
geology is affected by the previous and, in turn, affects the
subsequent geology. 'erefore, to accurately predict the
geological parameters, it is necessary to extract the time series
information from the in situ data.

In the actual construction process, the prediction of
geological parameters is also sequential; that is, as the TBM
advances, the forward geology must be continuously pre-
dicted. Moreover, at the current moment, only the infor-
mation of the excavated section can be used to predict the
subsequent geology. Hence, practical applications cannot
use data for the entire construction section to train a model.
According to this characteristic, Seker and Ocak [23] pro-
posed that when using machine learning methods to solve
TBM engineering problems, attention should be paid to the
division of data into training and test data and to model
evaluation methods.

However, regardless of using machine learning or an
empirical formula method for solving TBM problems, the
relevant methods strongly rely on a complete data set that
fully reflects the information of specific working conditions.
Existing studies on using in situ data to solve the TBM
problem often randomly shuffle the data set before training
and evaluating a model [24–27]. Hence, it is difficult to
obtain the preferable generalization in some projects with
long span or complex environment using a learner trained
on data obtained for a single construction section. Unlike the
overfitting phenomenon caused by overlearning that results
from noise or overparameter setting in general, the reason
for the above-mentioned problem is that the training set and
test set do not have the same distribution, owing to the bias
of TBM data acquisition during the construction process. In
other words, the construction planning and the geology
passing through by TBM are a continuous and dynamic
change process. 'erefore, the acquisition of the airborne
monitoring parameters of the TBM in the construction
process does not satisfy the required randomness. 'e
airborne monitoring parameters and the geological pa-
rameters for some sections may not represent all of the
information of a project. 'us, it is possible that, even in the
same project, the parameter relationship extracted from the
collected data using the machine learning method may not
be applicable to the subsequent construction, which greatly
reduces the practical application ability of machine learning
in TBM construction.

'erefore, it is necessary to introduce a method capable
of time series analysis for geological prediction. However,
owing to the nonstationarity and long sequence of the
airborne monitoring parameters of the TBM, it is difficult to
satisfy the prerequisites of conventional time series analysis
[28]. Effectively mining the sequence rule is still a chal-
lenging problem in TBM data analysis.

2.2. LSTMNeural Network. With the increasing demand for
sequence analysis and the continuous development of ma-
chine learning, new methods are constantly being proposed
for time sequence analysis. Among them, the LSTM, which
was developed based on the ANN and recurrent neural
network (RNN), is a particular type of deep learning neural
network [29]. Van Houdt et al. [30] presented a compre-
hensive review that covers the formulation and training of
the LSTM, the relevant applications reported in the litera-
ture, and code resources implementing this method for a toy
example. 'is method has been widely used in many fields;
for example, Rehman et al. [31] proposed a novel approach,
which was based on a combination of convolutional neural
network (CNN) and attention-based gated recurrent unit
(GRU, similar to LSTM) model, to detect single intrusion
attacks as well as mixed intrusion attacks on a controller area
network (CAN) bus. Ma et al. [32] proposed a LSTM-based
model to tackle the missing value problem in building en-
ergy data. Hsueh and Yang [33] used a LSTM network to
analyze sequential sensor data and predict the car speed of
the next time interval on a freeway. Wang et al. [34] pro-
posed a LSTM-based model that is capable of predicting the
tunnel face pressure in a given operation and changing
geology.

'e LSTM method introduces the “gate” concept based
on the RNN, which effectively solves the long-term de-
pendence problem caused by gradient explosion or disap-
pearance in the traditional RNNmethod. By using the LSTM
method to process TBM data with long sequence charac-
teristics, the long-term sequence information existing in the
TBM data can be accurately learned, and existing con-
struction data can be used to predict the geology ahead of the
construction when the TBM has not completed the con-
struction.'erefore, this study selected the LSTMmethod as
a tool for realizing the prediction of the geological pa-
rameters in front of the tunneling construction. 'e most
important difference between the LSTM and a classic neural
network is that the LSTM neuron adds the input gate, forget
gate, and output gate, which add a memory structure to the
model. 'e basic structure of the LSTM neuron is shown in
Figure 1.

