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Abstract 

Underground structures play an important role in achieving the requirements of rapid urban development such as tunnels, 

parking garages, facilities, etc. To achieve what is needed, new transportation methods have been proposed to solve traffic 

congestion problems by using of high-speed railway and subway tunnels. One of the issues in urban spaces due to tunnel 

excavation is considerable surface settlements that also induce problems for surface structures. There are a variety of 

published relationships concerned with field measurements and theoretical approaches to evaluating the amount of the 

maximum surface settlement value due to tunneling. This paper studies the ground surface settlement caused by the Greater 

Cairo Metro – Line 3 - Phase-1. This project was constructed by a slurry shield Tunnel Boring Machine (TBM). Therefore, 

this work consists of two parts. The first part presents the details of the project and monitoring results field and laboratory 

geotechnical investigations in order to determine the soil properties. The second part is to the comparison between the field 

measurements and theoretical approaches for surface settlement due to tunneling construction. At the end of the works, the 

results show that the more convenient methods which approach the field measurements, and the major transverse settlement 

occurs within the area about 2.6 times the diameter of the tunnel excavation. 
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1. Introduction 

Underground structures play an important role in achieving the requirements of rapid urban development such as 

tunnels, parking garages, facilities, etc. To achieve what is needed, new transportation methods have been proposed to 

solve traffic congestion problems by using of high-speed railway and subway tunnels [1]. For instance, Line 3 of Cairo 

metro meets huge transportation demands along the route, and reduces the traffic density at the other means of 

transportation with a rate equivalent to 2 million trips/daily. However, the construction of tunnel induces ground 

movements, both vertical and lateral, causing surface subsidence, curvature change, inclination, and discontinuous 

deformation, which in turn affect the safety and stability of adjacent existing buildings within the settlement range of 

strata, thus bringing potential safety obstacles to the building structures [2-9].  

It is well-acknowledged that the soil movement occurring during deep excavation process plays a significant role in 

this regard. Excessive soil movement causes excessive settlements of nearby buildings and may cause different damages 

[10]. However, in reality, ground movements depend on a number of factors such as: behavior of the soil around tunnel, 
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geometry of tunnel and depth, tunnel construction method, the quality of the workmanship and management [11, 12]. 

This emphasize that the ground movements and the depth of tunnel is neither simple nor nonlinear relationship [13]. 

Several approaches, such as the empirical method, centrifugal method, numerical simulation method, and field 

monitoring, have been used to predict the surface settlement during the shield tunneling. Peck (1969) [14] used the 

results of monitoring program to predict the deformations and stresses related with construction of tunnel and deep 

excavation. Since then, ground movements have been determined by investigations of many empirical and semi-

empirical methods. These methods do not take into account the building effects and therefore they measure only the 

greenfield deformations. However, the empirical and semi-empirical methods considered the initial important phase in 

predicting the excavations effect on close buildings. 

The increase of the surface settlement may cause more buildings to be damaged or influence the serviceability of the 

buildings [15-17]. Therefore, to control tunneling induced deformation on the buildings in the nearby area within the 

allowable limit is an important task for engineers involved in a tunneling project. The damage to an existing building 

can be caused by excessive settlement [16]. To date, in spite of the recent advances made in assessing the stability and 

effects of excavations on nearby properties, structures failures or adjacent roadway, the serviceability problems such as 

cracking of structural or architectural elements, uneven flooring, or inoperable windows and doors due to the vertical 

settlement and lateral deformations caused by deep excavations are much more common than failures [18]. Recently on 

July 2020, one of the most examples of such damage to corners of building number 17 on Brazil Street in Zamalek as 

well as at the front yard and fence of the adjacent Bahraini embassy caused by the slight ground subsidence that occurred. 

The subsidence was due to the result of ongoing excavation works in the line 3 - phase 3 of the metro undergoing in 

Zamalek district. 

