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,e existing pavement performance prediction methods are limited to single-factor predictions, which often face the challenges of
high cost, low efficiency, and poor accuracy. It is difficult to simultaneously solve the temporal, spatial, and exogenous de-
pendencies between pavement performance data and maintenance, the service life of highways, the environment, and other
factors. Digital twin technology based on the building information modeling (BIM)model, combined with machine learning, puts
forward a new perspective and method for the accurate and timely prediction of pavement performance. In this paper, we propose
a highway tunnel pavement performance prediction approach based on a digital twin and multiple time series stacking (MTSS).
,is paper (1) establishes an MTSS prediction model with heterogeneous stacking of eXtreme gradient boosting (XGBoost), the
artificial neural network (ANN), random forest (RF), ridge regression, and support vector regression (SVR) component learners
after exploratory data analysis (EDA); (2) proposes a method based on multiple time series feature extraction to accurately predict
the pavement performance change trend, using the highway segment as the minimum computing unit and considering multiple
factors; (3) uses grid search with the k-fold cross validation method to optimize hyperparameters to ensure the robustness,
stability, and generalization ability of the prediction model; and (4) constructs a digital twin for pavement performance prediction
to realize the real-time dynamic evolution of prediction.,emethod proposed in this study is applied in the life cycle management
of the Dalian highway-crossing tunnel in Shanghai, China. A dataset covering 2010–2019 is collected for real-time prediction of
the pavement performance. ,e prediction accuracy evaluation shows that the mean absolute error (MAE) is 0.1314, the root
mean squared error (RMSE) is 0.0386, themean absolute percentage error (MAPE) is 5.10%, and the accuracy is 94.90%. Its overall
performance is better than a single model.,e results verify that the prediction method based on digital twin andMTSS is feasible
and effective in the highway tunnel pavement performance prediction.

1. Introduction

In early 2020, China proposed a plan to accelerate the
modernization of urban governance with advanced appli-
cation of technologies, such as the Internet, big data, and
artificial intelligence to support the transformation and
upgrading of traditional infrastructures, and merge into
innovatively infrastructures, such as intelligent trans-
portation infrastructures. According to government statis-
tics, as of the end of 2019, the summed length of highway
tunnels of China reached 18.9666 million meters. To
comprehensively improve the management level of urban

highway tunnels, academia and industry are paying great
attention to the life cycle management of urban highway
tunnels based on digital twins. A digital twin, proposed by
Michael Grieves in 2002, is a mapping relationship between
the physical space and virtual space and is intelligent. It
maps, records, simulates, predicts, and manages the running
track of the life cycle of objects in the physical world and
digital virtual space. ,e life cycle management of urban
highway tunnels emphasizes the transformation from tra-
ditional corrective maintenance to data-driven preventive
maintenance, in which the accurate and timely prediction of
highway pavement performance plays a crucial role.
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,ere are two types of research methods in the field of
pavement performance prediction. One type is based on
traditional statistical models, and the other type is derived
from modern machine learning models. Methods based on
traditional statistical models are relatively extensive, in-
cluding deterministic methods such as mechanical predic-
tion models and mechanical-empirical prediction models
[1–6], as well as probabilistic methods such as Markov
probability models and Bayesian probability models [7–10].
,e deterministic model is based on empirical classification,
mechanical analysis, or mechanism analysis to predict the
pavement performance. Eghbalpoor [1] et al. proposed a
three-dimensional finite element model of asphalt pavement
to study the damage to the pavement caused by high cyclic
loads and their healing effect. Zhang [2] et al. proposed a
research method based on morphological dynamics to
predict the temperature stress change trend of long-term
aging asphalt pavement materials. Shirzad [4] et al. explored
the influence of the asphalt mixture ratio on pavement
performance and established a mechanical experience model
to predict rutting. ,e probabilistic model is an empirical
model dominated by a large amount of measured data.
Bianchini [8] et al. proposed an IF-THEN fuzzy neural
inference model to predict pavement performance. Li [11]
et al. used the method of K-means and type-2 fuzzy set to
predict the long-term traffic volume. Chen [7] et al. used a
Markov chain Monte Carlo (MCMC) simulation to analyze
the failure probability of pavement prevention and treat-
ment. Abed [10] et al. used the Monte Carlo simulation
method to predict the change probability of pavement
performance. ,e existing traditional statistical models are
limited to single-factor predictions, in which single inde-
pendent variables can hardly reflect the essence of pavement
performance. ,ey usually focus on the statistical inference
and interpretability of a small sample under certain hy-
pothesis testing conditions. ,ey usually use a small sample
size, mainly to represent the relationship between the data
and the result variables and the importance of these rela-
tionships, and the calculation accuracy is limited. With the
increase in the service life of urban highway tunnels,
pavement performance is subjected to long-term coupling
effects of loads, maintenance situations, environmental
conditions, material properties, and other factors, and the
resulting pavement diseases aggravate the uncertainty of the
driving comfort and safety of the pavement. ,e predictive
effect of traditional statistical methods is sometimes sub-
optimal in practical engineering.

Studies have shown that machine learning models are
superior to traditional statistical methods, such as curve
fitting, exponential smoothing, and the autoregressive
moving average methods.,e accuracy of prediction can be
optimized through feature selection, hyperparameter
tuning, and integrated learning technology. Gong [12] et al.
developed a random forests regression (RFR) model to
predict the international roughness index (IRI) perfor-
mance of flexible pavement based on long-term historical
time series data information of disasters, traffic, gas, and
structure. ,e comparison found that it was significantly
better than the regularized linear regression model. Xiao

