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Purpose: Efficient optimization of CT protocols demands a quantitative approach to predicting hu-

man observer performance on specific tasks at various scan and reconstruction settings. The goal of

this work was to investigate how well a channelized Hotelling observer (CHO) can predict human

observer performance on 2-alternative forced choice (2AFC) lesion-detection tasks at various dose

levels and two different reconstruction algorithms: a filtered-backprojection (FBP) and an iterative

reconstruction (IR) method.

Methods: A 35 × 26 cm2 torso-shaped phantom filled with water was used to simulate an average-

sized patient. Three rods with different diameters (small: 3 mm; medium: 5 mm; large: 9 mm) were

placed in the center region of the phantom to simulate small, medium, and large lesions. The contrast

relative to background was −15 HU at 120 kV. The phantom was scanned 100 times using automatic

exposure control each at 60, 120, 240, 360, and 480 quality reference mAs on a 128-slice scanner.

After removing the three rods, the water phantom was again scanned 100 times to provide signal-

absent background images at the exact same locations. By extracting regions of interest around the

three rods and on the signal-absent images, the authors generated 21 2AFC studies. Each 2AFC study

had 100 trials, with each trial consisting of a signal-present image and a signal-absent image side-by-

side in randomized order. In total, 2100 trials were presented to both the model and human observers.

Four medical physicists acted as human observers. For the model observer, the authors used a CHO

with Gabor channels, which involves six channel passbands, five orientations, and two phases, leading

to a total of 60 channels. The performance predicted by the CHO was compared with that obtained

by four medical physicists at each 2AFC study.

Results: The human and model observers were highly correlated at each dose level for each lesion

size for both FBP and IR. The Pearson’s product-moment correlation coefficients were 0.986 [95%

confidence interval (CI): 0.958–0.996] for FBP and 0.985 (95% CI: 0.863–0.998) for IR. Bland-

Altman plots showed excellent agreement for all dose levels and lesions sizes with a mean absolute

difference of 1.0% ± 1.1% for FBP and 2.1% ± 3.3% for IR.

Conclusions: Human observer performance on a 2AFC lesion detection task in CT with a uniform

background can be accurately predicted by a CHO model observer at different radiation dose lev-

els and for both FBP and IR methods. © 2013 American Association of Physicists in Medicine.

[http://dx.doi.org/10.1118/1.4794498]
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I. INTRODUCTION

The improved speed and resolution of CT, and the associated

benefits to patient care, have led to an exponential growth

in the number of CT exams performed annually.1 The dras-

tically increased use of CT has generated concerns regard-

ing potential cancer risks associated with the radiation ex-

posure from CT.2 Optimizing CT protocols to achieve ade-

quate diagnostic capability with the lowest reasonable dose

has, therefore, become an important task.3, 4 Clinical evalu-

ation by interpreting physicians is the most commonly used

approach for determining the lowest possible radiation dose

in CT protocols.5–7 However, this approach is very labori-

ous, produces results that cannot be readily generalized to

other scanner models and reconstruction algorithms, and can

lead to unreliable results if the study is not carefully designed

and performed. A more efficient and quantitative method is,

therefore, essential for the CT community to meet the ever-

growing need for radiation dose and protocol optimization

in CT.
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The key to a quantitative method for dose optimization is to

determine image quality metrics that can be accurately mea-

sured in phantoms and that are highly correlated with inter-

preting physicians’ performance for a specific diagnostic task.

Currently, many physical metrics, including modulation trans-

fer function (MTF), section-sensitivity profile (SSP), noise

level, and noise power spectrum (NPS) are used to quantify

or monitor various aspects of CT image quality.8–11 However,

these metrics are not complete descriptors of image quality

and do not directly reflect the diagnostic performance for a

given task, which is the ultimate measure of image quality.

Improving quality according to each of these metrics will not

necessarily increase diagnostic accuracy. More importantly,

with iterative reconstruction (IR), traditional simple physical

metrics have even greater difficulty in characterizing image

quality. For example, MTF is not an ideal metric for quantify-

ing spatial resolution after IR: Due to the nonlinearity of the

regularization process in most IR methods, the spatial resolu-

tion varies with the object contrast.12 Traditional MTF mea-

surement with high-contrast wires would deliver incorrect in-

formation about the resolution in low-contrast situations.

