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ABSTRACT

Many nonlinear models have been proposed to forecast groundwater level. However, the evidence of

chaos in groundwater levels in landslide has not been explored. In addition, linear correlation

analyses are used to determine the input and output variables for the nonlinear models. Linear

correlation analyses are unable to capture the nonlinear relationships between the input and output

variables. This paper proposes to use chaos theory to select the input and output variables for

nonlinear models. The nonlinear model is constructed based on support vector machine (SVM). The

parameters of SVM are obtained by particle swarm optimization (PSO). The proposed PSO-SVM

model based on chaos theory (chaotic PSO-SVM) is applied to predict the daily groundwater levels in

Huayuan landslide and the weekly, monthly groundwater levels in Baijiabao landslide in the Three

Gorges Reservoir Area in China. The results show that there are chaos characteristics in the

groundwater levels. The linear correlation analysis based PSO-SVM (linear PSO-SVM) and chaos

theory-based back-propagation neural network (chaotic BPNN) are also applied for the purpose of

comparison. The results show that the chaotic PSO-SVM model has higher prediction accuracy than

the linear PSO-SVM and chaotic BPNN models for the test data considered.
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INTRODUCTION

There are many landslides in the Three Gorges Reservoir

Area especially after the impoundment of the Three

Gorges Reservoir. The instability of many reservoir land-

slides has been related to the dramatic changes in the

groundwater seepage field (Asch et al. ; Zhang et al.

). Therefore, the prediction of groundwater levels is of

critical importance for landslide prevention (Keqiang et al.

).

Generally speaking, groundwater level prediction

models include physically based and data-based models

(Adamowski & Chan ). Some physically based models

such as the ARX model (Knotters & Bierkens ), pro-

cess-based spatio-temporal model (Schmidt & Dikau )

or the water-table fluctuation method (Park & Parker

) have been used to simulate and forecast the processes

of groundwater level fluctuation. However, physically based

models have practical limitations (Knotters & Bierkens

, ; Nourani et al. ). For example, spatial vari-

ations and the uncertainty of hydrological investigation

also have negative effects on the accuracy of physically

based models. Knotters & Bierkens () provided a regio-

nalized ARX model to determine parameters for physically

based models considering spatial variability.

It is easy to build data-based models using only an input-

output variable approach (Trichakis et al. ; Nourani &

Komasi ). In recent years, many data-based models

have been adopted to predict groundwater levels, such as

regression models (Adamowski & Feluch ; Sahoo &
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Jha ; Raghavendra & Deka ), artificial neural net-

works (ANN) (Nourani et al. ; Tsanis et al. ;

Dash et al. ; Mohanty et al. , ; Adamowski &

Chan ; Jalalkamali et al. ; Sreekanth et al. ;

Wang et al. ; Maheswaran & Khosa ; Atiquzzaman

& Kandasamy ; Behnia & Rezaeian ; Chang et al.

), and genetic programming (Fallah-Mehdipour et al.

). Moreover, a literature review indicates that linear cor-

relation analysis methods are widely used to select the input

and output variables of these data-based models (Daliako-

poulos et al. ; Nayak et al. ; Wong et al. ;

Chen et al. a; Yang et al. ; Chen et al. ;

Sahoo & Jha ; Maiti & Tiwari ). The principal

component analysis method can be used to reduce the

redundant information in the input variables (Jolliffe ).

Since groundwater level processes are non-linear in uncon-

fined aquifers, a nonlinear model that can capture not

only the overall appearance but also the underlying dynamic

behavior of all of the nonlinear processes is required.

Both chaos theory (Sivakumar et al. ) and fractal

theory (Zhang & Yang ) can be used to explore the non-

linear dynamic behavior of groundwater level time series.

Both of these are sensitive to the initial conditions of the

dynamic system, and there are self-similar characteristics

in the chaos attractor and the fractal structure (Baas ).

However, these methods usually explore the nonlinear

system from different perspectives. The fractal theory

mainly explores the structure of the attractor in geometrical

space while the chaos theory mainly explores the evolution

characteristic of the nonlinear system from the perspectives

of time series (Peitgen et al. ).

Recently, chaos theory has been widely used in the non-

linear analysis of hydrological time series (Gutiérrez et al.

). Evidence of chaos has been demonstrated in many

hydrological phenomena such as water level (Liong et al.

), precipitation (Jayawardena & Lai ), stream

flows (Salas et al. ) and rainfall-runoff processes (Siva-

kumar et al. ). However, research on the evidence of

chaos in groundwater levels in landslides has been very lim-

ited. In this study, based on the finding of evidence of chaos,

embedding theory and phase space reconstruction (PSR)

method are used to build the chaotic time series model.

According to embedding theory (Takens ), in the long-

term evolution of a chaotic groundwater level time series,

information about the hidden states of the whole dynamic

system can be preserved through a univariable groundwater

level output. It is significant to effectively predict a nonlinear

time series using a univariable model because sometimes it

is difficult to obtain other correlated variables. The chaotic

model is able to do nonlinear prediction using a univariable

time series. In the PSR method from the chaotic model

(King & Stewart ), a univariable groundwater level

can be constructed into a multi-dimensional phase-space.

As a result, the inputs and output of the nonlinear model

can be obtained from the reconstructed multi-dimensional

phase spaces.

