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Abstract Groundwater is the most important natural

resource for drinking water to many people around the

world, especially in rural areas where the supply of

treated water is not available. Drinking water resources

cannot be optimally used and sustained unless the quality

of water is properly assessed. To this end, an attempt has

been made to develop a suitable methodology for the

assessment of drinking water quality on the basis of 11

physico-chemical parameters. The present study aims to

select the fuzzy aggregation approach for estimation of

the water quality index of a sample to check the suit-

ability for drinking purposes. Based on expert’s opinion

and author’s judgement, 11 water quality (pollutant)

variables (Alkalinity, Dissolved Solids (DS), Hardness,

pH, Ca, Mg, Fe, Fluoride, As, Sulphate, Nitrates) are

selected for the quality assessment. The output results of

proposed methodology are compared with the output

obtained from widely used deterministic method (weigh-

ted arithmetic mean aggregation) for the suitability of the

developed methodology.

Keywords Water quality index (WQI) � Fuzzy

aggregation � Analytical hierarchical process (AHP)

Introduction

Groundwater is an important and limited resource in many

parts of the world and it is extremely important and heavily

used in areas where surface water bodies are significantly

low. Groundwater quality depends on the quality of

recharged water, atmospheric precipitation, inland surface

water, and on sub-surface geochemical processes. Tem-

poral changes in the origin and constitution of the

recharged water, hydrologic and human factors, may cause

periodic changes in groundwater quality. Water pollution

not only affects water quality but also threats human

health, economic development, and social prosperity

(Milovanovic 2007).

A water quality index (WQI) is a mechanism for pre-

senting a cumulatively derived numerical expression

defining a certain level of water quality. In other words,

WQI summarizes large amounts of water quality data into

simple terms (e.g., excellent, good, bad, etc.) for reporting

to management and the public in a consistent manner. The

concept of WQI is based on the comparison of the water

quality parameters with respective regulatory standards and

gives a single value to the water quality of a source, which

translates the list of constituents and their concentrations

present in a sample (Khan et al. 2003; Abbasi 2002). The

index method was initially proposed by Horton in (1965).

Since then, the formulation and use of indices has been

strongly advocated by agencies responsible for water sup-

ply and control of water pollution. Landwehr (1979) points

out that an index is a performance measurement that

aggregates information into a usable form, which reflects

the composite influence of significant physical, chemical

and biological parameters of water quality conditions.

House and Newsome (1989) states that the use of a water

quality index (WQI) allows ‘good’ and ‘bad’ water quality

to be quantified by reducing a large quantity of data on a

range of physico-chemical and biological parameters to be

a single number in a simple, objective and reproducible

manner. Various types of aggregation methods used for

aggregation of quality-monitoring data to yield an overall
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quality index. Over the last three decades, a number of

mathematical functions for aggregation of water quality

and water pollution indices have been suggested (Horton

1965; Brown et al. 1970; Prati et al. 1971; Dinius 1972;

Dee et al. 1973; McDuffie and Haney 1973; Inhaber 1974;

Walski and Parker 1974; Truett et al. 1975; Landwehr and

Deininger 1976; Ross 1977; Ott 1978; Stoner 1978; Ball

and Church 1980; Bhargava 1983; Dinius 1987; House and

Ellis 1987; Smith 1989, 1990; Dojlido et al. 1994; Štam-

buk-Giljanovic 1999; Pesce and Wunderlin 2000; Swamee

and Tyagi 2000; Jonnalagadda and Mhere 2001; Cude

2001; Abbasi 2002; Nagels et al. 2002; Said et al. 2004;

Debels et al. 2005; Bordalo et al. 2006; Kannel et al. 2007;

Swamee and Tyagi 2007). The different aggregation

functions can be of additive, multiplicative, minimum or

maximum operator forms. Each functions have their own

merits and demerits and applicable for limited situations.

The most appropriate aggregation function is the one that is

either free from or minimizes the overestimation (ambi-

guity), underestimation (eclipsing) and rigidity problems.

There is always a certain degree of arbitrariness inherent

in the choice of an aggregation function. The objective of

this study is to develop a fuzzy aggregation approach as

suitable techniques for handling the water quality data and

conducting the water pollution cumulative risk assessment

associated with multi-pollutant under uncertainty. Fuzzy

aggregation is the process by which the fuzzy sets that

represent the outputs of each rule are combined into a

single fuzzy set. Finally, the input for the defuzzification

process is a fuzzy set (aggregated output fuzzy set) and the

output is a single number.

