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The absorption of a drug compound through the human intestinal cell lining is an important property for
potential drug candidates. Measuring this property, however, can be costly and time-consuming. The use
of quantitative structure-property relationships (QSPRs) to estimate percent human intestinal absorption
(%HIA) is an attractive alternative to experimental measurements. A data set of 86 drug and drug-like
compounds with measured values of %HIA taken from the literature was used to develop and test a QSPR
model. The compounds were encoded with calculated molecular structure descriptors. A nonlinear
computational neural network model was developed by using the genetic algorithm with a neural network
fitness evaluator. The calculated %HIA (cHIA) model performs well, with root-mean-square (rms) errors
of 9.4%HIA units for the training set, 19.7%HIA units for the cross-validation (CV) set, and 16.0%HIA
units for the external prediction set.

INTRODUCTION

The ability to deliver drugs orally is strongly preferred
over alternative routes for systemic administration. This
preference is due to the convenience, low cost, and high
patient compliance rates for oral dosing. Compounds taken
orally, however, must possess several properties to become
systemically available: solubility and stability in the gas-
trointestinal tract, absorption through the intestinal wall, and
a low rate of first-pass hepatic metabolism.

Prediction of human intestinal absorption (HIA) is a major
goal in the design, optimization, and selection of candidates
for development as oral drugs. The growth in drug discovery
of combinatorial chemistry methods,1,2 where large numbers
of candidate compounds are synthesized and screened in
parallel forin Vitro pharmacological activity, has dramatically
increased the demand for rapid and efficient models for
estimating HIA and other biopharmaceutical properties.

In ViVo animal studies have long been used, but these
models are costly and labor intensive, have low throughput,
and consume large amounts of test sample. Both animal
and humanex ViVo intestinal absorption models have also
been used, but they are also labor intensive and give variable
results.3-5 Cell membrane models, most often using Caco-2
cells, have emerged over the past 10 years as a medium
throughput in Vitro model of HIA.6-11 However, these
models are also labor intensive and usually require more
compound than is produced in a standard combinatorial
library syntheses. An alternate computational chemistry
approach using quantitative structure-property relationships
(QSPRs) could potentially provide useful predictions of
%HIA and reduce the need for actual compound synthesis
and %HIA measurement. Furthermore, calculated %HIA

(cHIA) models would be valuable in the selection and
prioritization of building blocks throughout the design and
focus of combinatorial libraries.

QSPR methods have successfully been used to model
physicochemical,3,4 chromatographic,5,6 spectroscopic,7 and
toxicity properties of organic compounds.8,9 Several com-
putational models have also been reported for such biop-
harmaceutical properties as %HIA,19-21 blood-brain bar-
rier,10,11skin12 and occular permeation,13 pharmacokinetics,14,15

and metabolism.16 However, these studies all involved sets
of closely related structural analogues, and models based on
limited chemical space generally lack predictive value outside
their structural classes. Broadly applicable QSPR models
of biopharmaceutical properties must be built using com-
pounds which cover both a wide range of the property being
modeled as well as of chemical structure space.

The QSPR methodology used in this study consists of three
main parts: representation of molecular structure, feature
selection, and mapping. The starting point of the study is a
set of compounds with known %HIA values, which are used
to develop the QSPR relationship. Since the general
assumption in QSPR modeling is that molecular structure
causes the observed behavior of a compound, linking a series
of chemical structures to properties of interest, in this case
%HIA, should provide a method for modeling the property.
A necessary first step involves encoding the structures. This
is done by using calculated structural descriptors, which are
mathematical representations of chemical structure. For
example, the molecular volume of each structure can provide
some information as to the size of each structure. To best
encode the structures, it is typically useful to calculate a
multitude of descriptors, each helpful in describing the
structures in a unique way.

Once the structures have been encoded, the subset of
descriptors that best encodes the property of interest must
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be found. Feature selection methods, employing the genetic
algorithm (GA)17,18 coupled with computational neural
networks19 are used for this purpose. The GA is effective
at finding minima for complex problems without any
knowledge of the form of the objective function. Feature
selection is necessarily involved in this particular QSPR
approach because of the large numbers of descriptors that
are calculated (more than 100 per compound). This differs
somewhat from traditional QSPR/QSAR methodologies in
which a relatively small number of descriptors are utilized.32-35

Once a subset of descriptors is found, the descriptors are
then mapped to the property of interest, using either a linear
regression equation or a nonlinear computational neural
network. These mapping methods effectively provide a
mechanism for linking the chemical structures to their
corresponding %HIA values.