The Greater Cairo Metro, Line 3, Phase-1 starts from El-Attaba Station to El-Abbasia Station and crosses very close 

to a multi-story carparking building founded on piles namely, El-Attaba Garage. Considering that the underground 

construction might cause damages to the building, the survey before the construction and prevention and monitoring 

measures during and after the construction were carried out. This work consists of two parts. The first part presents the 

details of the project and monitoring results field and laboratory geotechnical investigations in order to determine the 

physical soil properties of the site which helps in predicting the behavior of the soil and the settlement that occurring on 

adjacent El-Attaba Garage building due to construction of tunneling. The second part is to comparison between the field 

measurements and theoretical approaches for surface settlement. 

The remainder of this paper is organized as follows. Section 2 presents the details of the case study. In Section 3, the 

site investigations are explained. The stages of construction are demonstrated in Section 4. Section 5 presents the 

theoretical methods of ground surface settlement. The computational results are presented and analyzed in Section 6. 

Finally, Section 7 presents conclusions and suggestions for future research. The research flowchart is shown in Figure 

1. 

2. Case Study  

One of the Egyptian mega projects established to solve many traffic problems that have been recently raised is the 

Greater Cairo Underground Metro project. The Greater Cairo Metro-Line 3 was constructed by a slurry shield Tunnel 

Boring Machine (TBM), with 9.55 m a diameter. The tunnel has an external and internal diameter with 9.15 m and 8.35 

m respectively. The precast segmental lining thickness of 0.4 m. This line is 47.87 km length starts from Imbaba to 

Cairo airport; also, as planned, it is going to be constructed in four phases.  In this study, The Greater Cairo Metro – 

Line 3 - Phase-1 moves underground from El-Attaba to El-Abbasia stations was considered to understand performance 

of tunnel system and the expected ground movement during tunneling construction that passes through soil layers. This 

Phase is 4.3 km length and consists of 5 underground stations and 4 annexed structures, as shown in Figure 2.  

El-Attaba Garage building is 77.04 m-length and 45.55 m-width. It is founded near the greater Cairo metro-line 3-

phase-1, constructed with 8 stories as shown in Figure 3. This building is 6.45 meters from the center of the tunnel and 

making an angle of about 42ᵒ from the tunnel as shown in Figure 4. The building was supported by 245 non-displacement 

concrete piles arranged in pile caps group. The pile dimensions are 0.6m in diameter and 20m length and passes through 

layered soil. 

As reported in National Authority for Tunneling (NAT), several instrumentations were used to monitor the predicted 

ground movements of the soil during tunnel progress. The five measured vertical Surface Settlement Points (SSP.b, 

SSP.c, SSP.d, SSP.e and SSP.f) were installed around the Garage El-Attaba building as shown in Figure 3. Through the 

tunnel advancement from July 2010 to August 2010, the building was monitored at the location of surface settlement 

points and an Elevation Reference Point (ERP.a). 
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Figure 1. Flowchart of the present study 

 

 

 

 

 

 

 

 

Figure 2. (a) The Greater Cairo Metro -Line 3, after National Authority for Tunnelling; (b) Zone of the study [19] 
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Figure 3. Garage El-Attaba location according to Greater Cairo Metro and instruments system layout [19, 20] 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The pile caps location to the tunnel route. Units in (m) 

3. Site Investigations 

Referring to geotechnical investigation of the Greater Cairo Metro – Line 3- Phase-1, thirteen boreholes and standard 

penetration tests [20], were carried out with a vary depths from (24 to 70) m and different locations along the phase-1 

as indicated in Figure 5.  
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Figure 5. The boreholes locations along phase-1 and near Garage El-Attaba building 

The thirteen boreholes were performed using mechanical rotary drilling fluid (using bentonite) techniques. This 

research focused on the boreholes that located at the first station (from El-Attaba to Bab- El-Shaaria) near the El-Attaba 

Garage building. After review these boreholes, it's found there is consistent with soil description but difference with the 

level of depth. As shown in Figure 3. borehole No. 2A is nearest to Garage El-Attaba building, thus the soil cross section 

at this borehole was taken as representative to soil profile in this study: 

3.1. Soil Profile at Borehole No. 2A 

Figure 6 shows the soil profile section at borehole No. 2A with a depth of 70 m. The groundwater existed at an 

average depth of 1.65 m below the ground surface. The soil properties, thickness, and others parameters are descripted 

in the following sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Soil profile at the location of BHD. 2A. Units in (m) [20] 
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3.2. Soil Layers Properties  