Task-based image quality metrics using model observers

have been studied extensively over the past three decades.13, 14

Model observers can be classified as ideal observers or an-

thropomorphic observers.14 An ideal (Bayesian) observer is

the optimal decision maker that makes full use of all the infor-

mation available. The performance of an ideal observer, quan-

tified by a figure of merit (FOM), provides the upper bound

that is achievable by any observer. Although useful for eval-

uating the performance efficiency of human observers, ideal

observers are usually mathematically intractable due to the

lack of full data statistics14 and are not good predictors of hu-

man observers.15 Various anthropomorphic model observers

have been developed to predict the performance of human ob-

servers. A Hotelling observer (HO) constrained by frequency-

selective channels, referred to as a channelized Hotelling

observer (CHO), was suggested as a useful anthropomor-

phic model observer for several detection tasks,14 includ-

ing those with band-pass noise16 and lumpy background.17

Choices of channel filters include square channels,15, 18 differ-

ence of Gaussians,19 Laguerre-Gauss polynomials,20–24 and

Gabor channels.20 A nonprewhitening matched filter (NPW),

initially proposed by Wagner25 and modified to include a hu-

man visual transfer function,26 was also found to be highly

correlated with human performance. More realistic tasks in-

volving location uncertainty and background and signal vari-

ability have also been investigated.24, 27–33 These model ob-

servers, including various versions of CHO and NPW, have

been applied to many different imaging modalities to as-

sess or optimize image quality, including nuclear medicine

imaging,34–36 mammography,23, 37–39 x-ray dual-energy radio-

graphic imaging,40 tomosynthesis and flat-panel cone-beam

CT,32, 41–43 and MRI.44

Task-based image quality metrics using model observers

have also been used in clinical CT.45–48 With the increasing

applications of IR in clinical CT to improve image quality

and reduce radiation dose, there is a strong interest and need

to use model observers to objectively and efficiently optimize

CT scanning protocols.49 However, before a model observer

can be applied to clinical CT as an image quality metric to

optimize radiation dose and parameter settings of various re-

construction algorithms, it is important to quantify how well

the performance of the model observer is correlated with hu-

man observers in realistic CT scans. Once a set of model ob-

servers is determined to be highly correlated with or be able

to predict the human observer performance, they can be used

clinically to efficiently and accurately optimize scanning pro-

tocols and radiation dose levels in CT. To the best of our

knowledge, there has been no such study performed in realis-

tic CT scans without invoking any computer simulation. Fur-

thermore, image-based model observers are required to over-

come the difficulty of frequency-based methods in iterative

reconstructions.

The purpose of this work was to investigate how well

a CHO could predict human observer performance on

2-alternative forced choice (2AFC) lesion-detection tasks

at various radiation dose levels and for both a filtered-

backprojection (FBP) reconstruction method and an iterative

reconstruction method.

II. METHODS AND MATERIALS

II.A. Data acquisition and image reconstruction

We investigated the use of a model observer to predict hu-

man observer performance in a 2AFC task with signal known

exactly (SKE). A 35 × 26 cm2 torso-shaped phantom filled

with water was used to simulate the abdomen of an average-

sized patient (Fig. 1). Three rods with different diameters

(small: 3 mm; medium: 5 mm; large: 9 mm) were placed in

the center region of the water tank with a distance of 6 cm

between small and medium rods and between medium and

large rods. The rods were made of epoxy resin materials and

FIG. 1. Phantom setup. A 35 × 26 cm2 torso-shaped phantom filled with

water was used to simulate the abdomen of an average-sized patient. Three

rods with different diameters (small: 3 mm; medium: 5 mm; large: 9 mm)

were placed in the center region of the water tank (arrows). The acrylic reso-

lution target was used only to hold the rods in position and was not included

in the evaluated images.
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provided by Siemens. The CT number of the three rods was