It is necessary to choose a nonlinear model for chaotic

groundwater level model building. As noted previously,

ANN models (without the incorporation of chaos theory)

have been extensively applied to forecast groundwater

levels. ANN has limitations, however, including locally opti-

mal values and the requirement of extensive data. Recently,

support vector machines (SVM) were developed for time

series prediction (Cortes & Vapnik ). SVM models

have many advantages, including excellent generalization

performance and global optimum. They have gained special

attention in many areas such as electronic power prediction

(Niu et al. ), traffic flow forecasting (Chen et al. b),

rainfall and runoff prediction (Tripathi et al. ), and

landslide prediction (Feng et al. ; Yao et al. ).

Meanwhile, the SVM model without chaos theory has also

been used for groundwater level prediction (Behzad et al.

; Guzman et al. ; Gong et al. ). The main

problem with SVM is the determination of its parameters.

The particle swarm optimization (PSO) algorithm is

widely used for SVM parameter selection because of its

excellent global search ability (Lin et al. ; Fei et al.

). A novel PSO-SVM model based on chaos theory

(chaotic PSO-SVM) is proposed in this study. It is then

used to forecast the daily groundwater levels of the Huayuan

landslide area, as well as the weekly and monthly ground-

water levels of the Baijiabao landslide area.

To show the excellent generalization capability of PSO-

SVM model, the back-propagation neural network model

based on chaos theory (chaotic BPNN) is also used to pre-

dict the groundwater levels. The results show that the

chaotic PSO-SVM model has higher prediction accuracy

than the chaotic BPNN model for the test data. To show
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the better guideline for determining the input and output

variables, the PSO-SVM model based on linear correlation

analysis (linear PSO-SVM) is also used. The results show

that the PSR method is more appropriate to select the opti-

mal input and output variables.

METHOD

The proposed method includes data pre-processing, PSR,

evidence of chaos identification, the PSO-SVM model and

accuracy assessment. All the programs are implemented in

MATLAB R2015b. The PSR and the false nearest neighbor

(FNN) algorithms in ChaosToolbox2p9_trial are used. The

SVM model is tested and trained using the program

libsvm-3.1-[FarutoUltimate 3.111code].

Data pre-processing

To prevent large values from overriding small values, the

original groundwater levels are transformed into the desired

range [0, 1] as:

xi ¼
xold,i � xold,min

xold,max � xold,min
(1)

where xold,i (i ¼ 1, 2, � � � � � � , N) are the original groundwater

levels, N is the number of groundwater levels, xold,min and

xold,max are the lower and upper bounds of the original

groundwater levels. xi are used to predict groundwater

level and the results are back-transformed to obtain the

final predicted groundwater levels:

ŷi ¼ yi × (xold,max � xold,min)þ xold,min (2)

where yi is the predicted groundwater level.

Phase space reconstruction

The fundamental properties of chaotic time series are the

sensitivity to initial values, an evolution trace that becomes

exponentially further apart as time increases, and the ampli-

fication of small disturbances in the nonlinear dynamic.

Because geological conditions, rainfall and reservoir water

level can affect the groundwater levels, the groundwater

level time series is treated as a chaotic evolutionary system

in this study. The PSR method (Kennel et al. ) is used

to model the deterministic regular of strange attractors of

groundwater level. The PSR method provides a simplified,

multi-dimensional representation of a univariable nonlinear

time series. In this approach, the nonlinear dynamics of a

groundwater level can be fully embedded in a multi-

dimensional phase space as:

Xi ¼ (xi, xi�τ , � � � � � � , xi�(m�1)τ) (3)

where Xi(i ¼ 1þ (m� 1)τ, � � � � � � , N) is the reconstructed

phase space, xi is the normalized groundwater level, m is

the embedding dimension (m � d), d is the dimension of

the strange attractor of phase space, and τ is the delay

time. τ represents the average length of memory of the

system. The phase space of a univariable chaotic time

series can be reconstructed by selecting appropriate τ and

m (Sauer et al. ).

Determination of delay time

Typically, τ is determined using either the correlation

analysis method (Aguirre ) or the mutual information

method (Fraser&Swinney ). Bothmethods are generally

suitable for noiseless long chaotic time series, and thereareno

commonly accepted guidelines for selection of parameters.

Meanwhile, if a large value is selected for τ, the difficulty of

computing the nonlinear model will increase greatly (Wolf

et al. ). Therefore, a relatively small τ is usually chosen

for the evidence of chaos identification and nonlinear predic-

tion of the finite hydrological and environment time series

(Sivakumar et al. ; Han & Wang ; Huang et al.

). In this study, the τ of daily, weekly andmonthly ground-

water levels are all set to 1, because the measurements of

groundwater levels are finite and noisy. Huang et al. ()

show that reasonably good groundwater level forecasts were

obtained when τ was set to 1.

Determination of embedding dimension

The m is the minimum number of state variables required to

describe the chaotic system. If m is too large, longer
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groundwater level time series and more complex compu-

tations are needed. As a result, the efficiency of the

nonlinear model will be reduced because of data redun-

dancy. If m is too small, the strange attractors cannot be

reconstructed (Cao ). The FNN method (Kennel et al.

) is one of the most popular methods for estimating opti-

mal m because it is insensitive to the finite and noisy data

points. It is used in this study.