There are four basic steps primarily involved in water

pollution index design: selection of key water pollutant

variables; determination of weight for each selected vari-

ables; formulation of sub-indices for each parameter; and

aggregation of the sub-indices to yield an overall aggregate

index.

The study aims to demonstrate the application of soft

computing approach for the prediction of water quality

index (WQI).

Development of hierarchical fuzzy model for prediction

of water quality index

The present study aims to develop a hierarchical fuzzy

model for the prediction of water quality index. The fuzzy

logic formalism has been used to determine water quality

index based on fuzzy reasoning. Comparison has been done

with the output obtained from deterministic method

(Conventional WQI). A number of artificial data set has

been prepared for the demonstration of the water quality

assessment. In each data set the concentration of each

eleven water quality parameters considered for the study

are assumed judiciously to cover the various range of the

concentration. Membership functions of the determinants

and fuzzy rule bases were defined. The model was evalu-

ated with artificial water quality data set based on Mamdani

fuzzy inference system.

The methodology for the development of the fuzzy

model to predict the water quality index involves the fol-

lowing steps:
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Fig. 1 Structure of hierarchical

fuzzy expert system for
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Step I: identification of the system’s variables The first

and most important step in modelling is the identification

of system’s input and output variables. The structure of the

hierarchical fuzzy model is shown in Fig. 1. The structure

of the model reveals that first fuzzy model (FIS1) has four

input parameters (Alkalinity, Dissolved Solids, Hardness

and pH), and second model (FIS2) has also four input

parameters (Ca, Mg, Fe, and As) whereas third model

(FIS3) has three input parameters (sulphate, nitrate and

fluoride). The output values of model FIS1, FIS2 and FIS3

are OG1, OG2, and OG3, respectively then aggregated in

the subsequent model to get the final output fuzzy water

quality index (FWQI). This relationship between inputs

and output can mathematically be expressed as

FIS1 ¼ f Alkalinity; Dissolved Solids; Hardness; pHð Þ

FIS2 ¼ f Ca; Mg; Fe; Asð Þ

FIS 3 ¼ f Sulphate; Nitrates; Fluorideð Þ

FWQI ¼ f FIS1; FIS2; FIS3ð Þ

Step II: determination of the ranges of input and output

variables The second step is to determine the ranges of the

input and output variables. The minimum value for all the

parameters are considered as zero except pH for reflecting

the best water quality. For pH is equal to 7 representing the

best water quality. Similarly, the maximum value is

selected for each water quality parameters on the basis of

permissible concentrations as per drinking water quality

standards (IS 10500). The maximum value for each water

quality parameters are four times the permissible

concentrations except pH. The drinking water quality

standards (IS 10500) for each water quality parameters

considered in the study is listed in Table 1. These variables

(water quality parameters) in fuzzy modelling are defined

as linguistic variables whose linguistic values are words or

sentences in a natural or synthetic language. Table 2 shows

the linguistic variables, their linguistic values and

associated fuzzy intervals.

Step III: selection of the membership functions for var-

ious inputs and output variables The next step is to express

linguistic values in the form of fuzzy sets, which are

Table 1 Drinking water quality standards (Indian standard specifi-

cation for drinking water: IS 10500, 1983)

Sl. No. Parameter Requirement desirable limit

1 Alkalinity 200 mg/l

2 Total hardness 300 mg/l

3 pH 6.5–8.5

4 DS 500 mg/l

5 Ca 75 mg/l

6 Mg 30 mg/l

7 As 0.05 mg/l

8 Fluoride 1.5 mg/l (maximum permissible value)

9 Sulphate 200 mg/l

10 Nitrate 45 mg/l

11 Iron (Fe) 0.3 mg/l

Table 2 Inputs and output with their associated fuzzy values

Sl.

no.