−9 HU at 120 kV. We added a small amount of iodine con-

trast material into the water to increase the contrast between

the rods and water background to be −15 HU. The phan-

tom was scanned 100 times each at 60, 120, 240, 360, and

480 quality reference mAs on a 128-slice scanner (Definition

Flash, Siemens Healthcare). “Quality reference mAs” is the

image quality index used in the automatic exposure control

(AEC) software (CAREDose4D, Siemens Healthcare). The

value of quality reference mAs represents the effective mAs

(mAs/pitch) that would be used for a reference attenuation

level. With the increase/decrease of the attenuation level of

the patient, the actual effective mAs increases/decreases. The

rotation time was 0.5 s. The helical pitch was 0.6. The cor-

responding scanner radiation outputs, expressed as CTDIvol,

were 2.8, 5.7, 11.4, 17.1, and 22.8 mGy. After removing the

three rods, the water phantom was again scanned 100 times

to provide signal-absent background images at the same lo-

cations. The detector acquisition mode was 128 × 0.6 mm2,

which corresponds to a physical collimation of 64 × 0.6 mm2

and use of a z-flying focal spot technique that allowed

for double sampling along the z-direction.50 Images were

reconstructed using the traditional 3D weighted filtered

backprojection algorithm available on the scanner (B40

kernel) with an image thickness of 5 mm and an inter-

val of 5 mm.51, 52 The corresponding in-plane high-contrast

spatial resolution is 3.97 cm−1 at 50% and 8.13 cm−1

at 2% values of the MTF curve. The reconstruction field of

view (FOV) is 25 × 25 cm2. A collage of example images

with no, small, medium, and large lesions at different mAs

settings is displayed in Fig. 2. From the same 100 scans ac-

quired at the two lower mAs levels, 60 and 120 mAs, images

were also reconstructed with an IR algorithm available on the

scanner (SAFIRE - Sinogram AFfirmed Iterative Reconstruc-

tion (Software version: VA40), Siemens Heathcare). Mean-

while a newer version of the investigated IR reconstruction is

commercially available. The IR kernel was I40 with a strength

setting of 3.

FIG. 2. A collage of images with no, small (3 mm), medium (5 mm), or

large (9 mm) lesions at different mAs settings. The display window level and

width are 40 and 300 HU, respectively.

FIG. 3. Twenty-one 2AFC studies (FBP: five mAs settings × three lesion

sizes; IR: two mAs settings × three lesion sizes) were generated by extracting

a small region of interest around the lesion and at the corresponding location

on the background image. Each 2AFC study had 100 trials obtained from

repeated scans, totaling 2100 trials.

II.B. Creation of 2AFC tasks

By extracting regions of interest (ROI) (128 × 128 pix-

els with an FOV size of 6.2 × 6.2 cm2) around the three rods

and on the signal-absent images, we generated 21 2AFC stud-

ies, including 15 studies for FBP reconstructed images (five

mAs settings × three lesion sizes) and 6 studies for IR recon-

structed images (two mAs settings × three lesion sizes). The

two mAs settings (60 and 120 mAs) for IR were intention-

ally selected to be the two lower mAs settings to demonstrate

whether the IR could improve the performance of the 2AFC

task at high noise levels. The process of generating 2AFC

studies is illustrated in Fig. 3.

Each 2AFC study had 100 trials, with each trial consist-

ing of a signal-present image and a signal-absent image, pre-

sented side-by-side in randomized order. In total, 2100 trials

were presented to both the model and human observers. Truth

for each trial was saved in a database to compare against the

decision made by the model or human observer.

II.C. Human psychophysical experiments

Four board-certified medical physicists acted as human ob-

servers. Observers were first trained by presenting five images

acquired at a high dose level (480 mAs) to them so that lesion

characteristics (size, shape, contrast, location) were known for

observers.

Human observers then participated in formal review ses-

sions. The image display and viewing conditions are based on

those specified in the ACR Technical Standard for Electronic

Practice.53 Experiments were conducted in a darkened room

with consistent ambient lighting. Observers were instructed to

view the images binocularly from a distance of approximately

40 cm and were given unlimited time to reach a decision. All

images were displayed with a fixed window level of 40 HU

and window width of 400 HU, which are typically used for
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visualizing abdominal CT images in radiologists’ diagnosis.

Image review was limited to 2 h/session to avoid fatigue. Per-

cent correct for each observer was calculated for each 2AFC

study by dividing the number of cases on which the observer

made a correct decision by 100.