and Nie [13] used the regression model and time series GM
(1, 1) to predict pavement performance. ,e maximum
difference between the time series predicted value and the
regression model predicted value can be reduced by 1%. Bi
[14] et al. proposed a time series algorithm suitable for
single-factor distributed version to predict the workload of
the next stage. Lintonen and Raty [15] proposed a new self-
learning stopping criterion for multivariate time series
which is a positive-unlabeled (PU) learning case. Liu [16]
et al. improved the accuracy of pavement temperature
prediction by using a gradient boosting extreme learning
machine (GBELM). Gong [17, 18] considered parameters
such as materials, structure, traffic, and environment and
successfully developed the Mechanistic-Empirical Pave-
ment Design Guide (MEPDG) deep neural network model
and GBMmethod for pavement rutting prediction, and the
accuracy was improved. Hu [19] obtained risk indicators
from a neural network prediction model and found that the
application of data analysis improved the similarity of the
predictive performance of the overall pavement safety level.
Wang [20] et al. proposed a training method to auto-
matically determine the parameters of network structure
for the deep belief network (DBN) with transfer learning
(TL-GDBN). Gao [21] et al. proposed 6 non-BP swarm
intelligence search algorithms (BBO, PSO, GA, ACO, ES,
and PBOL) for model training and developed a new
dendritic neuron model (DNM) that considers nonline-
arity. Wang and Kumbasar [22] used two swarm intelli-
gence algorithms (PSO and BBBC) to optimize parameters.
,e machine learning model provides a new method for
effectively dealing with multiple factors, ambiguity, ran-
domness, and other issues. It can consider multiple factors
and processes high-dimensional data at the same time. It
focuses more on the balance between accuracy and com-
plexity. ,e training set learns the predictive model, and
the testset evaluates and verifies its accuracy. No hypothesis
conditions are required. ,e larger the sample size is, the
faster the model converges. ,e generalization integration
framework [23], proposed by Wolpert in 1992, is a serial
multilevel learning structure with flexibility and uncer-
tainty that can achieve both bagging integration and
boosting integration. Lin [24] et al. proposed a stacking
model (SMVP) based on real datasets for predicting
changes in public bicycle traffic flow. Compared with the
traditional single model, the certainty level is increased by
25.58%. Zhai [25, 26] et al. predicted and analyzed the
average daily polyvinyl acetate (PM2.5) concentration in
Beijing, China, and developed a stacked ensemble model,
including the stacking of LASSO, AdaBoost, XGBoost, the
GA-MLP-optimized multilayer perceptron, and the sup-
port vector regression model (SVR). ,e results showed
that the stacked combination model had high interpret-
ability. Jiang [27] et al. also proposed a stacked ensemble
model, which used RF, ERT, XGBoost, LightGBM, RNN,
bidirectional RNN, LSTM, and GRU as basic learners, and
used logistic regression as the second-level metalearner. In
different application scenarios, the stacked models con-
structed by researchers such as Li [28], Yang [29], and Feng
[30] et al. had good results, suggesting an idea for
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establishing stacked models to predict pavement perfor-
mance in the field of urban highway tunnel pavement
performance prediction.

In the field of architecture, engineering, construction
(AEC), BIM has proved to be an intelligent and parametric
digital modelingmethod that can support the full life cycle of
buildings. Since 2019, researchers have begun to conduct
applied research on digital twins in the AEC field based on
the BIM model [31, 32]. A digital twin refers to a virtual
model that is completely consistent with physical entities in
the real world and can simulate an entity’s behavior and
performance in a real environment in real-time. Digital twin
technology has the characteristics of traceability, high in-
tegration, real-time, and high precision [33, 34]. In the
design phase, digital twins can be used for model design,
collision detection, pipeline synthesis, and hardcover design.
Lu [35] et al. proposed a semiautomatic digital twin system
based on images and CAD drawings, aiming at the time-
consuming problem of BIM construction. In the con-
struction phase, digital twins can be used for cost budgeting
[36], quality management [37], construction collaboration
[38], and schedule management [39]. In the operation and
maintenance phase, digital twins can be used for equipment
asset management [40], safety and prevention management,
building space management, and building environment
management. Shim [40, 41] et al. proposed a bridge
maintenance program based on the concept of digital twins.
,e program combines a 3D information model-based
maintenance information management system with a digital
detection system that uses image processing to enhance the
decision-making process in terms of the bridge maintenance
process reliability.

,erefore, this paper proposes a tunnel pavement per-
formance prediction method based on a digital twin +MTSS
for the life cycle operation and maintenance management of
urban highway tunnels. Considering many factors, such as
the maintenance condition, the service life of highways, and
the environment, along with the actual pavement perfor-
mance data of urban highway tunnels, this method adopts
machine learning methods to improve the prediction ac-
curacy, which is conducive to extending the service life of
urban highway tunnel pavement, and provides support for
operational management. ,e remainder of this paper is
organized as follows: the second section introduces the
digital twin for pavement performance prediction and the
MTSS prediction model. ,e third section applies the
proposed method in practical engineering projects and
compares it with the single model to evaluate the perfor-
mance of the MTSS model and verifies the applicability of
the method. Finally, the fourth section summarizes the
whole paper.

2. Theoretical Basis of Regression Models

2.1. EXtreme Gradient Boosting (XGBoost). XGBoost is a
highly scalable gradient boosted decision tree system. It has
the advantages of good robustness and strong scalability. In
recent years, it has shown excellent performance in many
fields, such as information technology and software

engineering [42], environmental science [30], and eco-
nomics and finance [36]. XGBoost performs a second-order
Taylor expansion on the loss function and uses a quadratic
function to approximate the loss function. To prevent
overfitting, regularization is introduced into the loss func-
tion to constrain the number and weight of leaf nodes,
balance the complexity of the model, and optimize each
iteration until the following equation is minimized [43].

L(t)≃∑n
i�1

l yi, ŷ
(t− 1)( ) + z

ŷ
(t− 1) l yi, ŷ

(t− 1)( )ft xi( )[

+
1

2
z2
ŷ
(t− 1) l yi, ŷ

(t− 1)( )f2
t xi( )] +Ω ft( ),

(1)

where Ω(ft) � cT + (1/2)λ‖ω‖2, ∑ni�1 l(yi, ŷi) is the loss
function, Ω(ft) is the regularization term, T is the number
of leaf nodes, and c and λ are the regularization parameters.

2.2. Gradient Boosting Decision Tree (GBDT). GBDT is an
ensemble method of boosting. It uses the CARTdecision tree
as the basic learner. ,e GBDT is different from RF that RF
can be generated in parallel by the voting method, while
GBDTis an ensemble of weight-based weak classifiers, which
is the accumulation of the branch results of each tree, and
can be generated only serially. ,erefore, the GBDT is more
concerned with reducing the bias in the training process,
while the RF is more concerned with reducing the variance
in the training process. At the same time, GBDT has good
robustness and high scalability [44].