In Figure 1, Ct represents the current cell state of the
LSTM neuron, and C̃t represents the candidate information
used to update the current cell state. 'e three gates it, ft, and
ot represent input gate, forget gate, and output gate of the
current neuron, respectively, and they are responsible for
regulating the flow of information in and out of the current
neuron. 'e input gate it is responsible for adding infor-
mation to the neuron, and the current candidate informa-
tion in C̃t can be selectively “memorized” by the LSTM

Computational Intelligence and Neuroscience 3



neuron through the input gate. 'e purpose of the forget
gate ft is mainly to selectively forget the cell state of the
previous neuron and delete information that the model
considers to be unimportant. 'e output gate ot is re-
sponsible for taking the useful information in the current cell
state Ct as the output of the current neuron. 'e current
candidate information C̃t and the three gates it, ft, and ot of
the LSTM neuron can be calculated using equation (1)
[34, 35] with similar forms:

C̃t � tanh WC · ht−1, xt[ ] + bC( ),
it � σ Wi · ht−1, xt[ ] + bi( ),

ft � σ Wf · ht−1, xt[ ] + bf( ),

ot � σ Wo · ht−1, xt[ ] + bo( ).

(1)

In the four formulas of equation (1), σ (·) and tanh(·)
are the sigmoid and hyperbolic tangent functions, re-
spectively, and · denotes the element-wise multiplication;
xt denotes the input data of the current neuron, and ht−1
denotes the hidden state of the previous neuron; WC, Wi,
Wf, and Wo denote the weight matrix corresponding to
the current candidate information C̃t, input gate it, forget
gate ft and output gate ot, respectively; bC, bi, bf, and bo
denote the corresponding bias terms, and these parame-
ters need to be obtained by training the model. From
equation (1), it can be seen that the current candidate
information C̃t and the three gates it, ft, and ot are all
determined by the output ht−1 of the previous neuron and
the current input xt.

'e current cell state Ct is the result of the cell state C(t−1)

of the previous LSTM neuron passing through the current
forget gate ft plus the current candidate information C̃t
passing through the current input gate it, which is expressed
[35] as

Ct � ft · Ct−1 + it · C̃t. (2)

At this time, the output ht of the LSTM neurons, which is
the result of the current cell state Ct processed by the ac-
tivation function and then passed through the current
output gate ot, can be expressed as [35]:

ht � ot · tanh Ct( ). (3)

Figure 2 is a schematic diagram of the structure of the
LSTM neural network. Figure 2 shows that a neuron in the
LSTM neural network will transmit two states: cell state
(C(t)) and hidden state (h(t)) to the next neuron.'e cell state
is the current state of the LSTM neuron, and the hidden state
is the output of the current LSTM neuron described in
Figure 1. Generally, the cell state changes slowly in the
process of LSTM neural network information transmission,
and the hidden state tends to be very different in different
neuron nodes. 'e output yt of the entire LSTM neural
network in Figure 2 is obtained by some mapping of the
output ht of the last LSTM neuron.

2.3. Prediction of Geological Parameters Based on LSTM.
'e proposed method based on LSTM uses the airborne
monitoring data of the TBM’s performance and the geological
label information accumulated in the current and previous
rings as the input to predict the geological parameters of the
following ring. 'e airborne monitoring parameters used to
evaluate the construction performance of the TBM under
different geological conditions include the total thrust (F),
cutter-head torque (T), cutter-head revolution per minute
(RPM), and the advance rate of the machine (AR) [36]. 'e
total thrust pushes the machine forward, while the cutter-
head torque sustains the constant rotation of the cutter-head
to excavate the geology. 'e cutter-head revolution per
minute and the advance rate both reflect the speed status of
the machine. 'e geological label parameters selected in this
study are the five major factors that can describe geologic
features, such as the strength, density, and friction charac-
teristics. 'ese factors are the elastic modulus (E), bulk
density (ρ), cohesion (C), static earth pressure coefficient (K0),
and internal friction angle (φ).

Figure 3 shows the structure of the LSTMneural network
model for predicting geological parameters. 'e model
consists of an input layer, a LSTM network layer, a fully
connected layer (dense layer), and an output layer. Let us
consider the prediction of geological parameters,A, in the tth

ring as an example (A denotes one of the above-mentioned
five geological parameters). In this case, the input of the
LSTM network layer is the data processed by the input layer,
which contains the normalized data of a total of n rings
before the tth ring (from x(t−n−1) to x(t−1)). Additionally, x(i)

denotes the normalized airborne parameters and geological
information corresponding to the ith ring, including the total
thrust, cutter torque, cutter rotation speed, advance rate, and
geological parameter A. Here, n denotes the length of the
time window (timesteps), that is, the number of the previous
rings as the input data. Owing to the existence of this time
window, the construction data close to the current section
with limited time series can be selected as the input, to avoid
the adverse effects of accumulating large amounts of early
data on the training of models. After receiving the data from
the input layer, the LSTM network layer will extract the time
series information contained in the input data and use it as
the input of a fully connected layer behind. 'e fully