To estimate the overall performance for each study and

associated confidence intervals, the clustering of evaluations

(by readers) within images was analyzed using the equations

for complex survey design where the individual image served

as a clustering unit.54 These equations yielded a zero stan-

dard error for instances where there were no incorrect deci-

sion (100% correct by all four readers), so to address this,

a conservative approach was considered where the effective

sample size was set to the number of unique images (100).

This approach is “conservative” since the sample size was

smaller, so the resulting confidence interval was slightly wider

while maintaining the same point estimate (100%) for the

estimated percent correct. The clustered-adjusted confidence

intervals were conducted using SAS PROC SURVEYFREQ

(Cary, NC) using the score (Wilson) confidence interval op-

tion. The standard error (SE) was reported in the data with

mean ± SE corresponding to the 68% confidence interval.

II.D. CHO

The general form of the test statistic for a linear model

observer is the inner product between the observer template

and the image, which yields a scalar response given by

λ = ω
tg =

N2
∑

n=1

ωngn, (1)

where the vector g denotes a test image and ω denotes a tem-

plate, each being an N × N matrix expressed in a column

vector format with a dimension of N2. The template is differ-

ent when selecting different model observers: An NPW ob-

server’s template is the expected signal, filtered by the square

of the contrast sensitivity function of the human visual system

when an eye filter is incorporated.26 CHO uses a set of chan-

nels to reflect the response of neurons in the primary visual

cortex.14 The test variable in CHO is given by

λ = ω
t
CHOgc =

M
∑

m=1

ωCHOmgcm, (2)

where M is the total number of channels, gc is the channel

output of the test image, and ωCHO is the template, which is

given by

ωCHO = S−1
c [ḡsc − ḡbc], (3)

where Sc = 1
2
[Ksc + Kbc] is the intraclass channel scatter ma-

trix, which is the average of the channel output covariance

matrix when the signal is present and absent, Ksc = UTKsU,

Kbc = UTKbU, and ḡsc and ḡbc are the channel output means

of signal plus background and background: ḡsc = UTḡs, ḡbc

= UTḡb. U is the matrix representation of the channel filters.

FIG. 4. Garbor filters with six channel passbands, five orientations, and two

phases. (a) 30 channels when phase equals zero. (b) 30 channels when phase

equals π /2.

In this study, we used a CHO with Gabor filters. The gen-

eral form of Gabor function can be expressed as47

Ga(x, y) = exp
[

− 4(ln 2)((x − x0)2 + (y − y0)2)/ω2
s

]

· cos[2πfc((x − x0) cos θ

+ (y − y0) sin θ ) + β], (4)

where ωs is the channel width, fc is the central frequency, θ

is the orientation, and β is a phase factor. Six channel pass-

bands were used: [1/128, 1/64], [1/64, 1/32], [1/32, 1/16],

[1/16, 1/8], [1/8, 1/4], and [1/4, 1/2] cycles/pixel. The cen-

ter frequencies were 3/256, 3/128, 3/64, 3/32, 3/16, and 3/8

cycles/pixel, respectively. Five orientations (0, 2π /5, 4π /5,

6π /5, and 8π /5) and two phases (0 and π /2) were also used.

This setup is similar to that used in Ref. 47 except that two

more channel passbands were added, leading to a total of

60 channels in the CHO implementation. Figure 4 shows 30

channels at each phase.

II.E. Internal noise

Internal noise is a known component of human inefficiency

in perception tasks and it is necessary to be included in visual
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FIG. 5. A flowchart on how the CHO makes a decision for each 2AFC trial.

detection models.55 We added internal noise to the decision

variables according to the following equation:

λ′ = λ + α · x, (5)

where α is a weighting factor, x is a normally distributed ran-

dom variable with a zero mean and a standard deviation of σ

that can be obtained from

σ 2 = var{λb} = var
{

ω
t
CHOgbc

}

, (6)

where “var” stands for variance and λb is the decision vari-

able in signal-absent images The weighting factor α for the

internal noise was determined through a calibration procedure

using the images containing the 5 mm lesion and acquired at

120 mAs. In this procedure, different α values from 0 to 20

were used to predict the percent correct of model observer and

compared with that of human observer. The α value that gen-

erated the same percent correct of model observer and human

observer was used in all dose levels and lesion sizes.