3.2.1. In-Situ Field Test and Soil Properties 

3.2.1.1. Standard Penetration Test (SPT) 

In this study and according to the Egyptian code of practice [21], there are many required corrections such as: 

(overburden effect, underground water table and the borehole diameter effect) were taken into account to measure the 

N-corrected value in order to classify the soil and determine the friction angle as listed in Table 1.  In the same line, the 

friction angle, ø  are estimated by Peck et al. (1953), Guiliani and Nicoll (1982) and Wolff (1989) [22-24] for 

cohesionless soil layers as shown in Figure 9.  

Table 1. Obtained soil parameters using SPT corrected values 

Layer 𝑵30 𝑵correct Friction Angle 

Made Ground - - - 

Silty Clay - - - 

Medium to Dense sand 45 39 36-40 

Gravel >50 74 >40 

Silty Sand 42 31 36-40 

Cobbles & Boulders >50 74 >40 

Dense Sand >50 49.3 >40 

As shown in the summary at the end of this section, and based on SPT-N value, the Young’s modulus, 𝐸 for sandy 

soil layers are estimated using theoretical equations by Webb (1969); Bowles (1982) and Denver (1982) [25-27]. In 

addition, The Young’s modulus for coarse soil layers, are obtained using the SPT original N-values according to the 

following recommended correlations by ECP 202/3 (2005) [28]; 

For silty sand soil, 𝐸𝑠 = 4𝑁  ( 𝐾𝑔𝑐𝑚2)                                                                                                                                                           (1)    

For medium to fine sand soil, 𝐸𝑠 = 7𝑁 ( 𝐾𝑔𝑐𝑚2)                                                                                                                                                            (2)  

For dense sand soil, 𝐸𝑠 = 10𝑁 ( 𝐾𝑔𝑐𝑚2)                                                                                                                                                          (3)  

For gravelly sand and gravel soil, 𝐸𝑠 = 12𝑁 ( 𝐾𝑔𝑐𝑚2)                                                                                                                                                          (4) 

3.2.2. Laboratory Test 

3.2.2.1. Grain-Size Distribution 

To classify the soil properly, the grain-size distribution of coarse-grained soil is generally determined by means of 

sieve analysis. Table 2 shows the sieve analysis test results. The soil stratification at location of BHD. 2A can be 

summarized as follows: Layer (1) starts at level (+19.40) and extends to level (+15.40), and it is a made ground layer 

consisting of 30% stone pieces and red bricks, and 70% clay. Layer (2) begins from level (+15.40) to level (+10.40), 

and it consists of firm to stiff brown micaceous clay. Layer (3) is a thick segment of silty poorly graded sand that starts 

from level (+10.40) to level (-00.60) with a thickness of 11.0 m. Layer (4) starts from level (-00.60) to level (-2.10), and 

it consists of yallowish brown slightly sand poorly graded gravel. Layer (5) starts from level (-2.10) to level (-3.60), and 

it consists of dense yallowish brown micaceous slightly gravelly silty poorly graded sand with little calcareous materials. 

Layer (6) starts from level (-3.60) to level (-10.10), and it contains of hard formation consist of cobbles and boulders. 

The last layer is very dense yallowish brown calcareous slightly silty poorly graded sand extended to the end of boring. 

The permeability coefficient of sand soil layers was estimated from sieve analysis test results using (Equation 4) [29]: 𝐾𝑝𝑒𝑟 = 𝐶 × 𝐷102                                                                                                                                                                 (5)           

Where, 𝐾per =  Coefficient of permeability (cm/sec) 
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𝐶 = Constant, typically assumed to be 100. 𝐷10 = Grain size corresponding to 10% by weight passing, also referred to as the effective size (mm). 