it

Ct

ht

ht-1, ct-1, xt

Ot

ft Ct

~

Figure 1: Schematic diagram of the LSTM neuron structure. 'e
LSTM neuron contains states, gates, inputs, and outputs.
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connected layer is used to compress the output dimension of
the LSTM network layer to a lower size. Finally, the fully
connected layer is connected to the output layer, and the
output layer outputs the model’s prediction y(t) for the
geological parameter A of the tth ring.

3. Case Study

To test the prediction performance, the proposed method
was applied to a practical project. 'e performance of the
method was compared with that of the ANN method.
Additionally, the influence of the time window and the
distance of the advance prediction on the prediction ac-
curacy of the LSTM is discussed.

3.1. Data Overview. 'e dataset used in the case study was
obtained in the construction interval from Shiyijing Road
Station to Dazhigu West Road Station of Tianjin Metro Line
9, which is in Tianjin, China, using a TBM for tunneling.'e
geological conditions of the construction are those of the
typical soft soil geology in northern China, and the buried
depth of the investigated construction section was ap-
proximately 10–20m. 'e construction equipment is an
earth pressure balance (EPB) TBM machine produced by
Komatsu, Japan, with a diameter of 6.34m. 'e dataset used
consists of geological label parameters and airborne mon-
itoring parameters. 'e geological label parameters were
obtained by geological exploration before the commence-
ment of the project, and the airborne monitoring parameters
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Figure 2: 'e structure of the LSTM neural network.
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Figure 3: Structure of the LSTM neural network model for geological prediction.
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were collected in real time by a variety of sensors installed on
the TBM during the construction process and collated and
stored by the TBM data acquisition system. Table 1 lists the
statistical properties of the key airborne monitoring pa-
rameters and the geological parameters, which are the
prediction targets of the LSTM.

Owing to the different dimensions of the TBM airborne
monitoring parameters and geological parameters, the
magnitude difference is large. To facilitate the gradient
update and accelerate the convergence of the network’s
training, this study carried out normalization preprocessing
(Min-Max Scale) on the data in the dataset. All the airborne
parameters and geological parameters were normalized for
subsequent model training and testing. 'e calculation
method is expressed as [18]

xpre �
x − xmin

xmax − xmin

. (4)

In equation (4), xpre is the value of a parameter after
normalization preprocessing, x denotes the original value of
the parameter, xmin is the minimum value corresponding to
the parameter in the recorded data, and xmax is the maxi-
mum value corresponding to the parameter in the recorded
data.

To analyze the relationship between the selected TBM
airborne monitoring parameters and geological parameters,
the single independent variable linear regression relation-
ships between four airborne monitoring parameters and five
geological parameters were calculated and evaluated using
coefficient of determination (R2) evaluation indicator. Fig-
ure 4 shows the scatter plot and R2 of the linear regression
between the normalized TBM performance parameters and
the geological parameters. 'e abscissa of each subgraph
represents an airborne parameter, while the ordinate rep-
resents a geological parameter. As can be seen, the scatters in
all subgraphs do not exhibit a significant linear relationship.

Table 2 presents the average R2 between the four TBM
airborne monitoring parameters and geological parameters.
'e maximum of the four average R2 is the R2 between the
total thrust and the five geological parameters, which is less
than 0.25, and the average R2 between the cutter-head torque
and the five geological parameters was minimum, that is,
only 0.004. 'ese results confirm that there is no significant
linear relationship between a single performance parameter
and the geological parameters. If the airborne parameters are
used to accurately predict the geological parameters, it is
necessary to consider the interaction between multiple
airborne parameters simultaneously, which also indicates
that the use of airborne parameters for predicting the
geological parameters is a complex coupling problem with
multiple inputs.

3.2. Experimental Results. For the data of Tianjin Metro Line
9, the LSTM algorithm was used to predict the geological
parameters in front of the tunneling excavation. With regard
to the LSTM hyperparameters, the number of neurons in the
LSTM network layer was set to 100. 'e size of the full
connection layer was 20, and the size of the output layer was 1.