II.F. Using CHO in 2AFC

For each of the 21 2AFC studies, the covariance matrix and

the template of the CHO were estimated using the 100 signal-

absent images and the 100 signal-present images. The tem-

plate was then multiplied by the channel output of the test im-

ages to generate the decision variables for the two images in

each 2AFC trial. The same set of images was used for training

the CHO and estimating the performance. This is consistent

with one of the training-testing strategies described in page

973 in Ref. 56.

Figure 5 illustrates how the CHO makes decisions for each

2AFC trial. Note that we ran the CHO for each 2AFC trial

and compared the decision made by the CHO with the truth

to obtain the percent correct. To estimate the variation of per-

cent correct caused by the internal noise, we applied the CHO

on each trial 200 times. The standard error of the percent cor-

rect for each 2AFC study was calculated. An alternative ap-

proach to quantifying the performance of a model observer is

to calculate the signal to noise ratio (SNR) or a receiver op-

erating characteristic (ROC) curve using the test statistics in

signal-present and signal-absent images without applying the

template to each trial image. The area under the ROC curve

(Az) obtained using this approach is equivalent to the percent

correct obtained from a 2AFC experiment.57

III. RESULTS

III.A. Calibration of internal noise

The percent correct of CHO decreased as a function of the

weighting factor α in the internal noise (Fig. 6). For com-

parison, the percent correct of the human observer for the

same configuration (5 mm rod, 120 mAs, FBP reconstruction)

was also displayed. The α value of 9.35 was determined to

generate the same percent correct between model and human

Medical Physics, Vol. 40, No. 4, April 2013
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FIG. 6. For medium size (5 mm) lesion and 120 mAs, a calibration of inter-

nal noise was performed. The final internal noise was determined to be 9.35

times the noise of the decision variable when signal was absent.

observers. This value was used in all the rest of the mAs levels

and lesion sizes for both FBP and IR.

III.B. Performance correlation between model
and human observers for FBP reconstruction
at various dose levels

The performance in terms of percent correct predicted by

the CHO was compared with that obtained by four medical

physicists for the 15 2AFC studies involving images recon-

structed with the FBP method. The results from human and

model observers were highly correlated at each mAs level for

each lesion size (Fig. 7). The error bars in Fig. 7 for the hu-

man observer were based on the standard errors calculated as

described in Sec. II.C., which correspond to the 68% confi-

dence interval. The error bars for the model observer were

based on the standard error of the percent correct calculated

from multiple realizations (200 times) of the internal noise

FIG. 7. Percent correct in each of the 15 2AFC tasks obtained by human

observers (filled square symbols) and predicted by the CHO model observer

(empty square symbols). The 15 2AFC tasks were generated at five mAs lev-

els (60, 120, 240, 360, and 480 mAs) and three lesion sizes (small, medium,

and large).

FIG. 8. Bland-Altman plot of percent correct difference between human and

model observers in the 15 2AFC tasks for FBP reconstruction. The two solid

lines (−3.3% and 2.4%) indicate the average difference ±2σ , where σ is the

standard deviation of the differences.

for each 2AFC study, which also correspond to the 68% con-

fidence interval. The Pearson’s product-moment correlation

coefficients were 0.982 [95% confidence interval (CI): 0.752–

0.999], 0.981 (95% CI: 0.735–0.999), and 0.948 (95% CI:

0.398–0.997) for small, medium, and large lesions, respec-

tively (JMP 9.0.1, SAS Institute Inc.). The overall correla-

tion coefficient was 0.986 (95% CI: 0.958–0.996). When ex-

cluding the results from the large lesion, which approached

100% in four out of the five dose levels, the correlation co-

efficient was still as high as 0.983 (95% CI: 0.928–0.996).

Bland-Altman plots showed excellent agreement for all dose

levels and lesions sizes with a mean absolute difference of

1.0% ± 1.1% (Fig. 8). The range of the differences, which is

given by [	 − 2σ , 	 + 2σ ], was [−3.3%, 2.4%], where 	

is the mean difference and σ is the standard deviation of the

differences between model and human observers.