EXPERIMENTAL SECTION

The computations for this work, with two exceptions, were
performed at Penn State University on a DEC 3000 AXP
Model 500 workstation running the OSF/1 V3.0B operating
system. Those calculations involving HyperChem20 (first
exception) were performed on a Pentium PC. The three-
dimensional model-building, utilizing CORINA (Version
1.6)21 as well as the molecular fragment extractions and
presence/absence determinations (second exception), was
performed on a four-processor Silicon Graphics Challenge-L
at Affymax Research Institute (ARI). The ADAPT (Auto-
matedDataAnalysis andPattern RecognitionToolkit)22,23

software system was used for all computations except those
discussed above and those involving computational neural
networks. The neural network software was developed
independently at Penn State University.

Data Set. The set of 86 drug and drug-like compounds
and their experimentally derived %HIA values used in this
study were gathered from literature sources. These com-
pounds are listed in Table 1 with their experimental %HIA
values and references.3,4,11,19,40-147 Table 1 is ordered and
split into three separate sections that show the training, cross-
validation (CV), and external prediction sets used in this
study. Much of the literature uses the term “percent
absorbed” imprecisely to mean either percent intestinal
absorption (%HIA) or absolute oral bioavailability, which
can be lower than %HIA due to first-pass hepatic metabo-
lism. Therefore, each reference was reviewed to ensure that
intestinal absorption values were used in this modeling effort,
and furthermore that these values were not dose-dependent
and involved only healthy clinical populations. The subset
of 64 compounds with %HIA less than 100% comprise all
the literature examples we were able to find which met these
criteria. The remaining 22 compounds, with 100%HIA, were
randomly selected from the large number of publications on
well-absorbed oral drugs. The proportion of 100%HIA
compounds was kept low to minimize, as much as practical,
overloading the training set with high %HIA values.

The 86 compounds in the working data set were split into
a training set of 76 compounds and an external prediction
set of 10 compounds. The external prediction set was chosen
in such a way as to cover the range of %HIA values in the
data set, and it spans the range of 5-100%HIA. The
compounds in the external prediction set were never used

during the model development process but were reserved to
validate potential models. A cursory examination of the
compounds in the data set reveals a large amount of structural
diversity. In addition, of the 86 compounds, 22 absorb at
100%, 47 have absorption values at 90% or higher, and 71
compounds (or about 83% of the total data set) absorb at
50% or higher. Only 15 absorb below 50%. While the entire
range spanned is 0-100%, this data set is heavily biased
toward large values of absorption given the tendency toward
successfully-developed orally active drug compounds.

The structures of the 86 compounds were extracted from
the ARI database with ISIS24 and transferred to the DEC
Alpha workstation where they were entered into ADAPT.
Accurate geometries are necessary for the calculation of
certain descriptors thought to be necessary for modeling
physical and chemical properties. As a result, CORINA37

was used to generate accurate three-dimensional geometries.
Descriptor Generation and Analysis. A total of 162

descriptors was generated for each of the 86 compounds
using ADAPT descriptor development routines. The de-
scriptors fall into three general categories: topological,
electronic, and geometric. Topological descriptors are
derived from information about the two-dimensional structure
of the molecule. Graph theory can be applied to the 2-D
structures to generate a multitude of topological indices.149-153

Other topological descriptors, such as atom counts, bond
counts, and molecular weight, can be derived from the 2-D
structural representation. Electronic descriptors were cal-
culated with MOPAC using the AM1 Hamiltonian.25 Elec-
tronic descriptors include partial atomic charges and the
dipole moment. Geometric descriptors include moments of
inertia, surface area, and volume.155-158 Accurate three-
dimensional geometries of the molecules are necessary to
calculate descriptors of this nature. A fourth class of
descriptors can be derived by combining electronic and
geometric information to form hybrid descriptors. By
combining the molecular surface area with partial atomic
charges, charged-partial surface area (CPSA) descriptors can
be calculated.26 The same can be done with certain atom
types (H, N, O, F, S) to calculate hydrogen bonding specific
descriptors. Of the 162 ADAPT descriptors calculated, 84
were topological, 6 were electronic, 29 were geometric, and
43 were CPSA or H-bonding (hybrid) descriptors.