The determination of the m using FNN method

starts with an embedding space named Rm. Suppose

Xi ¼ (xi, xi�τ , � � � � � � , xi�(m�1)τ) is a data point in the Rm

and XNear
i ¼ (xNear

i , xNear
i�τ , � � � � � � , xNear

i�(m�1)τ) is its nearest

neighbor. The Euclidean distance between these two

elements is calculated as:

E2
m ¼

X

m�1

λ¼0

(xi�λτ � xNear
i�λτ )

2
(4)

The Euclidean distance between the projections of these

two points into Emþ1 is given by:

E2
mþ1 ¼ E2

m þ (xi�mτ � xNear
i�mτ)

2 (5)

The parameter S is defined as a measure of the distance

between xi�mτ and xNear
i�mτ in Rmþ1, normalized against their

distance in Rm as:

S ¼
(xi�mτ � xNear

i�mτ)
2

Em
(6)

The FNN method is aimed to search for all the data

points which are neighbors in a particular embedding

dimension m and which do not remain so when increasing

the m to mþ 1. In this study, the ratio S of the distances

between a particular data point Xi and its nearest neighbor

XNear
i in the mþ 1th and mth dimensions is computed. If the

S is larger than a particular threshold Stol, the neighbor is

false. The Stol is determined according to the number of

reconstructed phase spaces. The Stol can be set to 10 when

the distribution of the reconstructed phase spaces in the

dynamic system is sparse; and the Stol can be set to a greater

value when the distribution of the reconstructed phase

spaces in the dynamic system is intensive (Kennel & Abar-

banel ; Han ). There are just tens of phase spaces

in the weekly and monthly groundwater levels, and hun-

dreds of phase spaces in the daily groundwater levels in

this study. Hence, the Stol is set to 10. A greater Stol can be

used if there are thousands of phase spaces in the ground-

water levels. When the percentage of FNN falls to 5%, the

corresponding embedding dimension is considered high

enough to represent the dynamics of the groundwater level.

Evidence of chaos identification

If there are chaos characteristics in the groundwater levels,

chaotic models can be used to forecast the groundwater

levels. Otherwise, if the groundwater levels are random or

periodic time series, chaotic models cannot be used. The

chaos characteristics of nonlinear time series are primarily

identified by qualitative or quantitative methods (Welch

). Qualitative methods identify the chaotic time series

through revealing the special spatial structures or frequency

features shown in the spatial or frequency domains (Yera-

gani et al. ). Qualitative methods are less specific and

have lower accuracy. Thus, it is preferred to identify the

chaos characteristics through quantitative methods.

Quantitative methods include the largest Lyapunov

exponent (LLE) method (Wolf et al. ), correlation

dimension method (Broock et al. ) and Kolmogorov

entropy method (Kosloff & Rice ). It is difficult to calcu-

late the Kolmogorov entropy values of groundwater levels

because the groundwater level time series are finite and

noisy. Meanwhile, the LLE and correlation dimension

methods have less stringent requirement than the Kolmo-

gorov entropy method in the length of groundwater level

time series. Hence, the LLE and correlation dimension

methods are applied to characterize the chaotic system of

groundwater levels in this study. The LLE describes the

divergence rate of trajectories that starts close but diverges

over time. In addition, the correlation dimension is one of

the infinite numbers of dimensions in the dimension spec-

trum which characterizes the multi-fractal structure of the

strange attractor (Procaccia et al. ). If the evidence of

chaos in the groundwater levels can be revealed from the

results of both of the LLE and correlation dimension

methods, there are chaos characteristics in the groundwater

levels. Then the chaotic models can be used to predict the

groundwater levels.
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Calculation of LLE

For a dynamic system, its sensitivity to initial conditions is

quantified by the Lyapunov exponents. The small data sets

method (Rosenstein et al. ) is both simple and appropri-

ate for a finite time series. It is used to calculate the LLE in

this study. If the LLE is denoted as L, the average divergence

at time t can be defined as:

d(t) ¼ keLt (7)

where k is a constant that normalizes the initial separation.

The first step is to reconstruct the attractor dynamics from a

univariable time series. The reconstructed trajectory, X, can

be expressed as a matrix where each row is a phase-space

vector. That is:

X ¼ (X1, X2, � � � � � � , XM)T (8)

where Xi is the ith data point of the dynamic system, M is

the number of data points on the reconstructed attractor,

For a N-point groundwater level time series,

{x1, x2, � � � � � � , xN}, each Xi is given by:

Xi ¼ {xi, xiþτ , � � � � � � , xiþ(m�1)τ} (9)

Thus X is a M ×m matrix. The constants m, M, τ and N

are related as:

M ¼ N � (m� 1)τ (10)

After reconstructing the dynamics, the nearest neighbor

of each point can be located on the trajectory. The nearest

neighbor XNear
j is found by searching for the point that

minimizes the distance to the particular reference point

Xj as:

dj(0) ¼ min
XNear

j

jjXj �XNear
j jj (11)

where dj(0) is the initial distance from the jth point to its

nearest neighbor, and kk denotes the Euclidean norm.