Table 2. Sieve analysis test results 

Layer Depth Sample 𝑫60 𝑫30 𝑫10 𝑪u 𝑪c 𝑲per 

Medium to 

Dense sand 

9.00-10.00 Ds-9 0.2 0.08 0 - - 0 

13.00-13.45 Ds-14 0.5 0.35 0.235 2.13 1.04 5.53 

17.50-17.95 Ds-20 0.45 0.28 0.17 2.65 1.02 2.89 

Silty Sand 21.50-21.95 Ds-24 0.4 0.2 0 - - 0 

Dense Sand 

30.00-30.27 Ds-27 0.6 0.38 0.19 3.16 1.27 3.61 

33.50-33.76 Ds-29 0.6 0.39 0.17 3.53 1.49 2.89 

37.00-37.28 Ds-31 0.45 0.32 0.16 2.81 1.42 2.56 

40.50-40.77 Ds-33 0.49 0.34 0.194 2.53 1.22 3.76 

44.00-44.09 Ds-35 0.53 0.3 0.16 3.31 1.06 2.56 

47.50-47.66 Ds-37 0.57 0.39 0.265 2.15 1.01 7.02 

51.00-51.14 Ds-39 0.43 0.3 0.172 2.5 1.22 2.96 

54.50-54.95 Ds-41 0.4 0.24 0.145 2.76 0.99 2.10 

58.00-58.09 Ds-43 0.9 0.62 0.322 2.80 1.33 10.37 

61.50-61.53 Ds-45 0.5 0.32 0.19 2.63 1.08 3.61 

65.00-65.13 Ds-47 0.41 0.3 0.166 2.47 1.32 2.76 

69.00-69.13 Ds-49 0.41 0.28 0.156 2.63 1.23 2.43 𝐷60 = Diameter corresponding to 60% by weight passing, indicated by the gradation curve at the 60% passing level (mm), 𝐷30 = Grain size, indicated by the gradation curve at the 30% passing level (mm), 𝐶U = Uniformity coefficient (𝐷60/𝐷10), and 𝐶𝑐 = Curvature coefficient of the gradation curve (𝐷302 /𝐷60 *𝐷10). 

3.2.2.2. Water Content and Atterberg Limits 

    There are three clay samples were taken from BHD. 2A at vary depths of 4.0, 5.0 and 7.50 m underground surface to 

estimate the Atterberg limits and water content that is necessary to classify the cohesive soil. Also, the relative 

consistency (𝐼𝑐) was estimated by using the following equation (Equation 6) [30], and based on the relative consistency 

values, the soil classified and the undrained cohesion for each clay sample were determined and given in Table 3. 𝐼𝑐 = 𝐿.𝐿−𝑊.𝑐𝐼𝑝                                                                                                                                                                   (6)     

Where, 
 𝐿. 𝐿 = soil liquid limit (%), 𝑤. 𝑐 = soil water content (%), and 𝐼𝑝 = plasticity index. 

Table 3. Water content and Atterberg limits test 

Sample level (m) W.C % L.L % P.L % 𝑰𝒄 Clay Classification 𝑪𝒖 (kN\m2) 

4.00-5.00 32 51 27 0.79 Stiff Clay 50-100 

5.00-6.50 41 81 34 0.85 Stiff Clay 50-100 

7.30-9.00 34 48 27 0.67 Medium Stiff 25-50 

3.2.2.3. Consolidation Test 

Consolidation test was conducted on clay soil samples taken from site at depth of (8.00-8.30) m underground surface. 

Figure 7 shows the e-Log 𝑃 curve for consolidation test. Three pressure increments (56.81-111.80, 111.80-166.78, and 

166.78-221.77) kN/m2 were applied on this sample. Based on test results, the average soil volume compressibility 
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coefficient, mv was determined with value of (9.29𝐸-05) m2/kN. Then, clay soil constrained modulus, 𝐸𝑠  was estimated 

to be 1.10𝐸+04 kN\m2 using (Equation 7): 𝐸𝑠 = 1𝑚𝑣  ( 𝐾𝑔𝑐𝑚2)                                                                                                                                                                 (7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The relationship between the pressure and voids ratio in consolidation test (e-Log P curve) 