In addition, a large number of substructure fragment
descriptors were also generated. These fragment descriptors
were binary strings that indicated the presence or absence
of 566 important substructure features or fragments. A large
pool of over 3200 functional group fragments was excised
from over 7000 drug/drug-like molecules found in MDL’s
Comprehensive Medicinal Chemistry database (CMC 97.1)
using the first-order functional group extraction algorithm
developed by Sello.27 These 3200 basis-set functional groups
were made more general by changing all single bonds to
single or aromatic bonds and all double bonds to double or
aromatic bonds, respectively. A total of 566 fragments from
the basis-set pool was found in at least one, but not all, of
the 86 compounds in the working set. The fragment
descriptors were augmented to the pool of ADAPT descrip-
tors. Thus, each compound was represented by 728 descrip-
tors. The next step was to use objective feature selection to
discard descriptors which contained redundant or minimal
information.
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Table 1. List of Compounds and Their References

ref name exptl %HIA cHIA

Training Set
127 gentamicin 0.00 0.00
122 cromolyn 0.50 0.00
43,49 olsalazine 2.30 4.82
82 ganciclovir 3.80 6.21
64,91 cefuroxime 5.00 0.00
71,72 chlorothiazide 13.00 20.99
4,45 mannitol 15.00 16.05
46 nadolol 34.50 36.00
135,136 norfloxacin 35.00 53.63
64,92 phenoxymethylpenicillinic acid 45.00 43.89
146,147 etoposide 50.00 51.65
46,61 atenolol 50.00 79.62
11 ziprasidone 60.00 70.32
59 sulfasalazine 65.00 65.90
19,93 hydrochlorothiazide 67.00 62.08
55,56 sumatriptan 75.00 74.76
43,47 guanabenz 75.00 85.03
44 propylthiouracil 75.00 100.00
138 quinidine 80.00 95.07
3 acetaminophen 80.00 100.00
88 methylprednisolone 82.00 95.86
74,75 sorivudine 82.00 99.56
106,107 bupropion 87.00 83.05
11 trovoflaxicin 88.00 95.12
105 acrivastine 88.00 100.00
41,42 acebutolol 89.50 93.02
43,47,48 timolol maleate 90.00 77.43
98,19 phenytoin 90.00 91.79
112 betaxolol 90.00 95.10
43,47,48 oxprenolol 90.00 95.35
139,140 scopolamine 90.00 95.58
43,47,48 propranolol 90.00 95.77
141 tenidap 90.00 96.78
116,117,118 chloramphenicol 90.00 100.00
142,67 terazosin 91.00 93.87
4,60 hydrocortisone 91.00 96.30
67,68,69 amoxicillin 93.50 88.82
126 fluconazole 95.00 89.66
43,47,48 metoprolol 95.00 90.89
53,54 sotalol 95.00 91.53
119,120,121 clonidine 95.00 96.02
123 imipramine 95.00 96.30
43,47,48 labetalol 95.00 100.00
113 trimethoprim 97.00 93.34
64,65 cephalexin 98.00 84.95
109 warfarin 98.00 100.00
19,95 prednisolone 98.80 96.50
79,4 naproxen 99.00 100.00
43,50 practolol 100.00 74.79
101,102 loracarbef 100.00 78.23
76,77 fluvastatin 100.00 88.13
66 antipyrine 100.00 91.79
70 caffeine 100.00 92.02
62,86,87 lormetazepam 100.00 92.70
90 bumetanide 100.00 93.89
57 testosterone 100.00 93.97
43,44 corticosterone 100.00 94.14
110,111 felodipine 100.00 95.29
137 prazosin 100.00 95.37
52 ondansetron 100.00 95.65
123 desipramine 100.00 96.24
43,44 dexamethasone 100.00 96.35
128,129 ibuprofen 100.00 97.14
143,144,145 valproic acid 100.00 98.60
40 acetylsalicylic acid 100.00 100.00
94 ketoprofen 100.00 100.00
58 zidovudine 100.00 100.00