The L is then estimated as the mean rate of separation of

the nearest neighbors. Based on the definition of L given

in Equation (7), the jth pair of nearest neighbors diverge

approximately at a rate given by:

dj(ti) ≈ kje
L(iΔt) (12)

where ti ¼ iΔt, Δt is the sampling period of the time series,

kj is the initial separation of the jth pair of nearest neigh-

bors. Taking the logarithm of both sides of Equation (12),

ln dj(ti) ≈ ln kj þ L(iΔt) (13)

Equation (13) represents a set of approximately parallel

lines (for j ¼ 1, 2, � � � � � � , M), each with a slope roughly

proportional to L. The L can be calculated using a least-

squares fit to the ‘average’ line defined by

y(ti) ¼
1

Δt
〈 ln dj(ti)〉 (14)

where 〈 � 〉 denotes the average over all j. This process of

averaging is the key step to calculate accurate L using

finite and noisy time series. If the dynamic system of

groundwater levels contains chaos characteristics, the

LLE must be greater than zero. This is because that, for

a two trajectories with nearby initial conditions on the

dynamic system, if the LLE is smaller than zero, the trajec-

tories cannot diverge exponentially when time increases

(Eckmann & Ruelle ).

Calculation of correlation dimension

Correlation dimension is one of the most efficient methods

to identify the evidence of chaos. The method uses a fractal

dimension, which is non-integer for chaotic systems. The

Grassberger-Procaccia (G-P) approach (Grassberger & Pro-

caccia ) is suitable for finite time series and easy to

implement. It is used in this study to calculate the corre-

lation dimension of groundwater levels.

Suppose Xi and Xj are the two points in the phase space,

the correlation function is given by Theiler ():

C(r) ¼ lim
N!∞

2

M(M � 1)

X

M

i¼1

X

M

j¼1
j≠i

H(r � jjXi �Xjjj) (15)
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where H is the Heaviside step function, with H(u) ¼ 1 for

u � 0, and H(u) ¼ 0 for u< 0, r is the radius of the sphere

centered on Xi or Xj; if the time series is characterized by

an attractor, C(r) can be related to radius r as:

C(r)∝ rD(m) (16)

where D(m) is the correlation dimension. Take the loga-

rithm of Equation (16) and rearrange it as:

D(m) ¼ lim
r!0

ln C(r)

ln r
(17)

A series of D(m) can be obtained by increasing the m.

For a chaotic time series, D(m) continuously increases and

then converges to a constant when m increases. For a

random or periodic time series, D(m) increases without con-

verging when m increases (Lai & Lerner ).

PSO-SVM model

After the evidence of chaos in the groundwater levels is

identified, the evolution of groundwater levels can be pre-

dicted as:

yi ¼ f(Xi) (18)

where yi represents the one day, one week and one month

ahead groundwater levels. f(Xi) is a deterministic function.

In this study, SVM is used to construct f(Xi).

Support vector machine

SVM (Cortes & Vapnik ) is a non-linear kernel-based

regression method. It is developed based on statistical

learning theory. SVM maps the input data into a higher-

dimensional feature space by nonlinear mapping and

then solves a linear regression problem in the higher-

dimensional feature space. It is aimed to find the best

regression hyperplane with smallest structural risk in the

feature space. One of the most popular SVMs is the ε-

SVM which locates the hyperplane with an ε-insensitive

loss value. The ϵ-SVM is formulated as:

f(Xi) ¼ wT � φ(Xi)þ b (19)

where φ(Xi) is a nonlinear mapping from the input space

to the feature space, w is a vector of weight coefficients

and b is a bias constant. w and b are estimated by the fol-

lowing optimization problem:

minimize
1

2
wk k2 (20)

subjected to
yi � (〈w, φ(Xi)〉þ b) � ε

(〈w, φ(Xi)〉þ b)� yi � ε

�

To cope with feasibility issues and to make the method

more robust, points from the ε-insensitive band are not

eliminated. Instead, these points are penalized by introdu-

cing slack variables ξi, ξi�:

Minimize
1

2
wk k2þC0

X

M

i¼1

(ξi þ ξi�) (21)

subjected to
yi � (〈w, φ(Xi)〉þ b) � εþ ξi
(〈w, φ(Xi)〉þ b)� yi � εþ ξi�
ξi , ξi� � 0

8

<

:

where the cost constant C0 > 0 determines the trade-off

between model complexity. After taking the Lagrangian

and conditions for optimality, the solution in dual form is

f(Xi) ¼
X

M

i¼1

(αi � αi�)K(Xi, X)þ b (22)

where αi , αi� are non-zero Lagrangian multipliers and the

solution for the dual problem. K(Xi, X) is the kernel func-

tion which represents the inner product 〈φ(Xi), φ(X)〉. In

this study, the radial basis function (RBF) is used:

K(Xi, X) ¼ exp (� γjjXi �Xjj2) (23)

where γ is the width parameter of RBF kernel. In this study,

the cost constant C0, the insensitive loss ε and the kernel

function parameter γ are determined by the PSO algorithm.
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PSO-SVM

PSO (Eberhart & Kennedy ) is an adaptive algorithm for

parameter selection. The general procedure of a PSO-SVM

model (Wang et al. ) is shown in Figure 1. In the first

step, the initial parameters such as the number of particles,

learning factors and maximum iterations of the PSO algor-

ithm are determined. In the second step, the SVM is

trained and tested. In the third step, the root mean square

error (RMSE) of SVM predicted values were selected as

the fitness function, and the fitness function is regarded as

the objective function for PSO algorithm. In the fourth

and fifth steps, the position and velocity of all particles are

updated by comparing the particle fitness value with the

local and global best fitness values. Finally, the process is

repeated until the maximum number of iterations is reached.