3.2.2.4. Unconfined Compression Test 

    The unconfined compression test is a special type of unconsolidated undrained triaxial test, UUT. The soil undrained 

shear strength, 𝑞𝑢 was estimated. Also, the undrained shear strength (𝐶𝑢 or 𝑆) and the undrained Young’s modulus (𝐸𝑢) 

of the cohesive soil layer are calculated using (Equations 8 and 9), respectively. Table 4, display measured values of 

(𝑞𝑢) for clay samples at variable depths using the unconfined compression test. 𝑆 = 𝐶𝑢 = 𝑞𝑢2  ( 𝐾𝑔𝑐𝑚2)                                                                                                                                                      (8)     𝐸𝑢 = 𝑘 𝐶𝑢                                                                                                                                                                    (9)       

Where; 𝑘 is estimated using Duncan chart [31]. 

Table 4. Unconfined compression test results 

Depth (m) 
Undrained Shear Strength 

(𝒒𝒖) kN/m2 

Undrained Cohesion 

(𝑪𝒖) kN/m2 

Undrained Young’s Modulus 
(𝑬𝒖) kN/m2 

Clay 

Classification 

5.00-6.50 220 111 27750 Very Stiff Clay 

6.50-7.50 140 70 17500 Stiff Clay 

7.50-9.00 100 50 12500 Stiff Clay 

3.2.2.5. Direct Shear Test 

A direct shear device is used to determine the shear strength indicated by Cohesion (𝐶) and Angle of Internal Friction 

(ø) of any soils. Many calculations depend on these two parameters such as; bearing capacity measurements at any 

depths, slopes design, and to calculate the consolidation parameters and in many other analyses. Figure 8 shows the 

shear stress and shear displacement for 12 m and 35 m depth, respectively. 

The Figures 9 to 11 show the summery of values of the soil's physical properties such as friction angle, young's 

modulus, and cohesion at different depth of BHD.2A, which were calculated in this study from laboratory, field tests 

and theoretical equations of previous studies as mentioned above. Also, it must be mentioned that, in this case study, the 

Young’s modulus and the friction angle for (sand, gravel, and boulders) layers are taken based on ECP code 
measurements. On the other hand, the clay soil properties (un-drained shear strength, 𝐶𝑢 and undrained young's modulus, 𝐸𝑢 are taken from unconfined compression test. Table 5 shows the soil parameters that are used in this study to measure 

the ground surface settlement.  
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Table 5. Soil layers properties 

Layers 
Made 

ground 

Silty 

Clay 

Medium to 

Dense sand 
Gravel Silty Sand Cobbles & Boulders Dense Sand 

Thickness, (m) 4 5 11 1.5 1.5 6.5 extended 

Young Modulus, 𝐸, (kN/m2) 40000 27750 31185 121210 16475 121210 70706 

Unit Weight γ, (kN/m3) 17 18.25 17.70 20 19.23 21 18.34 

Friction angle, ϕo 27 0 36 41 36 41 40 

Cohesion, 𝐶 (kN/m2) - Cu=111 - - - - - 

Poisson's Ratio, ν 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

Lateral earth pressure, 𝐾 0.546 1 0.384 0.343 0.370 0.343 0.357 

  

Figure 8. The relationship between the shear displacement and shear stress for uncompressing test at a) 12m and b) 35m depths 

  

Figure 9. The relation between friction angles and 

different depths for BHD.2A 

Figure 10. The relation between young's modulus and 

different depths for BHD.2A 
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Figure 11. The relation between the undrained shear strength and different depths for clay layer at BHD.2A 

4. Stages of Construction 

In the construction of the Greater Cairo Metro, line-3, slurry shield was used to execute utilizing of 9.55 m external 

diameter. The length of TBM is 9 m with a tail piece thickness 5 cm. According to NAT., the rate of TBM advance is 

ranging from (6 to 13) m/day. Figure 12 describes the sequence followed in the construction of the tunnel.  Six stages 

of construction were adopted as follows: The objective function of the model is given as follows: 

a) 1st Stage: Starts with boring a vertical pit. 

b) 2nd Stage: A cylindrical excavator called a "tunnelling shield" is brought in through the vertical pit and 

assembled. 