2.3. Light Gradient Boosting Machine (LightGBM).
LightGBM is an open-source distributed gradient boosting
framework based on the decision tree algorithm developed
by the Microsoft Research Asia Distributed Machine
Learning Toolkit (DMTK) team [45]. It is an improved
decision tree integration model based on GBDT and
XGBoost [46]. Two aspects are improved. (1) Gradient-
based one-sided sampling (GOSS): GOSS algorithm sorts the
gradients. Samples with a large gradient are selected by
percentage, and those with a small gradient are randomly
selected to optimize the sampling of the training sample set
and reduce the sample points when calculating the gradient.
(2) Exclusive feature bundling (EFB): mutually exclusive
features are bound to reduce the feature dimension when
selecting split points. In a data environment with large
training samples and high-dimensional features, it exhibits a
faster training speed and efficiency, requires lower memory
usage, offers better accuracy, can handle larger-scale data,
and supports parallel learning.

2.4. Random Forest (RF). RF is an ensemble bagging model
proposed by Breiman [47] that combines the CART tree and
random space method without assuming a prior distribu-
tion. Each tree is built by the independent random sampling
method. ,e original data subset is sampled and generated
by the bootstrap method, and a random subset of the feature
attributes is randomly choosed according to a specific
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criterion. ,e selection of the training set is random, and
each training set is independent of the others. Random
forests generally perform better than single decision trees
because the results of random forests are determined by
voting on the results of multiple decision trees. Each decision
tree in a random forest has its own result, and the random
forest selects the result with the largest number of votes as its
final result by counting the results of each decision tree.

2.5. Linear Regression. ,e linear regression method as-
sumes that the relationship between independent variables
and target variables is linear. ,is simplicity often makes
linear regression the best choice for small sample analysis
and also makes these models relatively easy to interpret and
understand, not suitable for too many predictive variables
[48].

2.6.LeastAbsoluteShrinkageandSelectionOperator (LASSO).
,e least absolute shrinkage and selection operator (LASSO)
is a regression analysis method with strong robustness and a
strong generalization ability for simultaneous feature se-
lection and regularization. ,e L1 norm is introduced to
generate sparse solutions at the feature level, which will
shrink the unimportant coefficients in the parameters to be
estimated, so as to reduce redundancy and make the model
more stable when processing different data, thus improving
the accuracy and robustness of regression prediction [25].

2.7. Ridge Regression. Ridge differs from LASSO in terms of
regularization items, and Ridge introduces the L2 norm.
Ridge regularization uses the sum of squares of regression
coefficients as a penalty function and compresses regression
coefficients, making it difficult to compress the coefficients of
redundant predictive variables to 0 and easier to over-
compress more important regression coefficients [49].

2.8. Artificial Neural Network (ANN). ,e ANN structure
usually consists of three main parts: the input layer, the
hidden layer, and the output layer. Each layer is composed of
many neurons. ,e input layer is used to load known pa-
rameters and directly determine the output results [25], such
as performance index and maintenance type in this study.
,e hidden layer contains all known information and es-
tablishes a nonlinear relationship between the input pa-
rameters and the output results. ,e output layer is used to
obtain the unknown prediction result Y. As shown in
Figure 1, this study has set up 2 hidden layers with 128
neurons in each layer. ,e selection range of the hidden
layers was set as [32, 64, 128], and the nonlinear hyperbolic
tangent (tanh) activation function was adopted. ,e detailed
neural network structure diagram is as follows:

2.9. Support Vector Regression (SVR). ,e core principle of
the support vector machine regression algorithm SVR is to
find a regression plane so as to minimize the overall ob-
servation error and maximize deviation [50]. ,e traditional

regression methods consider the prediction correct if and
only when the regression fitting function is completely equal
to y . For example, (f(x) − y)2 is commonly used to cal-
culate the loss in linear regression [51]. However, SVR
believes that as long as f(x) deviates from y not too much,
the prediction can be considered correct. Instead of calcu-
lating losses, the threshold a is set to only calculate the loss of
the data point |f(x) − y|> a. ,e SVR model is irrelevant of
the dimension of the input space and depends on the
number of SVs. ,e goal of SVR is to solve the following
basic problems [25]:

min
ω,b,ζ ,ζ∗

1

2
ωTω + C∑n

i�1

ζ + ζ∗( )

s.t.

yi − ωTϕ xi( ) − b≤ ε + ζ i

ωTϕ xi( ) + b − yi ≤ ε + ζ∗i

ζ i ≥ 0, ζ∗i ≥ 0, i � 1, 2, . . . , n,



(2)

where ω and b are used to determine the fitting function f,C
is the regularization constant, ζ i and ζ∗i are the relaxation
variables to define the up and down deviation.

3. Methods

3.1. Digital Twin for Pavement Performance Prediction.
,is paper proposes a digital twin for the pavement per-
formance prediction of urban highway tunnels. It is driven
by the continuous and circular flow of information and data
from the physical world to the digital world and then to the
physical world. It adopts a new method by the deep inte-
gration of global perception technology and machine
learning to establish the digital mapping between the virtual
pavement BIMmodel and physical highway entity. It realizes
data sharing, visual analysis, and the intelligent decision
support functions of pavement performance trend changes.
,e digital twin consists of three key parts (Figure 2). (1)
Data collection module: the data include pavement per-
formance, maintenance records, tunnel highway structure,
traffic flow, and tunnel environment. ,e pavement per-
formance data come from pavement performance indica-
tors, such as vehicle-mounted laser sensors and high-
precision accelerometers. ,e maintenance records are
stored in the operation and maintenance management
system. (2) Prediction module: within the stacking inte-
grated learning framework of the MTSS, a pavement per-
formance prediction model based on multiple differentiated
models is established to predict the future performance
trend change of each segment of the pavement. (3) Para-
metric analysis module: in the Dynamo environment, which
supports visual parameter design, the multisource spatial-
temporal data of the BIM model and physical entities are
integrated, and the inheritance relationship between the
node components is constructed. A Python application is
implemented with RevitAPI to realize the visual evolution of
the pavement performance.