Accuracy assessment

Three assessment methods are used to evaluate the predic-

tion effectiveness and precision of different models. The

RMSE is calculated as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN0

i¼1 (xold,i � ŷi)
2

N0

s

(24)

where xold,i is the original groundwater level, ŷi is the final

predicted values, and N0 is the length of predicted data.

The RMSE indicates the discrepancy between the monitor-

ing and predicted values. The lower the RMSE is, the

more accurate the prediction. In addition, the goodness of

fit (R2) is also used to assess the accuracy in this study.

The R2 represents the percentage of the initial uncertainty

that is explained by the prediction models:

R2 ¼ 1�
N0

P

(xold,i � ŷi)
2

N0

P

x2old,i �
P

ŷ2i
(25)

Meanwhile, the Nash-Sutcliffe model efficiency coeffi-

cient (NSE) (Pulido-Calvo & Gutierrez-Estrada ) is

also used to assess the performance of the three models as:

NSE ¼ 1�

PN0

i¼1 (xold,i � ŷi)
2

PN0

i¼1 (xold,i � �xold,i)
2

(26)

Figure 1 | Flow chart of PSO-SVM model.
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The NSE falls in the range from 0 to 1. A NSE of 1 corre-

sponds to a perfect match of the predictive values to the

monitored data. The closer the NSE is to 1, the more accu-

rate the model is.

Development of the proposed model

In summary, the proposed chaotic PSO-SVM model

includes five main steps. In the first step, the original

groundwater levels are pre-processed. In the second

step, the phase spaces of the pre-processed groundwater

levels are reconstructed, the reconstructed phase spaces

of the daily, weekly and monthly groundwater levels

are used as the input-output variables for the chaotic

PSO-SVM. In the third step, The LLE and correlation

dimension are used to identify the evidence of chaos.

In the fourth step, the PSO-SVM model is used to train

and test the input and output variables which are

obtained from the PSR. Finally, the accuracy of the fore-

cast results is assessed. The flow chart is shown in

Figure 2.

CASE STUDIES

Research area and materials

The Huayuan and Baijiabao landslides in the Three Gorges

Reservoir Area of China are used as the regions of interest.

The locations of the Huayuan and Baijiabao landslides are

shown in Figure 3. The Huayuan landslide occurs on the

left bank of the Yangtze River, located in the Wanzhou dis-

trict. The Baijiabao landslide is on the western side of the

Xiangxi River, in Zigui county.

Huayuan landslide

The Huayuan landslide covers an area of 13.6 × 104m2 with

a maximum longitudinal length of 380 m and a width of

360 m. The elevation of its leading edge is approximately

125 m and the elevation of the trailing edge is approximately

270 m, while the left and right boundaries are both defined

by seasonal gullies. The topographic map of the landslide

area is shown in Figure 4.

Figure 2 | Flow chart of the proposed chaotic PSO-SVM model.
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The I-I0 geological section of the Huayuan landslide area

is shown in Figure 5. The area consists of silty clay and frag-

mented rubble, with a loose structure and a medium

permeability coefficient. The bedrock of the area is com-

posed of lower Jurassic feldspar quartz sandstone and

mudstone. The bedrock is overlain by silty clay fragment

stone that is a soil slope with a loose structure. The ground-

water types of the Huayuan landslide area are primarily

loose debris pore water and bedrock fissure water.

Because of the complex geological conditions and exter-

nal affecting factors such as reservoir water level, the

groundwater level time series shows a complex nonlinear

characteristic. As shown in Figure 6, the actual daily ground-

water levels from 27 January 2013 to 3 January 2014 in the

STK-1 hydrological hole were used as sample data in this study.

Baijiabao landslide

The Baijiabao landslide covers an area of 22 × 104 m2 with a

maximum longitudinal length of 550 m and a width of

400 m. The landslide extends between 135 m and 275 m in

elevation and the mean depth of the sliding surface is

approximately 45 m. The main sliding direction of Baijiabao

landslide is oriented at N 85
W

E, and the left and right

Figure 3 | Map showing the locations of the Huayuan and Baijiabao landslides.
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boundaries of the landslide are defined by bedrock and a

gully, respectively. The topographic map is shown in

Figure 7.

The materials of Baijiabao landslide area are composed

of silty clay and fragmented rubble with medium per-

meability. The landslide structure is loose with fragmented

rubble content of approximately 15%. The lithology of the

bedrock is mainly silty mudstones, muddy siltstones and

sandstone. The dip direction and dip angle of the Baijiabao

landslide are approximately 153
W

and 4
W

, respectively. The

groundwater types of the landslide area are mainly loose

debris pore water and bedrock fissure water. Its geological

section is shown in Figure 8. The monitoring data of the

weekly groundwater levels from 21 January 2007 to 4 July

Figure 4 | Topographical map of the Huayuan landslide area and the location of hydrological hole.