Cross-Validation Set
78,79,80 enalaprilat 10.00 47.68
74,99 pravastatin 34.00 41.06
51 ranitidine 50.00 76.56
81 furosemide 61.00 89.25
103,104 lamotrigine 70.00 87.27
62,83,84 bromazepam 84.00 87.38
43,47,48 pindolol 90.00 95.11
124 diazepam 100.00 86.70
130,131,132,133,134 methotrexate 100.00 100.00

External Prediction Set
125 doxorubicin 5.00 0.00
96,97 lisinopril 25.00 0.00
114,115 cefuroxime axetil 36.00 9.76
3,73 gabapentin 50.00 51.36
85 captopril 67.00 100.00
89,64 cefatrizine 76.00 73.98
62,63 cimetidine 85.00 76.53
4,100 progesterone 91.00 93.99
43,108 alprenolol 93.00 95.95
40 salicylic acid 100.00 100.00
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Three methods of objective feature selection were em-
ployed. First, for the ADAPT descriptors only, all descrip-
tors that had greater than 80% identical values were removed
from the pool. Second, pairs of descriptors were examined
for redundancy. If two descriptors were pairwise correlated
with an r > 0.90, one of them was removed from the pool.
Finally, the reduced pool of ADAPT descriptors was added
to the 566 fragment descriptors, and steps 1 and 2 were
repeated on the current descriptor pool (566 fragments+
75 ADAPT descriptors). These methods effectively reduced
the entire (ADAPT plus fragments) descriptor pool to 127
members. This was a manageable number of descriptors to
screen using subjective methods of feature selection. Within
the 127-member reduced descriptor pool, there were 61
fragment descriptors, 25 topological descriptors, 21 CPSA/
H-bonding descriptors, and 20 geometric descriptors.

Multiple Linear Regression Analysis. Multiple linear
regression models that link the property of interest to the
structures can be developed using subsets of descriptors
selected from the reduced descriptor pool. A simulated
annealing (SA) feature selection routine and a genetic
algorithm (GA) feature selection routine were used to find
good descriptor subsets.161-163 Each method performed a
directed search of the descriptor space in order to determine
an optimal subset of descriptors to be used in a linear
regression model. The driving force behind each algorithm
is the continuous reduction of the rms errors of %HIA
estimation from subset to subset. Subsets of descriptors that
give lower rms errors are favored.

Computational Neural Networks. Neural networks were
originally designed to mimic the activity of a system of
neurons. There are many different types of neural networks,
but the type that has been most useful for quantitative
structure-property relationships is the fully connected, feed-
forward neural network. This network consists of a multi-
layer system of neurons, with each neuron in a given layer
fully connected to all neurons in the two adjacent levels.
The objective of a neural network is to map a set of input
data to a particular set of output data. In this case, molecular
structure descriptors, linearly scaled to the range (0,1), serve
as input data, and the %HIA values serve as output data.
The connections between neurons are known as weights. A
neural network is trained to map a set of input data to a
corresponding set of output data by iterative adjustment of
the weights. In this study, our networks were trained using
a quasi-Newton optimization algorithm. Detailed discussions
of the type of neural network and the training algorithm used
in this study have been published previously.31,28

Often, a subset of descriptors that supports a good linear
model is used to develop a nonlinear neural network model.
However, there is no reason to believe that the best linear
subset of descriptors is also the best subset for a nonlinear
model. In fact, it is likely that this is not the case. Therefore,
a feature selection routine which combines the genetic
algorithm with a neural network fitness evaluator29 was used
for this study. The GA/neural network routine selects subsets
from the reduced descriptor pool that support good nonlinear
models by using neural networks to evaluate each potential
subset. The genetic algorithm uses the rms error to find a
good subset of descriptors. This forces the algorithm to find
descriptor subsets that minimize the number of large outliers,
at the possible expense of overall model quality. The genetic

algorithm used in this study also incorporates the PRESS
statistic30 to improve the chances of finding a general and
predictive model. In any optimization procedure similar to
the one described here, the starting conditions can greatly
influence the final results. This is largely due to the
multivariate nature of the problem. Therefore, it should not
be surprising that the “best” subset of descriptors found by
the GA will differ from run to run. It is also fully expected
that as more and more compounds are added to the training
set, the GA will find different, but perhaps qualitatively
overlapping, subsets of descriptors.