Figure 3 shows the learning process of digital twins. First,
the pavement performance data of the physical environment
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are collected, and the datasets are divided to build the MTSS
prediction model. ,en, in the Dynamo environment, the
physical pavement entity and the virtual digital BIM model
are mapped, the predicted data are synchronized, and the
BIM model is assigned. Both the virtual environment and
the physical environment contain the bidirectional syn-
chronization process of data acquisition and realization of
pavement performance prediction state change [52]. Among
them, in the visualization state of pavement performance
prediction, the physical pavement entity changes through
the digital mapping by using the virtual pavement BIM
model. ,is state change is transferred to the parameter
analysis module through the MTSS prediction model. Be-
cause the pavement segments may be degraded in the future,
the digital twin is used to visualize the decay trend of
pavement performance and provide the decision analysis
service of the highway tunnel pavement performance pre-
diction and maintenance decision-making by predicting the
maintenance timing, analyzing the maintenance cost, and
adopting preventive maintenance strategy. ,e ultimate
purpose of all these measures is to extend the life of the
highways.

3.2. Multiple Time Series Stacking Prediction Model

3.2.1. Time Series Feature Extraction Based on Multiple Time
Series. Feature extraction is very important for the per-
formance and generalization ability of the model. It is used
to trim, transform, and refine the input factors, which can
improve the interpretability and prediction accuracy of the
prediction model [53]. ,e feature engineering used in this
paper includes temporal feature extraction, feature trans-
formation, feature filtering, and feature standardization and
one-hot for feature transformation and model-based
method for feature filtering [54]. In the preliminary ex-
ploratory data analysis (EDA) of the dataset, it is found that
the pavement performance indicators, maintenance infor-
mation, and environmental information dataset have the
basic characteristics of the time series. However, it is difficult
to process multiple time series in parallel.

,e general feature filtering method filters only by the
correlation between a single factor and the dependent
variable, while the model-based feature filtering method

filters by the comprehensive effect of each factor, which can
make full use of the combinative characteristics among
factors and retain more useful factors. In view of the rapid
increase in the number of features as well as feature ex-
traction of time series information, in order to avoid feature
collinearity and decreasing of the prediction accuracy by
adding useless information, a model-based feature filtering
method was adopted to filter the redundant features
according to the 95% cumulative contribution threshold
(proportion) of the feature factors. ,erefore, this paper
proposes a method based on multiple time series feature
extraction to construct and enhance features and uses a tree-
based model to select potentially important features to
improve the accuracy of the model.

,e time series feature refers to the information con-
tained in the historical sequence. ,e traditional regression
predictionmethod uses the feature data of the time section at
time t to predict the target value at time t + 1. ,is method
uses only the data of a single time section. However, al-
though the time series method can make use of the char-
acteristics of historical sequences over a period of time, it
applies only to the characteristics of a single series and has a
strong restriction on the richness of the features. ,e
multiple time series feature extraction method proposed in
this paper combines historical sequence information with
multiple factors and simultaneously uses the temporal
features of multiple factors as the factor input of the re-
gression model, that is, the factor feature data from time
t − m to time t are used to predict the target value at time
t + 1.,is feature extraction method can effectively combine
the features of multiple heterogeneous factors at the same
time. Due to the use of temporal features, the change pattern
along the time dimension (such as the curvature) of factors
can be fully utilized, which can provide richer and more
valuable information for prediction and improve the pre-
diction accuracy.

,e temporal feature extraction process is shown in
Figure 4, where Tj is the target time series, T1 − Tj− 1 is the
characteristic time series, Yt is the predicted target scalar
value of the corresponding sample at time t, and Xt is the
factor input of the corresponding sample at time t. Xt is a
vector composed of t − k to t − 1 characteristic data
extracted from each characteristic time series by T1 − Tj− 1

Input layer (+10)

 (+118)

Activation layer
function: tanh

1

1112 1314151617181920

23456 78910

Figure 1: ANN structure diagram.
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characteristic time series. ,e sample (Xt, Yt) formed by
feature extraction constructs the samples of the regression
model.

3.2.2. Filter for Component Learners. In order to make the
stacking learning model achieve the optimal prediction
effect and improve the robustness of the model, not only the
predictive ability of a single individual learner must be
considered but also necessary to consider the combined
effects of individual learners. Individual learners with
stronger learning ability will help improve the overall pre-
dictive effect of the model. In the first level, heterogeneous

models with a large degree of difference are selected as the
component learners, which can maximize the advantages of
various algorithms, and at the same time, each differentiated
model can learn from each other’s strengths [55]. ,erefore,
this paper conducted a stacking experiment to optimize the
stacking method of the component learners when building
the model. A total of 9 individual learners, XGBoost, GBDT,
LightGBM, RF, Linear, LASSO, Ridge, ANN, and SVR, are
initially selected. ,e essence of the stacking of different
models is to observe data from different data space per-
spectives and data structure perspectives. Based on this
principle, base learners should be different from each other.
,erefore, this paper uses the Pearson correlation coefficient

Time series featureT1 T2 T3 Tj

t

t – 1

t – 2

t – 3

t – m

t – 4

t – 5

t

Xt2

Xt2 Xt3

Xt
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Figure 4: Time series feature extraction.
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to calculate the differences of each model. By selecting al-
gorithms with large differences, we maximize the advantages
of different algorithms and obtain the best prediction effect.
Pearson correlation formula is shown as equation (3), where
X and Y are two single models’ outputs.

ρX,Y �
E(XY) − E(X)E(Y)��������������

E X2( ) − (E(X))2√ ��������������
E Y2( ) − (E(Y))2√ . (3)

,e stronger the learning ability of each individual
learner in stacking and the lower the degree of correlation,
the better the prediction effect of the stacked model. ,e
threshold value of correlation between component learners
is set to be 0.95. Above the threshold, the correlation is
stronger, and less than the threshold, the correlation is weak.
As shown in Figure 5, XGBoost, ANN, RF, Ridge, and SVR
are selected as the first level of component learners, and SVR
as the second level of metalearner. XGBoost has a higher
correlation with GBDTand LightGBM, which are both trees
boosting algorithms. ,e correlation between XGBoost and
RF is relatively low.,is is because although RF is also a tree-
based integrated class model, it is a bagging type. ,e
correlations between Ridge and LASSO and linear is strong
because Ridge and LASSO are both improved versions of
linear regression. ANN is quite different from other models,
so the correlation is low.

After the filtering of correlation analysis and combi-
nation optimization experiment, as shown in Figure 6, this
paper selects XGBoost, ANN, RF, Ridge, and SVR as
component learners of level 1 and SVR as metalearner of
level 2.