c) 3rd Stage: The machine starts excavation toward the adjacent vertical pit. The tunnelling shield presses 

and rotates its cutting wheel at the front against soil to excavate. 

d) 4th Stage: The machine excavates and moves forward as hydraulic jacks at the back stabilized it. Once 

a certain distance is excavated the machine folds the jacks in and install a ring-shaped concrete wall 

called a segment. 

e) 5th Stage: The grouting is acted on the perimeter of the segments toward the soil. 

f) 6th Stage: The machine builds the tunnel by repeating the process of precasting the segment extending the jacks, 

then folding the jacks in and precasting the segment.  When the machine reaches the next vertical pit, it is removed 

to complete the underground tunnel. 
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Figure 12. Stages construction of tunnel case study; (a) Stage 1: Starts with boring a vertical pit, (b) Stage 2: Assemble the 

TBM at the vertical pit, (c) Stage 3: The machine starts excavation toward the adjacent vertical pit, (d) Stage 4: The machine 

excavates and moves forward and constructed the segment, (e) Stage 5: The grouting is acted on the perimeter of the segments 

toward the soil, and (f) Stage 6: Repeating the process of precasting the segment up to the TBM arrives in the next vertical 

pit to be dismantled for transportation. 

5. Theoretical Calculation of Surface Settlement 

The ground movements estimation is the first step to proceed a reliable risk-assessment of the potency effects on 

buildings and underground structure, which is necessary for the tunneling design of in urban regions. There are many 

research examples clarifying the characteristics of ground movement when a tunnel is excavated. The maximum 

settlement amount (𝑆𝑚𝑎𝑥 ) and the position of the inflection point (𝑖) are indicated by a normal distribution curve 

(Gaussian distribution curve) on the form of subsidence on the cross-section of the tunnel, as shown in Figure 13.  

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Definition of settlement profile of Gaussian form, after Peck 1969 [13] 

For the case of a single tunnel, the development of the surface settlement trough is estimated by various methods as 

follows: 

1. Peck (1969) [14], summarized a large number of measured data to describe the surface settlement caused by 

construction of a shield tunneling and expressed that surface settlement approximate normal distribution and 

proposed the Peck formula as follows: 



Civil Engineering Journal         Vol. 6, No. 12, December, 2020 

2284 

 

 

𝑆(𝑥) = 𝑆𝑚𝑎𝑥 ∗ 𝑒𝑥𝑝 (− 𝑥22𝑖2)                                                                                                                                          (10)  
Where 𝑆(𝑥) = the surface settlement, 𝑥  = the horizontal distance from tunnel centreline, 𝑆𝑚𝑎𝑥   = the maximum settlement on the tunnel centreline, and 𝑖  = the inflection point position. 

Settlement due to tunnelling is usually realize by a dimensionless parameter that is called Ground Loss 

or Volume Loss. Volume loss is defined as the proportion of excavation area volume to initial volume of 

the tunnel per unit length of excavation [32], modified the Gaussian distribution based on many in-situ 

measurements and centrifuge test. By integrating Peck's Gaussian relationship, the volume of settlement 

trough, 𝑉𝑠 can be estimated. 𝑉𝑠 = ∫ 𝑆𝑣𝑑𝑥 = √2𝜋𝑖𝑥+∞
−∞ 𝑆𝑚𝑎𝑥 (11) 

Mair et al. (1982) [32], suggested the following equation to measure the maximum surface settlement: 

𝑆𝑚𝑎𝑥 = 𝑉𝑠√2𝜋𝑖 = 1.252 𝑉𝐿𝑅2𝑖  (12) 

Where; 𝑉𝑠 = 𝜋𝑅2𝑉𝐿 𝑅 = the radius of tunnel 

This formula is needed to determine two parameters for the prediction of settlement: the volume loss (𝑉𝐿) and the 

inflection point position (𝑖). The volume loss (𝑉𝐿) depends on tunneling techniques and the soil behaviors, and it is 

almost obtained through measurements or local experiences and it ranges between (0.5-1%) for shield tunnel boring 

machine. The technical data of the employed TBM recommended the total volume loss as 0.5%. The inflection point 

position (𝑖) determines the influence domain of settlement and plays a main role in the settlement amount when the 

volume loss is constant, the value of the inflection point position (𝑖) is related to the nature soil formation, the tunnel 

depth, and the tunnel radius. 