RESULTS AND DISCUSSION

Regression Analysis.The SA and GA feature selection
routines were employed to seek good linear models. How-
ever, none of the models found was satisfactory, with the
best model having a training set rms error of 20.4%HIA units
and a prediction set rms error of about 35%HIA units. This
model was also shown to be statistically invalid using basic
linear regression diagnostics.166 It became evident that the
diversity of this data set and the number of data points
possessing greater than 50% absorption values (about 83%)
are largely responsible for producing poor quality linear
models. Therefore, this data set became a good candidate
for developing nonlinear neural network models directly
using the GA/neural network feature selection routine.

Neural Network Analysis. The 127-member reduced
pool of descriptors was fed to the GA/neural network feature
selection routine for the purpose of developing a nonlinear
model. The original regression training set was split
randomly into a neural network training set of 67 compounds
and a cross-validation (CV) set of nine compounds. The
original 10-member external prediction set was used to
validate any neural network models. The CV set was used
to monitor overtraining of the network, and the training set
was used to actually train the network. The CV set and
training set rms errors are used by the GA to determine a
cost function that relates directly to the overall quality of a
particular subset. The cost function is calculated with the
following equation:

where TSET is the training set rms error, CVSET is the CV
set rms error, and CVFC is the weight factor for the value
in parentheses. In this study, a value of 0.4 was used for
CVFC because it has been found to produce the best behavior
of the genetic algorithm in a number of previous studies.

To decrease the possibility of chance effects influencing
neural network training, the ratio of observations to total
adjustable parameters should be at or above 2.0.31 A neural
network consisting of 6 input neurons (descriptors), 4 hidden
neurons, and 1 output neuron (target, %HIA), thus producing
a 6-4-1 architecture, was used since it produced the maximum
number of adjustable parameters recommended for a data
set of this size. For this 6-4-1 architecture, the ratio of
training set observations to adjustable parametersF was 67/
33, or 2.03. Other architectures were examined (6-2-1, 6-3-
1), but they produced poorer quality neural network models.

Using this 6-4-1 network architecture, the GA routine
searched the reduced descriptor pool for subsets that sup-
ported good models. Several models with good cost func-

COST) TSET+ CVFC×(|(TSET- CVSET)|) (1)
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tions were found by the GA routine. The best subset of
descriptors was then taken and further optimized for network
performance. The results of training a feed-forward neural
network are dependent upon the initial set of weights and
biases used, which are assigned randomly. Because of this
dependence, it is often necessary to retrain the same network
several times with different initial sets of weights and biases.
The goal is to find an optimal starting point that will lead to
a quality termination point and a good network model. A
generalized simulated annealing (GSA)32 routine was devel-
oped at Penn State for this purpose. The GSA routine
searches the complexn-dimensional network error surface
for optimal starting points. In fact, if several training sessions
are conducted on the same network, using a different set of
starting weights and biases for each session, a pattern of
errors with a Gaussian-like distribution emerges. The GSA
routine attempts to find starting points that will lead to
termination points in the low error region of this distribution.
While it is nearly impossible to find the global minimum,
and harder still to verify this, a close approximation to the
global minimum can be found with the GSA routine.

After the genetic algorithm runs were completed, several
sets of weights and biases were then found in separate CNN
trainings. The set that produced the best training set and
cross-validation set errors was then validated with the
external prediction set. The six descriptors that comprised
the best subset found by the GA are shown in Table 2. Of
the six descriptors, 1 is a topological descriptor, 3 are
hydrogen bonding descriptors, and 2 are geometric descrip-
tors. Table 3 shows the correlation coefficient matrix for
all six descriptors. The mean value is 0.21, and the highest
correlation coefficient between any two of these six descrip-
tors is 0.63. The gravitational index descriptor is calculated
from the following equation

where n is the total number of bonds between all non-
hydrogen atoms in the structure,wi is the atomic weight of
one of the two atoms joined by theith bond, andDi is the