Figure 5 | Geological section of the Huayuan landslide area.
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2010 in the STK-2 hole and monthly groundwater levels

from January 2007 to November 2010 in the STK-1 hole

are used in this study, as shown in Figure 9.

Reconstruct the phase spaces of groundwater levels

The phase spaces of normalized daily (xD(i)), weekly (xW(i))

and monthly (xM(i)) groundwater levels are reconstructed.

The τ of all groundwater levels are set to 1. The optimal m

of daily, weekly and monthly groundwater levels are 3, 3

and 2, respectively, as shown in Figure 10. The recon-

structed phase spaces are shown in Table 1.

Evidence of chaos in groundwater levels

Figure 11 shows a curve of 〈 ln dj(ti)〉 versus iΔt. Also shown

in Figure 11 is the L of groundwater levels. For the ground-

water level series, the initial point is chosen near the

attractor and the transient points are discarded. In Figure 11,

the y axis is the average distance between all nearest neigh-

bors after iΔt discrete time steps. The red line is the fitted

average line of the coordinate points iΔt ¼ 2, 3, � � � , 8. The

slope of the red line is taken as L. The final calculated L

of daily, weekly and monthly groundwater levels are

0.2291, 0.1533 and 0.0591, respectively. Although the L of

monthly groundwater levels is close to zero, it just means

that the orbits in the state space of monthly groundwater

levels are very close (An et al. ; Zhou & Yin ). It is

clear that there are chaos characteristics in all the ground-

water levels because L is greater than zero.

Correlation dimension is also used to identify the evi-

dence of chaos. For the daily, weekly and monthly

groundwater levels, the corresponding D(m) are calculated

when m is increased from 1 to 20, 15 and 20, respectively.

The relationships of ln C(r) and ln r in daily, weekly and

monthly groundwater levels are shown in Figure 12. It can

be seen that when m is increased to 11, 10 and 15, the

slopes of the lines converge to a constant. Therefore, there

are chaos characteristics in the daily, weekly and monthly

groundwater levels.

Parameters of PSO-SVM model

Based on the reconstructed phase spaces and evidence of

chaos, groundwater levels are predicted by PSO-SVM

model. The position vector of a particle represents a par-

ameter combination (C0, ε, γ) of the SVM. The final

position vector is regarded as the optimal parameter combi-

nation of SVM, as shown in Table 2. The final predictive

values are shown later in Figure 14.

In this study, the daily groundwater levels are relatively

long time series with small fluctuations. Therefore, the C0 of

SVM for the daily groundwater levels should be high enough

Figure 6 | Daily groundwater levels of the STK-1 hydrological hole.

Figure 7 | Topographical map of the Baijiabao landslide area and the location of hydro-

logical hole.
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to fit the training data well, so as to predict the test data well.

However, the weekly and monthly groundwater levels are

very limited time series with large fluctuations. A high C0

will result in the problem of over-fitting. Therefore, the C0

of weekly and monthly groundwater levels is low to allow

appropriate errors in the training process.

Comparisons with other models

Linear PSO-SVM model

The input and output variables for the linear PSO-SVM

model are selected by linear correlation analysis. The

input variables are regarded as the number of groundwater

levels that have remarkable relationships with the output

variable. Because groundwater levels are finite and belong

to a univariable time series, the linear autoregressive

method is commonly used (Daliakopoulos et al. ;

Wong et al. ; Yang et al. ).

The results of the linear autoregressive analysis are

shown in Figure 13. For daily groundwater levels, it can be

seen from Figure 13 (top) that the autoregressive coefficient

of xD(i�6) is 0.216 under a 95% level of significance. This

suggests that xD(i�6), xD(i�1) and xD(i) have strong effects on

the groundwater level xD(iþ1). Therefore, the input variables

for daily groundwater levels are xD(i�6), xD(i�1) and xD(i), and

the output variable is xD(iþ1), i ¼ 7, 8, � � � � � � , 336. Similarly,

the input variable of weekly groundwater levels is xW(i) and

Figure 8 | Geological section of the Baijiabao landslide.

Figure 9 | Weekly groundwater level of STK-2 hole and monthly groundwater level of STK-1 hole in the Baijiabao landslide.
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the output variable is xW(iþ1), i ¼ 1, 2, � � � � � � , 180 as shown

in Figure 13 (middle). The input variable of monthly ground-

water levels is xM(i) and the output variable is xM(iþ1),

i ¼ 1, 2, � � � � � � , 46 as shown in Figure 13 (bottom). In

addition, the parameters of the SVM model are optimized

by PSO. The inputs and outputs of the linear PSO-SVM

model are shown in Table 3. The obtained parameters are

shown in Table 4. The final predictive results are shown

later in Figure 14.

Chaotic BPNN model

In order to compare the PSO-SVM model with the BPNN

model, the same input and output variables that were used

Figure 10 | The optimal m of daily, weekly, and monthly groundwater levels.