Adaptive moment estimation (Adam) was used as the
optimization method, and the error calculation method
was the mean absolute error (MAE). Rectified linear unit
(ReLU) was selected as the activation function of the full
connection layer. As a crucial parameter in the LSTM, the
time window was set to 5, which was used as the default
value in subsequent analysis, and the reason will be
explained in the analysis part later. 'e data set was divided
into the training set and test set by order according to the
ratio of 7 : 3, and these data sets were used to train and test
the LSTM model established under the above-mentioned
parameter settings. 'e test set data were not considered in
the training process and were instead used to individually
test the prediction effect.

Figure 5 shows the predicted curves andmeasured points
when predicting the five geological parameters in the test set.
'e blue columns at the bottom of each subgraph represent
the residual between the predicted value and the actual value
of the geological parameters. Figure 5 also shows the his-
tograms of the residual percentage. It can be seen from the
measured points and predicted curves in Figure 5 that the
points and curves of the five geology parameters are very
consistent, which indicates that the proposed method can
effectively predict the five geological parameters. Besides,
four geological parameters, namely, the elastic modulus,
bulk density, cohesion, and internal friction angle, sharply
fluctuated around the ring number 800. 'e internal friction
angle greatly fluctuated close to the ring numbers 740, 800,
850, and 930. However, the values predicted by the LSTM for
these five geological parameters are still essentially consis-
tent with the actual values in the position of large numerical
fluctuations. 'is indicates that the constructed LSTM
model can accurately predict the geological parameters when
the geological parameters greatly fluctuate, and the model
can accurately reflect the change trend of the geological
parameters.

In addition, it can be seen from the residuals that, firstly,
the residuals of the five geological parameters predicted by
the LSTM method are significantly smaller than the actual
values of the geological parameters, and most residuals are
less than 0.5% of the measured value. Secondly, although the
prediction accuracy of the LSTM method can reach a high
level at a position where the geological parameters exhibit
large fluctuation, it is still significantly lower than the
prediction accuracy at the position of stable geological pa-
rameters. To a certain extent, this indicates that the mutation
of the prediction parameters has a negative impact on the
prediction effect of the LSTM model. 'irdly, except for the
position where the geological parameters change to a great
extent, the residuals in other places are approximately
randomly distributed, and the systematic error of the model
is small, which demonstrates that the LSTM can fully extract
the rules contained in the time series data, and a missing
factor that is closely related to the geological parameters does
not exist.

To further quantitatively evaluate the performance of the
LSTMmethod, statistical indicators including the coefficient
of determination (R2), mean absolute error (MAE), and
mean absolute percentage error (MAPE) were used to
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Table 2: Average R2 between various performance parameters and geological parameters.

AR (mm/min) F (kN) T (kNm) RPM (r/min)

Ave R2 0.140 0.236 0.004 0.105

Table 1: Basic statistical properties of in situ data used in Tianjin metro line 9.

Parameter Symbol Unit Max Min Avg Std

Advance rate AR mm/min 55.68 16.84 35.23 10.04
'rust force F kN 24701.68 10436.07 15840.43 2905.33
Cutter-head torque T kNm 1706.28 803.08 1264.49 148.71
Revolution per minute RPM rev/min 1.10 0.40 0.94 0.14
Elastic modulus E MPa 7.89 4.70 6.57 0.52
Bulk density ρ g/cm3 2.23 1.60 2.10 0.06
Cohesion C kPa 32.93 19.84 28.03 2.10
Static earth pressure coefficient K0 — 0.45 0.32 0.40 0.03
Internal friction angle φ ° 22.98 14.05 19.53 1.76
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Figure 4: Relationship between airborne monitoring parameters and geological parameters.
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Figure 5: Continued.
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evaluate the performance of the LSTM model. For a given
predicted value ŷ � ŷ1, ŷ2, . . . , ŷn{ }, measured value
y � y1, y2, . . . , yn{ }, and the average value y of ŷ, the above-
mentioned evaluation indices are calculated by equations
(5)–(7) [18, 34]:

R2
(y, ŷ) � 1 −

∑ni�1 yi − ŷi( )2

∑ni�1 yi − y( )2
, (5)

MAE �
1

n
∑
n

i�1

yi − ŷi
∣∣∣∣

∣∣∣∣, (6)

MAPE �
1

n
∑
n

i�1

yi − ŷi
yi

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣ × 100%. (7)

Here, R2 can reflect the proportion of the variations of
the dependent variable that can be explained by the inde-
pendent variable through the regression relationship; MAE
is the average absolute error between the predicted and
actual values, which can better reflect the actual values of the
error and can be used as the loss function of the regression

problem; MAPE is the average relative error between the
predicted and actual values. 'erefore, R2 reflects the sim-
ilarity between the predicted values and the true values, and
the prediction effect of the model improves as the value of R2

approaches 1. MAE and MAPE reflect the difference be-
tween the predicted values and the true values, and the
prediction accuracy increases as their value becomes smaller.
By recording the evaluation index information in the line
chart, it can be seen that the R2 of the LSTM’s prediction
results for the five geological parameters are all higher than
0.98, the MAPE values are lower than 1%, and the MAE
values are lower than 0.5% of the average of corresponding
geological parameters.