System’s

variables

Linguistic

variables

Linguistic values Fuzzy

intervals

1 Input Alkalinity Good (G) 0–400

Moderate (M) 100–700

Poor (P) 400–800

Dissolved

Solids

Good (G) 0–800

Moderate (M) 200–1,600

Poor (P) 800–2,000

Hardness Good (G) 0–500

Moderate (M) 100–900

Poor (P) 500–1,200

pH Good (G) 5.5–9.5

Moderate (M) 0–7

Poor (P) 7–14

Ca Good (G) 0–150

Moderate (M) 50–250

Poor (P) 150–300

Mg Good (G) 0–60

Moderate (M) 20–100

Poor (P) 60–120

Fe Good (G) 0–0.6

Moderate (M) 0.2–1

Poor (P) 0.6–1.2

As Good (G) 0–0.09

Moderate (M) 0.03–0.18

Poor (P) 0.09–0.2

Sulphate Good (G) 0–400

Moderate (M) 150–650

Poor (P) 400–800

Nitrates Good (G) 0–80

Moderate (M) 20–140

Poor (P) 80–180

Fluoride Good (G) 0–3

Moderate (M) 1–5

Poor (P) 3–6

Output FWQI Very very low

(VVL)

0–0.667

Very low (VL) 0–1.334

Low (L) 0.667–2

Medium (M) 1.334–2.667

High (H) 2–3.333

Very high (VH) 2.667–4

Very very high

(VVH)

3.333–4
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represented by its membership functions. The amount of

overlap and the shape of fuzzy sets should be considered by

an expert for each input variable. The triangular member-

ship function is the simplest one and has been used due to

its computational efficiency. The membership functions for

all inputs and output are shown in Fig. 2a–l.

Step IV: Formation of the set of linguistic rules The next

step is to writing the linguistic rules. The rule base is a set

of linguistic statements in the form of IF–THEN rules with

antecedents and consequents, respectively, connected by

AND operator. In general, a fuzzy rule-based system with

multi-inputs single-output (MISO) can be represented in

the following manner:

RðiÞ
: IF X1 is B

ðiÞ
1 AND X2 is B

ðiÞ
2 AND . . .: AND Xn

is BðiÞ
n THEN Y1 is D

ðiÞ
1

where X1, X2 …, Xn are the input linguistic variables and Y1
is the output linguistic variables, B1

(i), B2
(i),…Bn

(i) and D1
(i) are

linguistic values defined by fuzzy sets on X1, X2…Xn and

Y1, respectively.

Rule bases for each FIS are written separately and rep-

resented in Tables 3, 4, 5 and 6 for FIS1, FSI2, FIS3 and

FWQI, respectively. Table 3 and 4 represents 81 number of

rule bases for FIS1 and FIS, respectively. Similarly,

Table 5 and 6 represents 27 number of rule bases for FIS3

and FWQI, respectively.

Fig. 2 Membership function of input and output variables a alkalinity b hardness c pH d dissolved solids (DS) e As f (Ca) g Fe h Mg i Nitrate

j Sulphate k Fluoride l FWQI
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The present methodology to develop fuzzy model for

prediction of water quality index (WQI) has been imple-

mented on Fuzzy Logic Toolbox of MATLAB7.

Step V: fuzzy inference and defuzzification The final step

is to select the fuzzy inference system for the suitable

aggregation and defuzzification of the output to obtain the

crisp output. Fuzzification is the process of transforming

Table 3 Rule base for FIS 1

Rule Alkalinity pH Dissolved Solids Hardness FIS1

1 Low Low Low Low EL

2 Low Low Low Moderate VVL

3 Low Low Moderate Low VL

……………………….

……………………….

……………………….

80 Moderate High High High VVH

81 High High High High EH

Table 4 Rule base for FIS 2

Rule Ca Mg Fe As FIS2

1 Low Low Low Low EL

2 Low Low Low Moderate VVL

3 Low Low Moderate Low VL

……………………….

……………………….

80 Moderate High High High VVH

81 High High High High EH

Fig. 2 continued
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the real value inputs into fuzzy values whereas the de-

fuzzification process is the way of transforming fuzzy

outputs into real values. The output of the model is cal-

culated using the centroid method. Centroid method is

characterized for calculating the gravity center of the final

membership function as follows:

Fuzzy WQI ¼

R

xlout xð Þdx

r lout xð Þdx

Results and discussion

The rules representation of the four models FIS1, FIS2, FIS3

and FWQI are shown in Figs. 3, 5, 7 and 9, respectively. The

surface views of the FIS1, FIS2, FIS3 and FWQI models are

shown in Figs. 4a–f, 6a–f, 8a–c and 10a–c, respectively.