Table 1 | Reconstructed phase spaces of daily, weekly and monthly groundwater levels

Groundwater levels Reconstructed phase spaces (input variables) Output variables

Daily XD(i) ¼ (xD(i), xD(i�1), xD(i�2)), i ¼ 3, 4, � � � , 341 xD(iþ1)

Weekly XW(i) ¼ (xW(i), xW(i�1), xW(i�2)), i ¼ 3, 4, � � � , 180 xW(iþ1)

Monthly XM(i) ¼ (xM(i), xM(i�1)), i ¼ 2, 3, � � � , 46 xM(iþ1)

Figure 11 | The L values of daily, weekly and monthly groundwater levels.
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in the chaotic PSO-SVMmodel are used again in the chaotic

BPNN model. BPNN (Zhang & Wu ) is a commonly

used ANN method. Recent research has demonstrated that

the BPNNmodel with three-layer networks can fit nonlinear

mapping relationships accurately (Jiang et al. ). In this

study, a three-layered BPNN model is used. The input vari-

ables of the chaotic BPNN model are shown in Table 1.

Three nodes of daily, two nodes of weekly, and two nodes

of monthly groundwater levels are defined as input layers,

and one node of all of the groundwater levels is defined as

the output layer. The number of hidden layer nodes is deter-

mined using the trial-and error method (Basheer & Hajmeer

; Yang et al. ). The final selected hidden layer nodes

Figure 12 | The correlation dimension curves of daily, weekly and monthly groundwater

levels.

Table 2 | Parameters of the chaotic PSO-SVM model

Groundwater levels (C0 , ε, γ)

Chaotic PSO-SVM Daily (6,562.5, 0.011, 0.344)

Weekly (67.4, 0.031, 0.287)

Monthly (30.5, 0.162, 0.498)

Figure 13 | Autoregressive coefficient of daily, weekly, and monthly groundwater levels.
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of daily, weekly and monthly groundwater levels are 7, 5 and

5, respectively.

The built-in BPNN model in the MATLAB R2015b is

used. The initial weights and thresholds for all connection

links are set randomly within the range from 0 to 1. The

transferring functions of the neural networks of the hidden

layer and the output layer are tansig and purelin functions.

The weight values of connection links are trained by gradi-

ent descent algorithm. The maximum iteration number is

set to 1,000. The learning rate is set to 0.01. The training

error is 0.001. The predictive results of the chaotic BPNN

model are shown later in Figure 14.

Comparison of the three models

Training accuracies of the three models

The training accuracies of the three models for the daily,

weekly and monthly groundwater levels are shown in

Table 5. It can be seen from Table 5 that the daily, weekly

and monthly groundwater levels are trained well by the

three models. It can also be seen from Table 6 that the test-

ing accuracies of the three models are reasonably good.

Hence, there are no overtraining signs in the three models.

Comparison of the prediction results

The final prediction results of one day, one week and one

month ahead groundwater levels are compared in Table 6

and Figure 14. It can be seen from Figure 14 that

although some prediction values deviate from the moni-

toring data, the chaotic PSO-SVM model predicts well

the groundwater level especially for the daily and

weekly groundwater levels. However, as highlighted by

the green ellipse in Figure 14, the fluctuation of the

daily, weekly and monthly groundwater levels are not

well predicted by the chaotic BPNN and linear PSO-

SVM models.

The prediction performances of the three models are

also compared in Table 6, with the three indices RMSE,

R2 and NSE. It can be seen from Table 4 that the daily

data has the highest prediction accuracy, and the monthly

data has the lowest prediction accuracy. It can also be

seen from Table 4 that the NSE metric indicates that chaotic

PSO-SVM model is superior to the chaotic BPNN model

and the linear PSO-SVM model for the test data. The

other two indices also show that the performance of the

chaotic PSO-SVM model is better than the chaotic BPNN

model and the linear PSO-SVM model for the test data of

all daily, weekly and monthly groundwater levels.

The bias metric is also used to estimate the prediction

performances of the three models for the daily, weekly

and monthly groundwater levels. It can be seen from

Figure 15(a) that the predicted daily groundwater levels

on 15 and 16 December 2013 are overestimated, and

the other daily groundwater levels are predicted well. It

can be seen from Figure 15(b) that the weekly ground-

water levels from 27 December 2009 to 21 March 2010

are underestimated while the remaining weekly ground-

water levels are overestimated in general. The average

bias values of the weekly groundwater level predictions

are larger than those of daily groundwater levels. It can

be seen from Figure 15(c) that the monthly groundwater

levels from December 2009 to April 2010 are underesti-

mated while the remaining monthly groundwater levels

are overestimated. The average bias values of the monthly

groundwater level predictions are also larger than the

ones of daily groundwater levels, but are almost the

same as the ones of weekly groundwater levels. The bias

metrics in Figure 15 show that the bias values of the chao-

tic PSO-SVM model are smaller than the chaotic BPNN

and linear PSO-SVM models for the daily, weekly and

monthly groundwater level predictions.