To further analyze the applicability of the proposed
method under other working conditions, this study used the
LSTMmethod to predict five geological parameters based on
the in situ dataset of another subway project in the same city,
namely, Tianjin Metro Line 3. In the calculation, the dataset
was divided into the training set and test set in order,
according to the ratio of 7 : 3. Considering the small amount
of data in this dataset, the time window was set to 2.'e sizes
of the LSTM network layer, full connection layer, and output

700 750 800 850 900 950

Number of rings

0.450

0.425

0.400

0.375

0.350

0.325

0.300

0.275

0.250St
at

ic
 e

ar
th

 p
re

ss
u

re
 c

o
ef

fi
ci

en
t

R
es

id
u

al

0.08

0.06

0.04

0.02

0.00

160

120

80

40

0

C
o

u
n

t

<
0.

3

>
1.

2

0.
3~

0.
6

0.
6~

0.
9

0.
9~

1.
2

Residual percentage

Residual percentage = 

Predicted-Measured

Measured
×100%

R
2
=0.9848

MAPE=0.0035
MAE=0.0014

Measured

Predicted

Residual

(d)

Residual percentage = 

Predicted-Measured

Measured
×100%

700 750 800 850 900 950

Number of rings

22

20

18

16

14

12

10

8

In
te

rn
al

 f
ri

ct
io

n
 a

n
gl

e

R
es

id
u

al

6

5

4

3

2

1

0

-1

120

80

40

0
C

o
u

n
t

<
0.

5

>
2

0.
5~

1

1~
1.

5

1.
5~

2

Residual percentage

R2=0.9906
MAPE=0.0066
MAE=0.1141

Measured

Predicted

Residual

(e)

Figure 5: LSTM prediction results for different geological parameters. (a) Elastic modulus. (b) Bulk density. (c) Cohesion. (d) Static earth
pressure coefficient. (e) Internal friction angle.
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layer were 100, 20, and 1, respectively. 'e Adam algorithm
was used as the optimization method, MAE was used as the
loss function, and ReLU was selected as the activation
function. Moreover, the R2, MAE, and MAPE were used to
evaluate the prediction effect of the model. 'e results reveal
that the R2 of the LSTM prediction results obtained for the
five geological parameters are higher than 0.86, and the
average R2 reached 0.94. All MAPE values are all lower than
2%, while the MAE values are much smaller compared with
the average value of the corresponding geological parame-
ters, and lower than 2.5% of the average value of the cor-
responding geological parameters.'e above results indicate
that the LSTMmethod could realize the real-time and highly
accurate prediction of the five geological parameters.

3.3. Comparative Analysis of LSTM and ANN. To reflect the
superiority of the LSTM, the performance of the LSTM was
compared with that of an ANN. To ensure that the ANN
structure was similar to the LSTM structure, the hidden layer
structure was set to (100, 20). 'e Adammethod was used as
the optimization method, MAE was used as the loss func-
tion, and ReLU was selected as the activation function. 'e
time window of the ANN was also set to 5. 'e ANN model
was trained by the same input data as the LSTM, and the
prediction results were tested on the same test set.

Table 3 lists the indices of R2, MAE, and MAPE when the
LSTM and ANN predicted the five geological parameters. It
is not difficult to conclude that the prediction results ob-
tained by the LSTM method are better in all situations
compared with those of ANN. When predicting various
geological parameters, the prediction accuracy of the LSTM
was significantly higher compared with that of the ANN. For
example, when predicting the static earth pressure coeffi-
cient, the R2 index of LSTM was 222.78% higher than that of
the ANN, while the MAPE and MAE indices were only
approximately 10% of those of the ANN model. 'e average
R2 of LSTM is 0.41 higher than ANN. 'e MAPE and MAE
of LSTM are only 15.9% and 16.2% of ANN on average,
respectively. 'e above results indicate that, compared with
ANN, the LSTM can effectively extract the temporal in-
formation in the data and is more suitable to the real-time
prediction of various geological parameters.