The rule base representation in Fig. 3 indicate that the

probable value of FIS1 is 1.73 for the respective average

concentrations/value of Alkalinity, Dissolved Solids,

Hardness, and pH are 400, 1,000, 600 mg/l and 7. The

results are summarised in 3D plots as shown in Fig. 4a–f.

Figure 4a shows FIS1 values as a function of Alkalinity

and Dissolved Solids as the input while the third (Hard-

ness) and fourth input (pH) are hidden in the view. The

model clearly indicates that as either the Alkalinity or

Dissolved Solids increases, the FIS1 also increases. Simi-

larly, the model for FIS1 with other combinations of inputs

and associated default variables can be explained.

Similarly, the rule base representation in Fig. 5 indicate

that probable value of FIS2 is 2.03 for the average con-

centrations of Ca, Mg, Fe and As are 150, 60, 0.6 and

0.1 mg/l, respectively. The results are summarised in 3D

plots in Fig. 6a–f. Figure 6a shows FIS2 as a function of

Ca and Mg as the input while the third (Fe) and fourth input

(As) are hidden in the view. The model clearly indicates

that as either the Ca or Mg increases, the FIS2 also

increases. Similarly, the model for FIS2 with other com-

binations of inputs and associated default variables can be

explained.

Table 5 Rule base for FIS 3

Rule Sulphate Nitrate Fluoride FIS3

1 Low Low Low VVL

2 Low Low Low VL

3 Low Low Moderate L

……………………….

……………………….

……………………….

26 Moderate High High VH

27 High High High VVH

Table 6 Rule base for FWQI

Rule FIS1 FIS2 FIS3 FWQI

1 Low Low Low VVL

2 Low Low Low VL

3 Low Low Moderate L

……………………….

……………………….

……………………….

26 Moderate High High VH

27 High High High VVH

Fig. 3 Representation of rule base of FIS1 Model
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Fig. 4 Surface views of FIS1 model a FIS1 vs. dissolved solids and alkalinity b FIS1 vs. hardness and alkalinity c FIS1 vs. pH and alkalinity

d FIS1 vs. pH and hardness e FIS1 vs. dissolved solids and hardness f FIS1 vs. pH dissolved solids

Fig. 5 Representation of rule base of FIS2 Model
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The rule base representation in Fig. 7 indicate that

probable value of FIS3 is 2.09 for the average concentra-

tions of sulphate, nitrate and fluoride are 400, 90 and 3 mg/

l, respectively. The results are summarised in 3D plots

shown in Fig. 8a–c. Figure 8a shows FIS3 as a function of

sulphate and nitrate as the input while the third (Fluoride)

is hidden in the view. The model clearly indicates that as

either the sulphate or nitrate increases, the FIS3 also

increases. Similarly, the model for FIS3 with other com-

binations of inputs and associated default variables can be

explained.

Fuzzy water quality index (FWQI) model has been

computed as a function of FIS1, FIS2 and FIS3. The rule

base representation in Fig. 9 indicates that the probable

value of FWQI is 2 for the value of FIS1, FIS2 and FIS3

are 2, 2 and 2, respectively. The results are summarised in

3D plots as shown in Fig. 10a–c. Figure 10a shows fuzzy

water quality index (FWQI) as a function of FIS1, and FIS2

as the inputs while the third (FIS3) is hidden in the view.

The model clearly indicates that as either the FIS1 or FIS2

increases, the FWQI also increases. Thus, the scale of

water quality index is a reducing scale, that is, higher value

of WQI indicates poor water quality in the area and vice

versa.

Validation of the model

The validation of the model has been done by comparing

the predicted values of fuzzy WQI from the model with

that of the deterministic values of WQI. The detailed

methodology of deterministic WQI determination is

Fig. 6 Surface views of FIS2 model a FIS2 vs. Mg and Ca b FIS2 vs. Fe and Mg c FIS2 vs. As and Mg d FIS2 vs. As and Fe

400 Appl Water Sci (2016) 6:393–405
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explained below in the next section. A number of arti-

ficial data set (nine) for each water quality parameter has

been prepared for comparison of water quality indices.

The water quality parameter concentrations in the arti-

ficial data set are assumed in such a way that it covers

all the possible ranges of pollution concentrations. The

artificial dataset thus generated are shown in Table 7.