3.2.3. Fusion of the MTSS Prediction Model. ,is paper first
uses the k-fold (k� 5) method to train each component
learner with the training set and then uses the predicted
values from the testset of component learners to train the
metalearner. Stacking ensemble learning divides the original
dataset S � (Xt, Yt), t � 1, . . . , n{ } into several data subsets,
where Xtj is the input vector of the sample t with jth
temporal features, Yt is the corresponding predicted value of
the sample t, andN is the number of temporal features, that
is, each Xt feature vector is (Xt1, Xt2, Xt3, . . . , Xtn). In this
paper, the five-fold cross validation method is used. ,is
paper randomly divides the data into five equal size and
disjoint subsets S1, S2, S3, . . . , SK of the original dataset,
where SK � S − SK defines SK and S− K as the k-fold training
set and testset, respectively. One of them is taken as the
testset, and the other four are used as the training set to train
the model each time. MSEt is calculated based on the testset.
,en, the average value is calculated to obtain CVk:

CV(k) �
1

k
∑k
t�1

MSEt. (4)

,e process of stacking learning is as follows:

Step 1 Divide the original sample data into training data
and holdout data and divide the training data into
K subsets of basically equal size

Step 2 Uses the k-fold cross validation method to train
each individual learner on the training data and
validate it on the holdout data

Step 3 Repeat step 2 until all the component learners are
trained

Step 4 Use the first level output as the input of the
second-level metalearner and train the second-
level metalearner, namely, the meta-model (SVR)

As shown in Figure 7, the first level prediction algorithm
containsK base learners. ,e training set S− K is trained with
the kth algorithm to obtain the base learner Lk. In k-fold
cross validation, for each sample Xtj in the k-fold testset SK,
the prediction of the base learner Lk is denoted as Zktj. After
cross validation, the output data of K base learners form a
new data sample Snew � ((Z1tj, . . . , Zktj), Yt),{
t � 1, . . . , k, j � 1, . . . , N, k � 1, . . . , K}, which is used as the
input data of the second level. Train the metalearner Lnew of
the second-level prediction model to detect and correct the
prediction errors in the first layer learning algorithm. ,e
SVR model in the second level outputs the final prediction
results. ,e stacking learning framework improves the ro-
bustness and generalizability of the prediction model by
combining the output predictions of multiple models to
obtain an improvement in the overall prediction accuracy. In
order to prevent overfitting, the training set of the component
learner cannot be directly used in the training of the met-
alearner. It is necessary to divide the original data reasonably.

3.2.4. Hyperparameter Optimization. ,e multilevel stack-
ing learning system involves the setting of many parameters.
Nevertheless, the combination of parameters of different
values has a greater impact on the prediction accuracy of the
model, and unreasonable parameter settings can easily cause
underfitting or overfitting of the model. Hyperparameter
tuning is an optimization method that can be carried out to
preprocess or postprocess any learning algorithm. Grid
search can improve the generality of the model. To make the
MTSS model perform optimally and prevent underfitting or
overfitting, it is necessary to optimize the parameters of each
base learner and metalearner. First, the single base learner is
predicted and analyzed on the original dataset. ,e regu-
larization technique is used to avoid overfitting. ,e k-fold
cross validation is adopted to divide the dataset into multiple
training sets and testsets.,e training set is used to construct
the model, and the testset is used to evaluate or verify the
performance of the model. ,e structure of the base learner
and metalearner algorithm has certain complexity. It is
necessary to define many parameters, such as learning_rate,
max_depth, and n_estimators. Among the main parameters,
learning_rate can control the model weights’ updating
speed. Max_depth is the maximum depth of a tree. ,e
larger themax_depth is, the more complex themodel will be.
N_estimators is the number of decision trees. Gamma refers
to the complexity penalty term at the level of tree structure. If
the value is larger, the number of leaf nodes in the tree will be
smaller. Lambda represents the penalty for the output weight
of leaf nodes to avoid excessive weight of leaf nodes and
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improve the robustness of the model. ,e stacking model
tuning is different from single model tuning. First, the original
sample data are divided into training set and holdout dataset.
Second, using the training set, the k-fold cross validation is
combined with the grid search method to optimize the pa-
rameters of each component learner. In this paper, k is set as
five, and the training set is divided into five parts, that is, there
are five different subtraining sets and subtestsets. For each
component learner, five models are generated based on the
training of subtraining sets, respectively, and these five models
are, respectively, used to predict their corresponding sub-
testsets. ,e optimal parameters are selected with the best five
models’ testset average accuracy. ,e parameter range of grid
search is carried out according to the hyperparameter set of
eachmodel in Table 1.,en, based on the training set generated
by the first level model, the parameters of the second level
model are also optimized by the combination of k-fold cross
validation and the grid searchmethod.,e total stackingmodel
is validated on the validation set generated by the first layer
model. Finally, the experimental results show that the pa-
rameter tuning method can effectively optimize the parameters
of the stacking model, and the prediction effect of the stacking
model has been improved. ,e hyperparameter range of each
model algorithm grid search method is shown in Table 1.

3.3. Parametric Analysis Module. ,e parametric analysis
module is based on Dynamo’s visual programming environ-
ment, which associates the physical tunnel entity with the BIM
model by constructing the mapping relationship between the
components. It realizes the integration of real-time dynamic
evolution visualization of pavement performance prediction
and data science and provides support for managers’ decision-
making.,e workflow is shown in Figure 8, including six steps:
importing the Revit highway BIM model, creating highway
segment elements, importing a Python script, importing MTSS
highway segment performance prediction results, creating a
chromatogram, and visualizing the changing trend of highway
segments. First, this paper collects the data information of the
3D BIM model created in Autodesk Revit. ,en, we link the
MTSS prediction model as a custom node to the Dynamo
environment. Finally, the predicted pavement performance
trend is displayed in the form of graph visualization to support
the decision-making reasoning process.

Step 1 Import the Revit highway BIM model

Dynamo is a lightweight model engine with a
series of built-in graphics and bidirectional
conversion nodes [56]. In this paper, the four
nodes categories, all elements of a category, el-
ement geometry, PolyCurve, and Byjoi-
nedCurves, which are wrapped by RevitAPI, are
used to realize the component function of
importing the highway BIM model into the dy-
namo engine from Revit.