According to the above-mentioned prediction results,
Figure 6 shows the histograms of the three evaluation indices
when the LSTM model and ANN model predicted five
geological parameters. As can be seen from Figure 6(a), the
accuracy of the LSTM model was maintained at a high level
when different geological parameters were predicted. 'e
category of the predicted geological parameters has a small
effect on its prediction accuracy, and the model has good
generalization. 'e ANN model exhibits great difference in
terms of its prediction accuracy for different geological
parameters and was greatly affected by the predicted geo-
logical parameters, which indicates that its generalization is
poor. Figures 6(b) and 6(c) show that there are certain
differences in model errors when predicting different geo-
logical parameters, but the errors of LSTM are significantly
lower than those of ANN.

Furthermore, Figure 7 shows the R2 curves of five
geological parameters predicted by the LSTM model and
ANN model with different sizes of time windows. In this
figure, the abscissa represents the size of the selected time
window, and the ordinate represents the R2 of the model. As
can be seen, the prediction accuracy of the LSTM model for
different geological parameters was stable and less affected
by the change of the time window and performed satis-
factorily under different time windows. 'e prediction ac-
curacy of the ANNmodel for different geological parameters
obviously fluctuated with the change of the time window,
which indicates that it is sensitive to the selection of the time
window. Additionally, the time window with the highest
prediction accuracy was not the same when different geo-
logical parameters were predicted by the ANN. 'erefore, it
is considered that the LSTMmodel constructed in this study
has strong robustness to the setting of the time window
when predicting different geological parameters, and the
selection of the time window does not need to rely too much
on prior knowledge. In other words, even if the time window
is randomly selected, the prediction results obtained by the
LSTM have high accuracy. When using the ANN model to
predict different geological parameters, experiments need to
be carried out separately for different geological parameters,
and the optimal time window size should be selected
according to the experimental results.

In summary, the above-mentioned comparison results
reveal that, compared with the ANN, the LSTM has higher
accuracy and stronger generalization and robustness in the
prediction of geological parameters and can achieve reliable
prediction of various geological parameters under different
time windows.

3.4. Effect of Time Window and Distance of Prediction on
LSTM. In order to further explore the influence of different
input-output situations on the LSTM, we discussed the
influence of the time window and the distance of prediction
on the model accuracy in this section.

Figure 8 shows the R2 curves of the LSTM model when
predicting five geological parameters under different time
windows. As can be seen, when the LSTMmodel predicts the
five geological parameters, the prediction accuracy increases
with the time window at first and then slightly fluctuates at a
higher level. Notably, when the time window is 5, the R2 of
the five geological parameters essentially stop exhibiting an
upward trend and achieve high prediction accuracy.
'erefore, the default time window size was set to 5 in the
proposed LSTM model. Actually, the selection of time
windows is related to the size of the training set and the time
series characteristics of the data.

In principle, the data that have great influence on the
geological parameters of the next ring are the data of the
current ring and several adjacent rings before the current
ring, while the data collected earlier have little influence on
the geological parameters of the next ring. 'erefore, when
the time window was less than 5, the data used to predict the
geological parameters were all within the previous adjacent
five rings, and this part of the data was strongly correlated
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with the geological parameters of the next ring. At this stage,
the increase of the time window leads to the increase of
effective information input to the model, and thus the

prediction accuracy of the model increases with the time
window. When the time window was greater than 5, al-
though the increase of the time window led to the increase of

Table 3: Prediction results of different geological parameters by LSTM and ANN under different evaluation indices. 'e best result is
highlighted in bold.

Geologic parameter Evaluation index ANN LSTM

Elastic modulus
R2 0.5688 0.9883

MAPE 0.0317 0.0050

MAE 0.1862 0.0299

Bulk density
R2 0.5945 0.9859

MAPE 0.0131 0.0018

MAE 0.0246 0.0034

Cohesion
R2 0.7357 0.9914

MAPE 0.0256 0.0053

MAE 0.6670 0.1433

Static earth pressure coefficient
R2 0.3051 0.9848

MAPE 0.0273 0.0035

MAE 0.0111 0.0014

Internal friction angle
R2 0.6780 0.9906

MAPE 0.0399 0.0066

MAE 0.6722 0.1141
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Figure 6: Results for five geological parameters predicted by ANN and LSTM under different indices. (a) R2 of predictions. (b) MAPE of
predictions. (c) MAE of predictions.
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the input data, the effective information input to the model
did not increase.'e data increased is far from the geological
parameters predicted in the next ring and less related to
them. So, with the continuous increase of the time window,

the prediction accuracy of the model no longer changes
significantly.