The prediction values of FWQ indices for all the dataset

are listed in Table 7. The predicted values WQI are

compared with the deterministic WQI. The deterministic

Fig. 7 Representation of rule base of FIS2 Model

Fig. 8 Surface views of FIS3 model a FIS3 vs. Nitrate and Sulphate b FIS3 vs. Fluoride and Sulphate c FIS3 vs. Fluoride and Nitrate
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WQI has been also determined for the same dataset and

reported in Table 7. The predicted values of fuzzy water

quality index and deterministic water quality index are

plotted as shown in Fig. 11 for the graphical represen-

tation of the comparative values. The trend of the FWQI

and WQI lines reveals that the developed fuzzy model

can be used for the prediction of water quality index and

the fuzzy aggregation mechanism for the prediction of

water quality index is better representation than that of

the existing aggregation method.

Fig. 9 Representation of rule base of FWQI Model

Fig. 10 Surface views of FWQI model a FWQI vs. FIS1 and FIS2 b FWQI vs. FIS3 and FIS1 c FWQI vs. FIS3 and FIS2

402 Appl Water Sci (2016) 6:393–405
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Determination of WQI using deterministic method

The weighted arithmetic mean function (Horton 1965;

Brown et al. 1970; Prati et al. 1971; Dinius 1972; Dee et al.

1973; Inhaber 1974; Ott 1978; Ball and Church 1980; Eg-

borge and Coker 1986; Giljanovic 1999; Prasad and Bose

2001; Bardalo et al. 2001; Kumar and Alappat 2004) has

been used to determine the water quality index (WQI). The

weighted arithmetic mean function is ambiguity free func-

tion, shows small eclipsing with large number of variables

and is widely used aggregation function. The formula used to

determine the aggregatedwater quality index is given below.

WQI ¼
X

n

i¼1

WiIi

where, Ii is the sub-index of ith water quality parameter,

WQI is water quality index and ‘n’ is the number of water

quality parameters considered. Wi is the weightage of the

ith water quality parameter, The sub-index of ith quality

parameter can be determined by

Ii ¼
Ci � Cmin

Cs � Cmin

where, Ci the observed concentration of the ith water

quality parameter, Cs the concentration limit value of the

ith water quality parameter as mentioned in Table 1. Cmin

the minimum concentration of the parameter reflecting best

water quality, The minimum value for all the parameters

considered in the model are 0 except pH (for pH = 7,

represent best water quality)

The weightage of individual pollutants can be found

out using analytical hierarchy process (AHP). AHP is a

systematic method for comparing a list of objectives or

alternatives. This method forms a pair-wise comparison

matrix ‘A’ as shown below, where the number in the ith

row and jth column gives the relative importance of

individual water pollutant parameter Pi as compared

with Pj

The comparison matrix generated by expert ranking

using Saaty’s scale (1980) is as below:

Table 7 Comparative values of Deterministic WQI and Fuzzy WQI for Artificial Dataset

Condition Alkalinity DS Hardness pH Ca Mg Fe As Sulphate Nitrate Fluoride Deterministic WQI FWQI

A 0.0 0.0 0.0 7.0 0.0 0.0 0.00 0.0 0.0 0.0 0.0 0.01 0.21

B 40.0 100.0 60.0 7.4 15.0 6.0 0.06 0.01 40.0 9.0 0.3 0.25 0.21

C 80.0 200.0 120.0 7.8 30.0 12.0 0.12 0.02 80.0 18.0 0.6 0.34 0.22

D 120.0 300.0 180.0 8.2 45.0 18.0 0.18 0.03 120.0 27.0 0.9 0.52 0.48

E 160.0 400.0 240.0 8.4 60.0 24.0 0.24 0.04 160.0 36.0 1.2 0.71 0.99

F 200.0 500.0 300.0 8.5 75.0 30.0 0.30 0.05 200.0 45.0 1.5 1.0 1.22

G 800.0 2,000.0 1,200.0 14.0 300.0 120.0 1.20 0.2 800.0 180.0 6.0 4.0 3.78

H 300.0 600.0 400.0 9.5 125.0 60.0 0.60 0.1 300.0 54.0 1.8 1.4 1.46

I 400.0 700.0 500.0 10.5 175.0 90.0 0.90 0.15 400.0 63.0 2.1 2.1 2.07

Condition A: desirable or minimum value for all the parameters reflecting best water quality, B: 20 % of the permissible limit for all the

parameters, C: 40 % of the permissible limit for all the parameters, D: 60 % of the permissible limit for all the parameters, E: 80 % of the

permissible limit for all the parameters, F: permissible limit reflecting threshold level of water quality for all the parameters, G: maximum limit

for the model application (4 times of the permissible limit), H and I: arbitrarily assumed the concentration level more than the permissible limit
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Taking the sum of each column and then divide each

column by the corresponding sum to obtain the normalized

matrix. The normalized matrix thus obtained is represented

in matrix N as given below.