length of theith bond. The six descriptors span the following
ranges: NSB (3-35), SHDW-6 (0.36-0.76), CHDH-1
(0.00-1.30), SAAA-2 (3.91-38.23), SCAA-2 (-0.28 to
-18.38), GRAV-3 (8.76-15.75). Of the six descriptors in
the final model, none were binary fragment descriptors.
Initially, the fragment descriptors were included in many
preliminary models, but as more compounds were added to
the data set over time (arriving at a final set of 86), the
fragment descriptors began to appear less frequently. Often,
a model that included fragment descriptors would not validate
with the external prediction set. The descriptors in this model
do not encode a causal relationship between structure and
%HIA. However, it is useful to examine qualitatively the
possible meaning of each descriptor. The NSB descriptor
is encoding single bonds, and this may be an indication of
the amount of structural flexibility. The SHDW-6 and
GRAV-3 descriptors are encoding molecular size, shape, and
bulk properties. These size descriptors may be important
with respect to the ability of the drug to penetrate cell
membranes. The three remaining descriptors are all hydro-
gen bonding descriptors. These can be thought of as
indicators of the degree of the lipophobic and lipophilic
character of a drug compound in biological environments.
While the above model is effective at estimating %HIA, a
second six-descriptor model, derived from descriptors inde-
pendent of MOPAC (i.e., no charge information), was also
developed. The MOPAC independent model is not as
accurate as the model reported above, but it is more effective
for use in batch processing of combinatorial libraries.33

The training set rms error for this six-descriptor neural
network model was 9.4%HIA units. The mean absolute error
(mae) was 6.7%HIA units. These values were calculated
after all output values from the network greater than 100%
or less than 0% were fixed at 100% or 0%, respectively.
The CV set rms error was 19.7%HIA units (mae 15.4%HIA
units). Figure 1 shows a plot of cHIA vs observed %HIA
for the training and CV sets. There is a good fit to the 1:1
correlation line. Validation of the model was performed
using the 10-compound external prediction set. The rms
error for the external prediction set was 16.0%HIA units (mae
11.0%HIA units), a good validation of the model. A plot
of cHIA vs observed %HIA is shown in Figure 2. It is likely
that the overprediction of absorption values above 50% is
mainly due to the original bias in the training set.

The interpretation of effects of individual descriptors
within any QSPR model is a difficult task, and even more
so when the model is both multivariate and nonlinear such
as with neural network models. However, some insight into
the degree of nonlinear behavior of each descriptor can be
assessed with functional dependence plots.170-172 Functional
dependence plots assume a fixed set of weights and biases,
typically the set producing the best results. The value of a
single input is varied through its range, while all other input

Table 2. The Six Descriptors in the Neural Network Model for cHIA Estimation

Descriptor Label - Definition
NSB - number of single bonds
SHDW-6 - normalized 2D projection of molecule on YZ plane
CHDH-1 - charge on donatable hydrogen atoms
SAAA-2 - surface area of hydrogen bond acceptor atoms/number of hydrogen bond acceptor atoms
SCAA-2 - surface area× charge of hydrogen bond acceptor atoms/number of hydrogen bond acceptor atoms
GRAV-3 - Cube root of gravitational index

Table 3. Linear Correlation-Coefficient Matrix for the Six
Descriptors in the Final Network Modela

descriptor 1 2 3 4 5 6

1 1.000
2 -0.169 1.000
3 0.414 0.036 1.000
4 -0.021 0.098 0.233 1.000
5 0.208 -0.079 -0.093 -0.580 1.000
6 0.631 -0.171 0.205 -0.152 0.029 1.000

a In the same order as they appear in Table 2.

GRAV ) x3

∑
i)1

n wi
1wi

2

Di

(2)
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units are held constant. The network output is plotted against
the variable descriptor input to generate a functional depen-
dence plot. Figure 3 displays a functional dependence plot
for three of the six descriptors in the final model for
predicting %HIA. The three descriptors (labeled as in Table
2) are NSB (O), SAAA-2 (3), and GRAV-3 (0). They are
all scaled to the range (0,1). A constant value of 0.5 was
used for the fixed input units as the remaining input unit
was varied through its range. The high degree of nonlinearity
of the three descriptors is clearly evident in Figure 3. It
should be noted that the shape of any given functional
dependence plot will be altered (sometimes drastically) if
the values of the fixed inputs are changed.170 This is because
of the interdependence of the descriptors within the frame-
work of the neural network. This evidence suggests that
the descriptors are acting as a group rather than as individuals
for the %HIA neural network model. While these functional
dependence plots are suggestive of the complex relationships

between the input descriptors and the %HIA, the detailed
significance of an individual descriptor and how it relates
to %HIA is very difficult to gauge.