Figure 9 shows the histogram of R2 of the prediction
results for the five geological parameters under different
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Figure 7: R2 of ANN and LSTM for prediction of different geological parameters in different time windows. (a) 'e prediction of elastic
modulus. (b) 'e prediction of bulk density. (c) 'e prediction of cohesion. (d) 'e prediction of static earth pressure coefficient. (e) 'e
prediction of internal friction angle.
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distances of the advance prediction when the size of the time
window is 5. 'e abscissa of the figure represents the pre-
dicted geological parameters, and the ordinate represents the
R2 of the predicted results.'e columns with different colors
in the graph represent different distances of the advanced
prediction. In this study, the distance of the advance pre-
diction (referred to asDistance in the figure) was replaced by
the number of rings between the current ring and the ring to
be predicted. For example, by assuming that the distance of
the advance prediction is n rings, then, under the same input
conditions, the prediction target of the LSTM model is the
geological parameter of the nth ring after the current ring.

It can be found in Figure 9 that the accuracies of the
prediction results of the five geological parameters all de-
crease as the distance of the advance prediction increases.
When the distance of the advance prediction is 1 ring (the
pink columns), which is the default value used in the above-

mentioned prediction, the R2 of the five geological parameter
prediction results are approximately the same in the graph
and are close to 1. When the distance increases to five rings
(the green columns), the R2 for the bulk density prediction
are already lower than zero, which indicates that the model
has lost its ability to predict the bulk density at this time.
When the distance of the advance prediction increases to
nine rings (the purple columns), the R2 for the elastic
modulus, static earth pressure, and internal friction angle
have also dropped to approximately zero; that is, the model
has lost its predictive ability for all five geological parameters
at this time.

'is demonstrates that there is an “effective distance” for
predicting the geological parameters ahead of the con-
struction using the current data. In other words, the current
data can only realize the effective prediction of geological
parameters within a certain range in front of the excavation.
'e above-mentioned results reveal that the current air-
borne monitoring parameters and geological parameters are
closely related to the geological parameters within a short
distance but have a small effect on the geological parameters
farther away. 'is is consistent with the theory that the
current construction situation is only affected by the geo-
logical conditions of the current and the limited distance
ahead in the shield construction process.

4. Conclusion

In this study, a geological parameter prediction method
based on the in situ data of TBM engineering is proposed. By
considering the sequence characteristic of the TBM in situ
data, the method based on the LSTM neural network was
selected to analyze the time series of various parameters
recorded during TBM construction, and the geological
parameters in front of the tunneling excavation were sub-
sequently predicted. 'e proposed method was applied to
the Tianjin Metro Line 9, which is an urban subway project
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Figure 8: R2 of LSTM model predicting different geological parameters under different time windows.
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constructed using an EPB TBM in China. 'e results reveal
that the real-time geological parameter prediction method
based on the LSTM could realize the real-time and accurate
prediction of five geological parameters, namely, the bulk
density, cohesion, static earth pressure coefficient, internal
friction angle, and elastic modulus.

'e LSTM method was compared with an ANN model
under identical conditions.'e comparison results reveal that
the LSTM predicted the five geological parameters with high
accuracy, and the average R2 of the prediction results for the
five geological parameters was higher than 0.98, which is
significantly higher than that of the ANN. Moreover, the
generalization and robustness of the LSTM are significantly
better compared with the ANN. Additionally, the influence of
the time window and the distance of the advance prediction
on the accuracy of the LSTMmodel was also investigated.'e
results reveal that the R2 for the five geological parameters
obtained by the proposed LSTMmodel increased at first, then
slightly fluctuated at a high level with the increase of the time
window, and decreased with the increase of the distance of the
advance prediction. 'is indicates that the current airborne
monitoring parameters and geological parameters can only
reflect the geological parameters of a finite distance ahead of
the construction.