III.C. Impact of iterative reconstruction
on performance correlation between human
and model observers

Figure 9 compares the performance predicted by the CHO

with that obtained by the human observers for the IR re-

constructed images at the two lower mAs settings (60 and

120 mAs). As a reference, the performance with the FBP re-

construction is also shown in the same figure.

One can see that, with the use of IR, the percent cor-

rect predicted by the model observer is still in excellent

agreement with that measured by the human observer, with

a mean absolute difference of 2.1% ± 3.3%. The Pear-

son’s product-moment correlation coefficients were 0.985

(95% CI: 0.863–0.998) for all lesions. Figure 10 shows

a Bland-Altman plot for all 21 2AFC tasks, including 15

for FBP and 6 for IR. The mean absolute difference for

all 21 tasks was 1.0% ± 1.0%. The range of the differ-

ences for the 6 tasks for IR which is given by [	 − 2σ ,

	 + 2σ ], was [−8.8%, 5.2%], where 	 is the mean differ-

ence and σ is the standard deviation of the differences be-

tween model and human observers. The range of the differ-

ences for all 21 tasks were [−3.2%, 2.2%].

Medical Physics, Vol. 40, No. 4, April 2013
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FIG. 9. Performance comparison between human observers (filled square

symbols) and model observers (empty square symbols) for the six 2AFC

tasks when IR reconstruction was applied. The six 2AFC tasks were gen-

erated at two mAs levels (60 and 120 mAs) and three lesion sizes (small,

medium, and large). The performance for the 2AFC tasks when FBP recon-

struction was used was also displayed as a reference.

The highest discrepancy occurred for the small lesion at

120 mAs, where the difference between the two was −8.6%.

In this setting, all human observers performed much worse

than expected (even worse than a lower dose setting at

60 mAs). Excluding this unexpected exception, the mean

absolute difference of other five predictions was 0.8% ±

1.0% and the range of the differences was [−3.0%, 2.1%].

The Pearson’s product-moment correlation coefficients were

0.998 (95% CI: 0.973–1.0).

III.D. Does iterative reconstruction
improve performance?

From Fig. 9, one can see that the performance achieved by

human observers and predicted by model observers both did

FIG. 10. Bland-Altman plot of percent correct difference between human

and model observers in all 21 2AFC tasks. The two solid lines (−3.2% and

2.2%) indicate the average difference ±2σ , where σ is the standard deviation

of the differences. For the six points with IR, the average difference ±2 σ is

[−8.8%, 5.2%]. If excluding the only point with a big difference of −8.6%

(120 mAs and small lesion), the average difference ±2 σ is [−3.0%, 2.1%],

similar to FBP.

not show a clear sign that IR improved the performance in the

2AFC tasks for all dose and lesion size setting. For medium

lesion size (5 mm in diameter), there was an improvement by

human observers, from 88.3% ± 2.7% to 91.5% ± 2.1% at

60 mAs (p = 0.14, two-tail paired t-test) and from 92.5%

± 1.8% to 98.3 ± 0.9% at 120 mAs (p = 0.028, two-tail

paired t-test). The improvement at 120 mAs was statisti-

cally significant. Such a trend of improvement was predicted

correctly by the model observer, from 86.5% ± 3.2% to

91.3% ± 2.9% at 60 mAs and from 92.4% ± 2.6% to 97.6%

± 1.4% at 120 mAs. For large lesion size (9 mm), the perfor-

mance was almost identical for both human (p = 0.34) and

model observers (p = 0.72), maybe due to the fact that the

percent correct is close to saturation (100%). For small lesion

size (3 mm), however, the performance became unexpectedly

worse at 120 mAs for human observers when IR was applied

(from 79.8% ± 2.8% to 68.8 ± 3.0%, p = 0.021). Model ob-

server predicted a slight drop from 78.3% ± 4.1% to 77.4%

± 3.8%, but was not statistically significant.