O'Reilly and New (1982) [33] were presented more generalized empirical equations of the profile settlement depends 

on the Peck's research. They developed the general trough width equation for all soil types for multi-layered strata (N 

layers) as the following equation: 𝑖𝑛 = 𝐾1𝑍1 + 𝐾2𝑍2 + 𝐾3𝑍3 + ⋯ + 𝐾𝑛𝑍𝑛                                                                                                                   (13) 

Where; 𝑖 is the width of the settlement trough; 𝐾 is a parameter depending only on the nature of soil. Field data during 

tunnelling collected all over the world indicate that 𝐾 varies between 0.4 and 0.6 for stiff clays, between 0.6 and 0.75 

for soft clays, and between 0.2 and 0.45 for sands and gravels, Mair and Taylor 1997 [34], regardless the size and method 

of the tunnel. 

2. The Oteo Method 

This semi-empirical method is based on Oteo’s works over the last 30 years Oteo and Moya (1979) [35] and Sagaseta 

et al. (1980) [36], which allows estimating the settlement along the perpendicular to the axis of the tunnel. In general, 

this method is a modification of the Peck method, in which more parameters of the tunnel and the mass containing it are 

used: 𝑆𝑚𝑎𝑥 = Ψ × 𝛾𝐷2𝐸 × (0.85 − 𝜇) (14) 

Where,  𝜇  =  Poisson’s ratio, 𝛾  =  The total unit weight of the soil, 𝐷  =  The tunnel diameter, Ψ  =  An empirical parameter to be obtained from monitoring data analysis and equal to 0.4~0.5, and 𝐸  =  The tensile modulus of elasticity. 

3. Limaniv’s Method 
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Limaniv (1957) [37] has presented the theoretical methods proceed from the assumption of elastic behavior of the 

soil surrounding the tunnel to calculate the surface settlement resulting from the construction of tunnels or mine 

excavations. The Limaniv's relationship for computing the maximum settlement is as follows: 𝑆𝑚𝑎𝑥 = (1 − 𝑣2) 𝑃𝐸 [ 4𝑟𝑜2ℎ0ℎ02 − 𝑟02] (15) 

Where; 𝑣  =  Poisson's ratio, 𝐸  =  Young's modulus, 𝑟0  =  Tunnel radius, ℎ0  =  Tunnel depth, and 𝑃  =  Radial load that can be expressed as; 𝑃 = 𝜎𝑧 1 + 𝐾𝑟2  (16) 

Where,   𝜎𝑧  = The vertical stress in tunnel centreline and 𝐾𝑟   = Lateral earth pressure. 

4. The Sagaseta Method 

The equation of the maximum surface settlement is calculated based on the analytical solution given by Sagaseta 

1987 [38] and later modified by Sagaseta 1988 [39] and Uriel and Sagaseta 1989 [40], and expressed as: 𝑆𝑚𝑎𝑥 = 𝑉𝑠  𝐻𝜋 (𝑥2 + 𝐻2) (17) 

Where, 

 𝐻  = Tunnel axis depth,  𝑥  = Distance to the centre line, and 

 𝑉𝑠  = Volume of settlement trough. 

5. The Ecrelebi Method 

Ecrelebi (2005) [41], presented the following relationship for estimating the maximum surface settlement over the 

tunnel axis: 𝑆𝑚𝑎𝑥 = 0.785 × 𝛾 × ℎ0 × 4 × 𝑅2𝑖 × 𝐸  (18) 

Where, ℎ0  = Tunnel axis depth 𝑅 = Tunnel radius 𝛾  = Unit weight (ton/m3), and 𝐸  = Elasticity modulus (ton/m2), which is the weighted average for layers in this study. 