The relative weight vector W for the pollutants is given

by the average of the row elements in matrix N as

W ¼

wpH

wAlkalinity

wHardness

wDS

wFe

wAs

wFluoride

wSulphate

wNitrate

wCa

wMg

2

6

6

6

6

6
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6

6

6
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7

7

5

Thus, the sum of the weightage of the pollutants

obtained as

X

11

i¼1

Wi ¼ 1

The consistency ratio (CR) of the matrix ‘A’ calculated

was found to be 0.009 which is\0.1 as par Satty (1980)

and thus the consistency of matrix A is acceptable.

Conclusions

The study suggests a robust decision-making tool for drinking

water quality management in the form of the fuzzy water

quality index (FWQI). The developed methodology demon-

strates to determine a single index value to make assessment

of drinking water quality more understandable especially in

public consideration. This new index is believed to assist

decision makers in reporting the state of ground water quality

for drinking purposes. It has been demonstrated that com-

puting with linguistic terms within fuzzy inference system

A ¼

pH

Alkalinity

Hardness

DS

Fe

As

Fluoride

Sulphate

Nitrate

Ca

Mg

pH Alkalinity Hardness DS Fe As Fluoride Sulphate Nitrate Ca Mg

1 1:25 1:25 1:25 0:667 0:334 0:5 0:667 0:667 1:11 1:11

0:8 1 1 1 0:667 0:334 0:5 0:667 0:667 1:25 1:25

0:8 1 1 1 0:667 0:334 0:5 0:667 0:667 1:25 1:25

0:8 1 1 1 0:667 0:334 0:5 0:667 0:667 1:25 1:25

1:5 1:5 1:5 1:5 1 0:5 0:667 1:25 1:25 2 2

3 3 3 3 2 1 1 2 2 5 5
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N ¼

pH

Alkalinity

Hardness

DS

Fe

As

Fluoride

Sulphate

Nitrate

Ca

Mg

pH Alkalinity Hardness DS Fe As Fluoride Sulphate Nitrate Ca Mg

0:07 0:08 0:08 0:08 0:07 0:06 0:08 0:06 0:06 0:05 0:05

0:05 0:07 0:07 0:07 0:07 0:06 0:08 0:06 0:06 0:06 0:06

0:05 0:07 0:07 0:07 0:07 0:06 0:08 0:06 0:06 0:06 0:06

0:05 0:07 0:07 0:07 0:07 0:06 0:08 0:06 0:06 0:06 0:06

0:10 0:10 0:10 0:10 0:10 0:10 0:11 0:11 0:11 0:09 0:09

0:20 0:20 0:20 0:20 0:20 0:19 0:17 0:17 0:17 0:23 0:23

0:14 0:13 0:13 0:13 0:15 0:19 0:17 0:17 0:17 0:23 0:23

0:10 0:10 0:10 0:10 0:08 0:10 0:08 0:09 0:09 0:06 0:06

0:10 0:10 0:10 0:10 0:08 0:10 0:08 0:09 0:09 0:06 0:06

0:06 0:05 0:05 0:05 0:05 0:04 0:03 0:07 0:07 0:05 0:05

0:06 0:05 0:05 0:05 0:05 0:04 0:03 0:07 0:07 0:05 0:05

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5
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(FIS) improves the tolerance for imprecise data. The model is

developed for water quality assessment with artificial dataset

considered eleven water quality (Alkalinity, Hardness, pH,

Dissolved Solids, Ca, Mg, As, Fluoride, Sulphate, Nitrate and

Iron) parameters. The authors believe that the fuzzy logic

concepts, if used logically, could be an effective tool for

drinking water policy issues. The fuzzy model developed is

applicable only for specific number of water quality param-

eters in specified range selected.
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