In general, the final set of weights and biases used is
chosen based on the performance of the CV set and a positive
validation with an external prediction set. However, it may
be that any single set of weights and biases is not necessarily
the best set to use for prediction. In fact, the idea of using
a committee of neural networks (or several different sets of
weights and biases) has been proposed.34 For this study,
eight different sets of weights and biases, each giving good
training set and CV set performance, were used to generate
eight different sets of predictions. The same compounds
were used for the external prediction set throughout. Aver-
age predictions were then generated from the eight individual
predictions. This final, average set of predictions had an
rms error of 17.7%HIA units and an mae of 13.0%HIA units.
This is not quite as good a result as the single best set of
weights and biases reported above (rms 16.0%HIA units,
mae 11.0%HIA units). However, this approach may produce
more reasonable predictions for new sets of data because of
the effect of averaging. This may be a useful way to deal
with the problem of multiple minima that is encountered
when using neural networks.

One of the problems encountered when developing QSPRs
is the possibility of chance correlations. It has been shown
that performing feature selection on a pool of independent
random variables can lead to linear correlations with a given
dependent variable if the number of independent variables
in the pool is much larger than the total number of
observations.35 Obviously, since the variables are random,
there can be no real meaning attached to the correlation. To
ensure that chance effects did not influence the current study,
a randomized test was performed. The dependent variables
of each of the compounds in the training set and cross-
validation sets were scrambled randomly, and the GA was

Figure 1. Plot of calculated percent human intestinal absorption
(cHIA) vs observed %HIA for the training set and cross-validation
set compounds. Compound set membership is shown in Table 1.

Figure 2. Plot of predicted percent human intestinal absorption
(cHIA) vs observed %HIA for the external prediction set com-
pounds. Compound set membership is shown in Table 1.

Figure 3. Functional dependence plots for three descriptors from
the final model. The three descriptors are (as labeled in Table 2)
NSB (O), SAAA-2 (3), and GRAV-3 (0). The value for all fixed
inputs was 0.5.
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run again. The cost function of eq 1 was 19.3%HIA units.
The cost function for the best real model was 13.5%HIA
units. This was the expected result, given that the target
values were scrambled randomly. Also, the prediction set
rms error from the randomized model was 41.7%HIA units,
as opposed to 16.0%HIA units from the real model. The
cost function for the scrambled data is 50% higher than that
for the real data, which indicates that the model built from
the real data was not based on chance. Keeping theF value
above 2.0 also helps to avoid the problem of findings due to
chance.

The process of intestinal absorption of drug compounds
depends both on complex biological processes (including
passive membrane penetration, active transport mechanisms
and metabolism in the gastrointestinal tract) and on com-
pound physicochemical properties (including solubility,
dissolution rate, and dissociation constants). Therefore, we
do not expect that a QSPR model derived using 76 diverse
compounds will be a highly precise and rugged predictive
tool. A much larger training set, presently unavailable in
the published literature, would be required to build a model
based not only on structural diversity but also on diverse
biological and physicochemical properties. In fact, QSPR
models have been demonstrated for such compound char-
acteristics as solubility and pKa.36,37 Instead, this model is
intended to serve as a valuable tool for both individual and
compound library design to significantly improve the likeli-
hood of overall increased %HIA of compounds selected for
synthesis. As shown in Figure 2, this model does not
produce an exact rank ordering, but it clearly differentiates
the well-absorbed compounds from the poorly absorbed ones.

CONCLUSIONS

A six-descriptor nonlinear computational neural network
model has been developed for the estimation of %HIA values
for a data set of 86 drug and drug-like compounds. The six
descriptors in the final model are listed in Table 2. The
training set rms error was 9.4%HIA units, and the CV set
rms error was 19.7%HIA units. Based on the rms errors of
the training and CV sets, it is clear that a link between
structure and %HIA does exist. However, the strength of
that link is best measured by the quality of the external
prediction set. With an rms error of 16.0%HIA units and a
good visual plot, the external prediction set ensures the
quality of the model. Given the structural diversity and bias
of the data set, this is a good first attempt at modeling human
intestinal absorption using QSPR methods.

A basic QSPR for estimation of %HIA values of drug and
drug-like compounds is presented in this paper. The model
can be used as a potential virtual screen or property estimator.
With a larger data supply less biased toward the high end
values of %HIA, a more successful model could likely be
developed. This study illustrates the potential of using QSPR
methods to aid in the drug development process.
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