Table 3 | Inputs and outputs of daily, weekly and monthly groundwater levels of linear

PSO-SVM model

Groundwater

levels Input variables

Output

variables

Daily (xD(i), xD(i�1), xD(i�6)), i ¼ 7, 8, � � � , 336 xD(iþ1)

Weekly xW(i), i ¼ 1, 2, � � � � � � , 180 xW(iþ1)

Monthly xM(i), i ¼ 1, 2, � � � � � � , 46 xM(iþ1)

Table 4 | Parameters of the linear PSO-SVM model

Groundwater levels (C0 , ε, γ)

Linear PSO-SVM

Daily (3,562.5, 0.014, 0.352)

Weekly (72.8, 0.063, 0.291)

Monthly (179.2, 0.097, 0.878)
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Figure 14 | Final prediction results of groundwater levels: (a) one-day ahead prediction using chaotic PSO-SVM and chaotic BPNN models; (b) one-day ahead prediction using chaotic PSO-

SVM and linear PSO-SVM models; (c) one-week ahead prediction using chaotic PSO-SVM and chaotic BPNN models; (d) one-week ahead prediction using chaotic PSO-SVM and

linear PSO-SVM models; (e) one-month ahead prediction using chaotic PSO-SVM and linear PSO-SVM models; and (f) one-month ahead prediction using chaotic PSO-SVM and

chaotic BPNN models.
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Discussion

The forecast results indicate that the chaotic PSO-SVM

model is more accurate and credible than the linear PSO-

SVM model, and the PSO-SVM model is more appropriate

for finite nonlinear data than the BPNN model. The com-

parisons indicate that the PSR method of chaos theory

provides the input and output variables more appropriately

than the linear autoregressive model. It can be seen that

there are similarities between the PSR method and SVM

model. The PSR method can determine the number of

input variables by extending one-dimensional groundwater

level to high dimensions referred to as ‘embedding dimen-

sions’ (Sivakumar et al. ). Similarly, the SVM method

provides a nonlinear kernel function to map the input vari-

ables into high dimensional feature space. Both methods

map the groundwater level from the low-dimensional

space to the high-dimensional space (Wang & Shi ).

Hence, the PSR method is suitable to determine the input

and output variables for the SVM model. The nonlinear

dynamical characteristics of groundwater level can be

reflected in the embedding space.

However, all the three models have relatively low pre-

diction precision for the extreme monitoring values. One

important reason is that the length of the groundwater

level time series is not long enough and the reconstructed

strange attractors are not fully unfolded to reflect the orig-

inal strange attractors. One year is a very short time

period for data-based model training. Another reason is

that only groundwater level is used as input. For future

studies, a nonlinear model based on multivariable chaos

theory (Garcia & Almeida ) can be used, which can

consider some other input variables such as rainfall, reser-

voir water level and temperature. Furthermore, the

prediction windows of this study are one day, one week

and one month, the prediction window can be enlarged by

feeding the predicted values to the model again as pre-

viously done by Trichakis et al. (). In addition, all the

predictions are conducted in a server with Intel Xeon

CPU X5675@3.07 GHz with 256GB RAM. The compu-

tational time of the chaotic PSO-SVM, chaotic BPNN and

linear PSO-SVM models for the daily groundwater level pre-

diction is 184.5 s, 24.6 s and 179.3 s, respectively.

CONCLUSION

Based on chaos theory, this study proposes the chaotic PSO-

SVM model for groundwater level predictions. Two criteria

are proposed to ensure that there is evidence of chaos in the

groundwater levels. The first one is that the LLE should be

greater than zero. The second criterion is that the values

Table 6 | Accuracy assessment and performance comparison of the test data

Groundwater

Chaotic PSO-SVM Chaotic BPNN Linear PSO-SVM

RMSE (m) R
2

NSE RMSE (m) R
2

NSE RMSE (m) R
2

NSE

Daily 0.075 0.917 0.938 0.098 0.906 0.912 0.105 0.895 0.904

Weekly 0.127 0.893 0.867 0.148 0.863 0.836 0.157 0.852 0.825

Monthly 0.189 0.896 0.849 0.223 0.857 0.826 0.207 0.831 0.817

Table 5 | Accuracy assessment of the training data

Groundwater

Chaotic PSO-SVM Chaotic BPNN Linear PSO-SVM

RMSE (m) R
2

NSE RMSE (m) R
2

NSE RMSE (m) R
2

NSE

Daily 0.054 0.948 0.952 0.034 0.958 0.964 0.057 0.942 0.943

Weekly 0.097 0.904 0.884 0.072 0.923 0.921 0.106 0.896 0.878

Monthly 0.142 0.923 0.875 0.103 0.941 0.906 0.151 0.914 0.869
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of correlation dimension should converge to a constant

when the embedding dimension increases.

The proposed model is used to predict the daily ground-

water levels in Huayuan landslide, and weekly and monthly

groundwater levels in Baijiabao landslide. Both chaotic

BPNN and linear PSO-SVM models are used for

comparisons. The results show that the chaotic PSO-SVM

model provides the best predictions among the threemethods

for the test data considered. However, there are still some

limitations of the three models. For the chaotic PSO-SVM

model, only the groundwater level is used as an input variable

without considering the external factors such as rainfall and

reservoir water level. Further research is needed to develop

models based onmultivariable chaos theory. In addition, rela-

tively long groundwater level time series is needed to train and

test the chaotic PSO-SVMmodel well. For the chaotic BPNN

model, the prediction accuracy is not ideal although the pre-

diction efficiency is high. For the linear PSO-SVM model,

the input variables are selected based on simple linear corre-

lation coefficient, which sometimes cannot identify properly

the input variables.

In summary, the chaoticPSO-SVMmodelhas advantages

in determining the input-output variables through nonlinear

method, and obtaining more accurate predictive values of

groundwater levels than the linear PSO-SVM and chaotic

BPNN models. The proposed chaotic PSO-SVM model can

be used to predict the real world groundwater levels.
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