6. Results and Discussion 

In this section, the ground surface settlement due to tunneling was calculated with the theoretical methods and 

compared with field data measurements. Figure 14 shows the transverse settlement trough of the ground surface. The 

results indicate that the settlement obtained by Oeto and Mair methods and the monitoring results match well with the 

Gauss distribution. From the Oeto and Mair methods, it can be found that the maximum surface settlement, Smax, occurs 

at the tunnel axis x, and the final values of Smax are 10.55 mm and 11.95 mm, respectively. These methods are more 

appropriate than that of Limanov’s method (Smax=16.78 mm). While the maximum surface settlement in the monitoring 

of the field data measurements is 8 mm. On the other hand, the Ecrelebi method overestimates the settlements up to 
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Smax=26.23 mm. This causes to an uneconomic estimation and over design. In contrast, the Sagaseta method 

underestimates the settlement with the maximum of Smax=4.40 mm. The reason for the variation between the results of 

the different theoretical methods mentioned above is due to the assumptions and simplifications used in these 

relationships that neglect the influence of some factors, so that some cases give good results and disparate results in 

others. In spite of the theoretical methods have several advantages in the prediction of ground settlements induced by 

tunneling, there are major constraints in their practical application because the large number of influential factors 

involved makes tunnel–ground interaction complicated, it is difficult to say whether these methods can be used in 

confidence. In fact, there are some factors that are effect on the ground surface settlement which among; the geometry 

of tunnel (depth and diameter of the tunnel), tunnel construction method including; types of excavation and construction 

stages, and soil properties such as; poisson’s ratio, friction angle, lateral earth pressure and ground water conditions. 

Therefore, most of empirical methods didn’t take into consideration the effect of these parameters that play an important 
role in decision making for the proper selection of calculate the surface settlement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Transverse settlement trough of the ground surface 

In the area close to the tunnel axis (−25 < x < 25 m), about 2.6 times of the excavation diameter, the theoretical results 

for Sagaseta, Oeto and Mair methods are larger than the measured result with an average value of about 3.00 mm, which 

means the theoretical prediction slightly overvalue the eventual surface settlement. The overvalues of theoretical results 

could be treated as the safety margin in a sensible way. In the area far away from the tunnel axis (x < −25 m and x > 25 

m), the theoretical result is almost equal the measured result, which means the theoretical prediction slightly 

underestimates the eventual surface settlement. As all the measured results are smaller than 3.00 mm, the influence of 

the underestimation could be well accepted in the tunneling construction. 

7. Conclusions 

During the design and construction of the tunnels in urban areas, it is very necessary to predict the surface settlement 

to control the tunneling construction on an adjacent structure. Despite of unsuitability of the empirical methods for all 

different soil conditions and all variable site circumstances to calculate the ground surface displacements due to 

tunneling. However, it is preferable to using these methods for estimation of ground surface settlement due to tunnel 

construction are relatively simple procedures that are very often used in practice. They provide very good results when 

tunneling conditions are well known, i.e. when design parameters and soil calculation parameters are adequately 

calibrated. Main conclusions which could be deduced from the study performed, are listed below: 

 The main advantage of using the theoretical methods that it can be used easily for different soil, where it just needs 

to substitute directly in the equation instead of using any charts. 

 Good convergence in results for Oteo and Mair methods comparing with the field measurements where the 

maximum surface settlement ranges from 10.55-11.95 mm, respectively. 

 A marginal agreement in results for Limanov’s method comparing with the field measurements where the 
maximum surface settlement is 16.78 mm. 
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 A noticeable diversion in result for Ercelebi method comparing with the field measurements. Ercelebi method 

overestimates the settlements up to 𝑆𝑚𝑎𝑥=26.23 mm. This causes to an uneconomic estimation and over design. In 

contrast, the Sagaseta method underestimates the settlement with the maximum of Smax is 4.40 mm. 

Finally, there are many factors that influence on the results accuracy such as; soil parameters and construction stages 

especially the loading and unloading behavior of soil that must be taken into account to measure the surface settlement. 

This paper presents the details of the project and monitoring results field and laboratory geotechnical investigations in 

order to determine the soil properties, which play a critical key role in the accuracy of results. Consequently, by 

numerical simulation the effects of tunneling construction on surface settlement and piles foundation are the scope of 

interest for future research. 
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