Step 2 Create highway segment elements

As shown in Figure 8, according to the basic
principle of bounding box regression in com-
puter graphics, the bounding box of the highway

BIM model in Figure 9(a) is created, and the
computational element with the center point of
the cube as the minimum (Figure 9(c)) is gen-
erated to realize the cut split and create the
component function of highway segment
elements

Step 3 Import Python script to highway segment
elements

,e bounding box-generated border range is
much larger than the site boundary of the BIM
model of the highway surface (Figure 9(b)), and
graph screening is more complicated than a
numerical screening calculation. ,erefore, to
improve the efficiency of graphic calculation, this
article customizes the Python script and links it to
Dynamo by calling the DesignScript library,
judging the position of the unit cube according to
the projective method and filtering out the unit
cubes belonging to the pavement boundary as a
highway segment element.

Step 4 Import MTSS highway segment performance
prediction results

,rough the file. Path node (Figure 8(d)), the
dataset of the MTSS model prediction results is
imported into Dynamo in the form of an Excel file
to provide data support for the visualization of the
pavement performance prediction digital twin

Step 5 Create a chromatogram

Create a gradient color chromatogram based on
the three primary colors of red, yellow, and blue,
map the predicted value to the chromatogram in
Figure 10, and display the changes in the per-
formance of the physical image elements of the
highway segment through colors to enhance the
visualization of the pavement performance

Step 6 Visualize the changing trend of highway
segments

Taking each highway segment as a unit, finite
element analysis is used to show the future
change trend of the current highway segment.
,e red part indicates that the pavement per-
formance will be reduced, and corresponding
maintenance measures need to be taken. ,e
pavement performance trend should be im-
proved. Finally, according to the numerical re-
sults of the pavement performance prediction,
the future trend of the highway segment is vi-
sually displayed in different colors to provide
support for maintenance decision-making.

4. Case Study

4.1. Materials. With a total length of 2500 meters and four
lanes in both directions, the Dalian highway tunnel in
Shanghai is the first cross-river project in China, which
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simultaneously adopts two large-scale shields to promote the
new technology. ,is paper uses the historical dataset of the
Dalian highway tunnel, including maintenance information
and measured IRI data from 2010 to 2019. After data pre-
processing, 80% of the dataset is randomly selected as the
training set to construct themodel, and the other 20% is used
as the testset to evaluate and verify the performance of the

model.,en, this paper uses the trained model to predict the
pavement performance in 2020.

4.2. Data Processing. Whereas the maintenance data of the
Dalian highway come from the records of special projects
and subprojects over the years, the dataset only records

Table 1: Hyperparameter range of each algorithm.

Algorithm name Hyperparameters selected

XGBoost

learning_rate� [0.01, 0.1, 0.2]
n_estimators� [100, 50]
max_depth� [30, 50, 100]
Gamma� [0.1, 0.2, 0.5]
Subsample� [0.9, 0.5]

colsample_btree� [0.9, 0.5]

RF

Criterion� [“mse,” “mae”],
n_estimators� [10, 100]
max_depth� [10, 50, 100]
max_features� [0.5, 0.9]
min_samples_split� [10]
min_samples_leaf� [2, 10]

Ridge
Solver� {“auto,” “svd,” “cholesky,” “lsqr,” “sparse_cg,” “sag”}

alpha� [0.1, 1, 10]
SVR C� [0.01, 0.1, 1], kernel� [“linear,” “poly,” “rbf,” “sigmoid”]

ANN

hindden_cell_num� [32, 64, 128]
Activation� [“tanh,” “relu”]

Scoring� [ “neg_mean_squared_error” ]
Epochs� [300, 100]
batch_size� [20, 50]

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8: Dynamo’s digital twin workflow. (a) Import the Revit highway BIM model. (b) Create highway segment element. (c) Import
Python script. (d) Import MTSS highway segment performance prediction results. (e) Create a chromatogram. (f ) Visualize the changing
trend of highway segments.
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information such as east-west lines, fast and slow lanes, and
light numbers. ,ere is no direct record of highway segment
elements, which does not meet the data requirements of the
MTSS prediction model. ,erefore, according to the actual
tunnel space structure and the light number arrangement
rules, this paper maps each maintenance record to the
highway segment elements in accordance with the recorded
natural decay, minor repair, or overhaul maintenance to
solve the problem that the current maintenance record does
not satisfy the prediction model to subdivide the highway
into segments.

4.3. Result of Feature Selection

4.3.1. Results Based on Temporal Feature Extraction. ,e
measured data of pavement roughness are affected by factors
such as the service life of highways, maintenance level,
COVI, traffic volume, and other factors. Among them, the
service life of highways, maintenance conditions, and history
performance data have the most significant influence on
pavement performance prediction. Clearly, the pavement
performance prediction is affected by multiple time series,
and the measured data have multiple temporal features. ,e
study of Kitaha et al. showed that the performance change
was more reliable than the value itself [57]. ,erefore, this
paper selects IRI Pt− mi

(i � 0, 1, 2, 3, 4, 5) of the previous
five years as the feature factors describing IRI,

defines Mt− mi q
(i � 1, 5; q � natural decay,minor repair,

andoverhaul) as the maintenance feature factors, and defines
Sm(m � 0, 1, . . . , 10) as the feature factor of the service life of
highways. ,e extraction process based on the time series
features is shown in Figure 11. ,e results of the extraction
are shown in Tables 2-3. ,e sample is composed of each
record Xt and the predicted value Yt of the pavement
performance.

4.3.2. Ee Significance of Feature Factors. To verify the
temporal, spatial, and exogenous dependencies between
pavement performance data and multiple factors, this paper
uses the MTSS model to score Pt− mi

, Mt− mi q
, and Sm

multiple feature factors in the year t during the training
process. ,e feature importance score is calculated based on
the gain of the number of branches in the tree structure,
mainly calculating the sum of the number of occurrences of
features in all trees. If the number of occurrences is higher,
the characteristic factor is more important. In Figure 12, the
feature factors for 2020 are automatically ranked. According
to the significance of the feature factors, it is found that the
importance of maintenance features in the t year accounts
for the largest proportion, that is, the maintenance situation
in the predicted year has the greatest impact on pavement
performance prediction; Pt− 1, that is, pavement performance
changes in the previous year have a greater impact on the

(a)

BoundingBox.MaxPoint

(c)

BoundingBox.MinPoint

Highway boundary

(b)

Figure 9: (a) ,e bounding box of the highway segment element. (b) Instantiate bounding box. (c) Limited cells of highway segments.
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Figure 10: Mapping relationship between pavement performance and chromatography.
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Figure 11: Time series feature extraction of the Dalian highway.