IV. DISCUSSION

Although task-based image quality metrics using model

observers have been studied extensively over the past three

decades,13, 14 relatively few studies have been done in clin-

ical CT.45–48 Boedeker et al. used a NPW model observer

calculated from spatial frequency-based metrics (MTF and

NPS) to quantify the influence of reconstruction kernel and

radiation dose on the SNR in a simple detection task.46 The

signal in that study was generated by simulation, whereas

NPS was measured from repeated phantom scans. Wunder-

lich and Noo derived the analytical formula of image co-

variance in direct fan-beam CT reconstruction and used a

CHO for modeling the performance in a simulated lesion

detection task.47 Richard et al. investigated the relationship

between model observers and human observer performance

for detection tasks in multislice CT.48 In their study, the

model observers were frequency-based metrics using NPS

and MTF and a computer simulation was employed to gener-

ate the lesions in the detection task. The concept of NPS and

MTF assumes linear and shift-invariant properties of noise

and spatial resolution. However, the shift-invariant assump-

tion is not valid in CT imaging systems, due to the divergent

x-ray beam. The linear assumption is also violated with the

use of iterative reconstruction.12 In addition, the frequency-

based model observer calculation assumes that noise is sta-

tionary and Gaussian and that the objects to be discrim-

inated are nonrandom and known exactly.13, 25 Frequency-

based model observers have to account for violation of these

assumptions.

In the current study, we investigated how well an image-

based CHO model observer can predict human observer per-

formance for a simple 2AFC lesion-detection tasks using re-

peated actual CT scans. Due to the nonstationary noise and

resolution properties in CT, it is important to use repeated CT

scans to obtain reliable statistical information that is used to

calculate the covariance matrix and intraclass scatter matrix.

The existing model observer studies in CT simulated signals
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in order to generate multiple realizations of signal-present

images.46–48 We used real CT scans for both signal-absent and

signal-present images instead of inserting simulated signals

onto background. We did this by scanning the phantom re-

peatedly using exactly the same settings, both with and with-

out lesions, and then created each 2AFC study with a perfect

match of location. This relatively tedious process was used

in order to reduce the potential inconsistency between signal-

absent and signal-present images. It should be noted that there

are likely some correlations among the results for the small,

medium, and large lesions for a given mAs setting since they

are acquired from the same scan. In an ideal setup, the phan-

tom should be designed to contain only one single rod in or-

der to completely avoid the potential correlation. However,

this will make the study extremely difficult (e.g., it requires

a total of 3000 scans to perform this study). We expect that

the impact from the correlation introduced by including three

lesions in the same scan is minimal.

We achieved excellent agreement in performance between

human and model observers at various dose levels for both

FBP and an IR method. These results imply that the CHO

model has the potential to be used for optimizing radiation

dose and scanning protocols for clinical scenarios. However,

one important limitation of the current study is that the phan-

tom consists of a uniform water background and the task

is a simple 2AFC detection task. How realistic anatomical

background affects the agreement of model and human ob-

servers in clinical CT remains to be investigated. The model

observers may need to be modified in order to achieve reason-

able agreement. Phantoms with a more realistic background

may need to be constructed to accurately simulate realistic di-

agnostic tasks. It is also desirable to evaluate on more compli-

cated tasks, such as lesion classification and lesion detection

with signal known statistically (SKS) in realistic background.

Model observers have been developed in the past to incorpo-

rate these more realistic tasks.30, 58 In clinical CT, these re-

main to be topics of future research. We have already studied

the effect of unknown location on the detection of lesions us-

ing a similar experimental setup,59 which will be reported in

a second paper.

It should also be noted that CT image pixel value instead of

“perceived luminance” by human visual system was used as

the input to the model observer in this study. Given that the

display monitor was calibrated appropriately following the

ACR Technical Standard for Electronic Practice,53 the just no-

ticeable difference (JND) index is a linear function of CT im-

age pixel value when the display lookup table is linear within

the range defined by the display window/level.60 For this rea-

son, we do not expect that using CT image pixel value as the

input to the model observer would generate a different result

from using perceived luminance as the input.

Once a model observer is verified to be highly predic-

tive of human observers in realistic diagnostic tasks, objec-

tive image quality assessment in CT becomes feasible, which

will allow efficient optimization of scanning protocols and

CT imaging systems without performing time-consuming and

expensive observer performance studies for each diagnostic

task.

V. CONCLUSIONS

A CHO-based model observer can be used to accurately

predict human observer performance for a 2AFC low-contrast

detection task on a uniform background at different radiation

dose levels and for both FBP and IR methods, potentially pro-

viding a quantitative approach to efficiently optimizing CT

protocols and radiation dose.
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