'e proposed method for predicting the advanced geo-
logical parameters could effectively extract the time series
information from the in situ data of Tianjin Metro Line 9 and
realize the accurate and real-time prediction of the geology in
front of the tunneling excavation. Finally, the proposed
method provides a reference for the processing of in situ data
with sequence properties, such as TBM parameters.
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[5] Ö. Aktürk and V. Doyuran, “Integration of electrical resis-

tivity imaging (ERI) and ground-penetrating radar (GPR)

methods to identify soil profile around Necatibey subway

station, Ankara, Turkey,” Environmental Earth Sciences,

vol. 74, no. 3, pp. 2197–2208, 2015.
[6] M. Wei, N. Zhang, Y. Tong, and Y. Song, “Research on the

advanced prediction model of the tunnel geological radar

based on cluster computing,” Intelligent Automation & Soft

Computing, vol. 26, no. 3, pp. 597–607, 2020.
[7] M. Stavropoulou, G. Exadaktylos, and G. Saratsis, “A com-

bined three-dimensional geological-geostatistical-numerical

model of underground excavations in rock,” Rock Mechanics

and Rock Engineering, vol. 40, no. 3, pp. 213–243, 2007.
[8] Z. Xiong, J. Guo, Y. Xia, H. Lu, M. Wang, and S. Shi, “A 3D

multi-scale geology modeling method for tunnel engineering

risk assessment,” Tunnelling and Underground Space Tech-

nology, vol. 73, pp. 71–81, 2018.
[9] B. Lehmann, D. Orlowsky, and R. Misiek, “Exploration of

tunnel alignment using geophysical methods to increase safety

for planning and minimizing risk,” Rock Mechanics and Rock

Engineering, vol. 43, no. 1, pp. 105–116, 2010.
[10] Q. Gong, L. Yin, H. Ma, and J. Zhao, “TBM tunnelling under

adverse geological conditions: an overview,” Tunnelling and

Underground Space Technology, vol. 57, pp. 4–17, 2016.
[11] G. Armetti, M. R. Migliazza, F. Ferrari, A. Berti, and

P. Padovese, “Geological and mechanical rock mass conditions

for TBM performance prediction: the case of “la maddalena”

exploratory tunnel, Chiomonte (Italy),” Tunnelling and Un-

derground Space Technology, vol. 77, pp. 115–126, 2018.
[12] X.-P. Zhou and S.-F. Zhai, “Estimation of the cutterhead

torque for earth pressure balance TBM under mixed-face

conditions,” Tunnelling and Underground Space Technology,

vol. 74, pp. 217–229, 2018.
[13] A. Salimi, J. Rostami, and C. Moormann, “Evaluating the

suitability of existing rock mass classification systems for

TBM performance prediction by using a regression tree,”

Procedia Engineering, vol. 191, pp. 299–309, 2017.
[14] C. Zhou, L. Y. Ding, M. J. Skibniewski, H. Luo, and

H. T. Zhang, “Data based complex network modeling and

analysis of shield tunneling performance in metro con-

struction,” Advanced Engineering Informatics, vol. 38,

pp. 168–186, 2018.
[15] J. Huo, Z. Xu, Z. Meng, J. Li, J. Dong, and L. Wang, “Coupled

modeling and dynamic characteristics of TBM cutterhead

system under uncertain factors,” Mechanical Systems and

Signal Processing, vol. 140, Article ID 106664, 2020.
[16] S. Mahdevari, K. Shahriar, S. Yagiz, and M. Akbarpour

Shirazi, “A support vector regression model for predicting

tunnel boring machine penetration rates,” International

Journal of Rock Mechanics and Mining Sciences, vol. 72,

pp. 214–229, 2014.
[17] B. Gao, R. Wang, C. Lin, X. Guo, B. Liu, andW. Zhang, “TBM

penetration rate prediction based on the long short-term

memory neural network,” Underground Space, 2020, In press.

14 Computational Intelligence and Neuroscience



[18] J. Li, P. Li, D. Guo, X. Li, and Z. Chen, “Advanced prediction
of tunnel boring machine performance based on big data,”
Geoscience Frontiers, vol. 12, no. 1, pp. 331–338, 2021.

[19] F. Wang, G. F. Gong, L. W. Duan, and Y. F. Qin, “XGBoost
based intelligent determination system design of tunnel
boring machine operation parameters,” Journal of ZheJiang
University (Engineering Science), vol. 54, no. 4, pp. 633–641,
2020.

[20] M. Galende-Hernández, M. Menéndez, M. J. Fuente, and
G. I. Sainz-Palmero, “Monitor-while-drilling-based estima-
tion of rock mass rating with computational intelligence: the
case of tunnel excavation front,” Automation in Construction,
vol. 93, pp. 325–338, 2018.
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