Table 2: Extraction results of time series feature.

Sample
IRI (m/km) Maintenance status

Year
t− 5 t− 4 t− 3 t− 2 t− 1 t− 1 t− 2 t− 3 t− 4 t− 5

0 2.84 2.23 3.14 3.37 2.83 Natural decay Overhaul Minor repair Natural decay Overhaul 2015
1 2.23 3.14 3.37 2.83 3.56 Overhaul Minor repair Natural decay Overhaul Minor repair 2016
2 3.14 3.37 2.83 3.56 3.77 Minor repair Natural decay Overhaul Minor repair Natural decay 2017
3 3.37 2.83 3.56 3.77 3.22 Natural decay Overhaul Minor repair Natural decay Minor repair 2018
4 2.83 3.56 3.77 3.22 3.20 Overhaul Minor repair Natural decay Minor repair Minor repair 2019

Table 3: All X factors after one-hot transformation.

Factor name
Sample number

0 1 2 3 4

Pt− 5 2.84 2.23 3.14 3.37 2.83
Pt− 1 2.83 3.56 3.77 3.22 3.20
Pt− 3 3.14 3.37 2.83 3.56 3.77
Pt− 2 3.37 2.83 3.56 3.77 3.22
Pt− 4 2.23 3.14 3.37 2.83 3.56
Mt− 1 overhaul 0 1 0 0 1
Mt− 1 minor repair 0 0 1 0 0
Mt− 1 natural decay 1 0 0 1 0
Mt− 4 overhaul 0 1 0 0 0
Mt− 4 minor repair 0 0 1 0 1
Mt− 4 natural decay 1 0 0 1 0
Mt− 3 overhaul 0 0 1 0 0
Mt− 3 minor repair 1 0 0 1 0
Mt− 3 natural decay 0 1 0 0 1
Mt overhaul 1 0 0 0 0
Mt minor repair 0 1 0 1 1
Mt natural decay 0 0 1 0 0
Mt− 2 overhaul 1 0 0 1 0
Mt− 2 minor repair 0 1 0 0 1
Mt− 2 natural decay 0 0 1 0 0
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predicted year; the overhaul has a greater impact on Pt− mi

than the minor repair. ,e closer the mi value is to zero, the
greater the feature importance is of Pt− mi

. It can be seen that
maintenance types have a great impact on pavement
performance.

4.4. Analysis of MTSS Prediction Model Results

4.4.1. MTSS Prediction Model Evaluation. Without the loss
of generality, to evaluate the accuracy of the MTSS pre-
diction model, this paper compares the stacking method
with a single SVR, Ridge, XGBoost, ANN, and RF machine
learning models using the same data to conduct a multi-
criterion evaluation. MAE and RMSE are standard indica-
tors for model evaluation in machine learning. ,eir values
are often used to directly measure the pros and cons of the
prediction model results, and they can also better reflect the
degree of deviation of the predicted value from the true
value. ,e lower the value is, the smaller the error and the
higher the prediction accuracy. When the outliers have a
very large degree of individual deviation, even if the number
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Figure 12: Feature significance.

Table 4: Prediction error considering time series features.

Algorithm name
Prediction error

MAE RMSE MAPE

SVR 0.1527 0.0435 5.51%
Ridge 0.1526 0.0429 5.66%
XGBoost 0.1603 0.0491 5.75%
ANN 0.1533 0.0439 5.64%
RF 0.1689 0.0514 6.52%
Stacking 0.1314 0.0386 5.10%

Table 5: Prediction error without considering time series features.

Algorithm name
Prediction error

MAE RMSE MAPE

SVR 0.1815 0.0653 7.31%
Ridge 0.2033 0.0746 8.00%
XGBoost 0.1994 0.0748 7.69%
ANN 0.1937 0.0745 7.71%
RF 0.1909 0.0706 7.57%
Stacking 0.1808 0.0643 7.23%
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Figure 13: Variation prediction trend of the pavement performance of the Dalian highway in 2020.

2.1

2.2

2.3

2.4

2.5

2.6

2.7

IR
I

2016 2017 2018 2019 20202015

Year

1100m on the east side of the slow lane

IRI prediction for 2020 

under the overhaul 

assumption

IRI prediction for 2020 

under the minor repair 

assumption

IRI prediction for 2020 

under the natural decline 

assumption

Actual IRI from 2015 to

 2019

(a)

2016 2017 2018 2019 20202015

Year

1100m on the east side of the fast lane

2.0

2.2

2.4

2.6

2.8

3.0

IR
I

IRI prediction for 2020 

under the overhaul 

assumption

IRI prediction for 2020 

under the minor repair 

assumption

IRI prediction for 2020 

under the natural decline 

assumption

Actual IRI from 2015 to

 2019

(b)

Figure 14: Continued.
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Figure 15: Segment prediction accuracy. (a) 500m on the east side of the slow lane. (b) 1600m on the east side of the fast lane. (c) 1100m on
the west side of the slow lane. (d) 1100m on the west side of the slow lane.
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Figure 14: Trend chart of some segments of the pavement performance of the Dalian highway in 2020. (a) 1100m on the east side of the slow
lane. (b) 1100m on the east side of the fast lane. (c) 600m on the west side of the slow lane. (d) 600m on the west side of the fast lane.
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of outliers is small, the performance of the standard indi-
cators will deteriorate. ,erefore, this paper also adds an
MAPE indicator to solve the problem of the robustness of
the evaluation indicator by replacing the average with the
quantile of the error. Suppose yi is the true value of sample i,
ŷi is the predicted value of sample i, and n is the number of
samples, the evaluation index is defined as

MAE �
1

n
∑n
i�1

yi − ŷi
∣∣∣∣ ∣∣∣∣,

RMSE �

������������
1

n
∑n
i�1

ŷi − yi( )2
√√

,

MAPE �
1

n
∑n
i�1

ŷi − yi
ŷi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ × 100%,

(5)

where MAE denotes the average absolute error between the
predicted value and the actual value, RMSE denotes the root
mean square error, and MAPE denotes the average relative
error.

In Table 4, the stacking model has the best performance
in comparison with the single model. ,e MAE of the
stacking model is only 0.1314, the RMSE is 0.0386, and the
MAPE is only 5.10%. ,e results show that the accuracy of
the predicted value obtained by the MTSS model can reach
94.90%, which is higher than that of other single models. In

the single prediction model, the SVR prediction error is
small and the accuracy is the highest.

Without considering multiple timing features, the MAE
of stacking was 0.1808, the RMSE was 0.0643, and the MAPE
is 7.23% (Table 5). Considering multiple timing features, the
MAE of stacking was 0.1314, the RMSE was 0.0386, and the
MAPE is 5.10% (Table 4). Regarding the benchmark per-
formance without considering multiple timing features, the
MTSS prediction model shows better results that MAE is
decreased by 0.0494, RMSE is decreased by 0.0257, and
MAPE is decreased by 2.13%. Without considering the
timing characteristics, the accuracy of model prediction is
significantly reduced. It can be seen that multitemporal
feature extraction is effective for improving the accuracy of
the model, and the supplement of historical information can
improve the prediction accuracy of the model.

In summary, the stacking model integrates a variety of
heterogeneous prediction algorithms and can use the ad-
vantages of multiple algorithms in different data spaces and
structures to construct better models. ,erefore, the MTSS
model is better than a single machine learning in terms of
pavement performance prediction. ,e MTSS model shows
better performance.

4.4.2. MTSS Prediction Model Results. From the analysis of
the forecast cycle of the entire pavement of the Dalian
highway, Figure 13 shows the comparison trend of the actual
IRI value in 2019 and the IRI predicted values under three
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Figure 16: MTSS model prediction and actual error map.

Table 6: Pavement performance evaluation criteria.

,e evaluation indicator Superior (A) Good (B) Qualified (C) Unqualified (D)

Expressway ≤2.6 ＞2.6, ≤4.1 ＞4.1, ≤7.3 ＞7.3
Primary and secondary arterial highways ≤4.1 ＞4.1, ≤5.7 ＞5.7, ≤7.8 ＞7.8
Branch pavement ≤4.6 ＞4.6, ≤6.6 ＞6.6, ≤8.3 ＞8.3
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Figure 18: Visual presentation of pavement performance prediction in Dynamo. (a) Import the Revit highway BIM model. (b) Create
highway segment element. (c) Import Python script. (d) Import MTSS highway segment performance prediction results. (e) Create a
chromatogram. (f ) Visualize the changing trend of highway segments.
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Figure 17: Pavement performance chromatogram of the Dalian highway tunnel.
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different maintenance assumptions in 2020. ,e pavement
performance will decline in turn under the assumption of
overhaul, minor repair, and natural decay, which is in line
with the normal law. In other words, the pavement per-
formance after major repair is obviously higher than that
after minor repair, and the pavement performance after
minor repair is higher than that after natural decay.

According to the prediction of each segment in Fig-
ure 14, the IRI will decrease by 0.2 under the assumption of
natural decay for the 1100 km slow lane from Puxi to
Pudong (Eastern Route) in 2020. Under the assumption of
minor repair, the IRI will be improved by 0.2. Under the
assumption of overhaul, the IRI will be improved by 0.4. In
2020, on the 1100 km segment of the Puxi to Pudong
(Eastern Route) expressway, the IRI decreases by 0.1 under
the assumption of natural decay; under the assumption of
minor repair, the IRI is improved by 0.2; under the as-
sumption of overhaul, the IRI is increased by 0.6.,e IRI will
decrease by 0.05 under the assumption of natural decay for
the 600 km slow lane from Pudong to Puxi (West Route) in
2020. Under the assumption of minor repair, the IRI will be
improved by 0.3; under the assumption of overhaul, IRI will
be improved by 0.6. ,e IRI will decrease by 0.1 in the
100 km segment of the expressway from Pudong to Puxi
(West Route) in 2020 under the assumption of a natural
recession. Under the assumption of minor repair, IRI will be
improved by 0.2; under the assumption of overhaul, IRI will
be improved by 0.6.

Figure 15 shows the comparison between the predicted
value and the actual value of some highway segments. In
scatter Figure 16, diagonals identify that the line X equals to
Y, and the X-axis and Y-axis, respectively, represent the
actual value and predicted value of IRI on the verification set.
,e closer the scatter is to the diagonal line, the better the
prediction accuracy is. It is obvious that the model has a
good fitting effect, which further indicates that the predic-
tion effect of the MTSS model is feasible.

4.5. Application of Digital Twins. According to Shanghai
Engineering Construction Code DGJ08-92-2013 “Technical
Regulations for Urban Pavement Maintenance,” the main
highway network connected at both ends of the Dalian
highway tunnel belongs to the primary and secondary ar-
terial highways. It needs to be classified according to the
ratings in Table 6 to map the pavement performance values
and the chromatogram.

Applying the digital twin for pavement performance
prediction proposed in Section 3.1, taking each section of the
Dalian highway tunnel as an example, as shown in Figure 17,
the performance numerical results of the visualized pre-
diction highway segments are used to enhance the visuali-
zation by the color mapped in the chromatogram. According
to the pavement performance evaluation standard level, the
pavement performance trend is predicted by the MTSS
prediction model in the Dynamo visualization parametric
analysis module (Figure 18), and the change law of the
highway segment performance varies under different
maintenance assumptions.

5. Conclusions

In this paper, a highway tunnel pavement performance
prediction approach based on a digital twin +MTSS is
proposed. ,is method adopts digital twin technology and
machine learning technology to predict the pavement per-
formance data through the established MTSS model. ,e
multiple time series feature extraction method and the
automatic hyperparameter tuning technology of the MTSS
model are the key factors improving the accuracy of
pavement performance prediction. ,e stacking integrated
learning method can effectively reduce the risk of poor
generalization performance of a single model and falling into
a local minimum. ,e relative error between the predicted
value and the actual value of the MTSS model is small, which
improves the accuracy of the prediction. ,e visual infor-
mation service of the digital twin provides a reliable data-
driven management method for preventive maintenance,
which helps to improve the management efficiency of
prediction and decision-making.
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