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Abstract – A novel multiple regression method (RM) is developed to predict identity-by-
descent probabilities at a locus L (IBDL), among individuals without pedigree, given infor-
mation on surrounding markers and population history. These IBDL probabilities are a function
of the increase in linkage disequilibrium (LD) generated by drift in a homogeneous popula-
tion over generations. Three parameters are sufficient to describe population history: effective
population size (Ne), number of generations since foundation (T ), and marker allele frequen-
cies among founders (p). IBDL are used in a simulation study to map a quantitative trait locus
(QTL) via variance component estimation. RM is compared to a coalescent method (CM) in
terms of power and robustness of QTL detection. Differences between RM and CM are small
but significant. For example, RM is more powerful than CM in dioecious populations, but not
in monoecious populations. Moreover, RM is more robust than CM when marker phases are
unknown or when there is complete LD among founders or Ne is wrong, and less robust when
p is wrong. CM utilises all marker haplotype information, whereas RM utilises information
contained in each individual marker and all possible marker pairs but not in higher order inter-
actions. RM consists of a family of models encompassing four different population structures,
and two ways of using marker information, which contrasts with the single model that must
cater for all possible evolutionary scenarios in CM.

QTL fine mapping/ identity-by-descent

1. INTRODUCTION

The concept of genetic relationship plays a key role in many areas of ge-
netic research. Genetic relationships have been traditionally estimated from
pedigrees, and also recently from marker information. Thus, if a pedigree is
not available, relationships can still be inferred from marker data alone. Some
methods use unlinked markers to calculate the probability of two individuals
being, for example, full-sibs or parents and offspring [10, 20]. However, since
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not all genetic relationships can be so clearly defined in a fixed, and usually
small number of categories, it seems more practical to calculate a continu-
ous quantity defined in terms of identity-by-descent (IBD) probabilities. These
IBD probabilities are extensions of classical coefficients of kinship [11]. How-
ever, most of the available approaches (e.g. [9,10,20–22,24]) do not jointly use
population history information and multiple linked markers to predict genetic
relatedness, despite the fact that related individuals must share common an-
cestors, and therefore have a common history, and that multiple linked mark-
ers contain more information about IBD status at a particular chromosomal
location L (IBDL) than multiple unlinked ones.

Meuwissen and Goddard [13, 14] proposed a new estimator of relationship
based on multiple linked markers and population history information. This
method capitalises on the expected built-up of linkage disequilibrium (LD)
over generations, accounting for the correlations between loci due to both link-
age and genetic drift. However, they considered only the simplest population
history, i.e. one in which initial allele frequencies (p) changed due to drift, in a
monoecious population of constant effective size (Ne), over T discrete genera-
tions of random mating and selfing. Under this model, IBDL probabilities are
expected to increase with decreasing Ne, because parental alleles will be sam-
pled from smaller pools, and with increasing T , because more alleles will have
been lost by drift in the population. Meuwissen et al. [15], Meuwissen and
Goddard [14] analysed a cattle pedigree using an IBD-based variance compo-
nent analysis, and achieved a resolution of <1 centi-Morgan (cM) in mapping a
QTL for twinning rate, and of ∼0.04 cM for a QTL affecting milk traits. These
examples highlight the potential benefits in terms of power and resolution of
combining information on linkage and LD. Our prime interest is also to enable
fine mapping of QTL using variance component estimation (e.g. [3]), with-
out assuming unrelated and non-inbred pedigree founders (e.g. as in linkage
analysis).

However, at the heart of the idea of inferring IBDL from homozygosity,
or identity-by-state (IBS), at linked marker loci lies the concept of expected
IBD between k loci (θk). These parameters were not used in Meuwissen
and Goddard’s work, instead, the coalescent theory was applied [7, 8], and
henceforth their method will be called the coalescent (-based) method (CM).
Our method uses a regression approach, henceforth called regression (-based)
method (RM), to predict IBDL as a function of θk, p and IBS at markers (x).

Other differences between CM and RM are the following: (1) CM utilises
all haplotype information and RM utilises information contained in single
markers and marker pairs but not in higher order interactions, although it is
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possible to accommodate these interactions; (2) CM infers IBD “en bloc”
whereas RM infers loci IBD without interpolating IBD predictions between
loci; (3) CM models a monoecious population with selfing (MS) whereas
RM models that plus a monoecious population excluding selfing (ME), and
dioecious populations with and without hierarchical mating (DH and D, re-
spectively); (4) CM does not distinguish between inbreeding and coancestry
whereas RM does; and (5) CM consists of a single model whereas RM consists
of a family of models that can use genotype or (partial) haplotype information.

A weakness of both RM and CM methods is the assumption that population
parameters Ne, T , p, and marker haplotypes are known without error. In prac-
tice, this information may be partially or totally unknown. Therefore, we use
computer simulations to compare the robustness as well as the power of both
methods in detecting QTL.

2. MATERIALS AND METHODS

2.1. General assumptions

Our objective was to calculate IBDL probabilities between pairs of alleles
sampled at a prospective QTL location L, using historical information and
marker data, without pedigree information.

Under the same population model used by Meuwissen and Goddard, two
completely homozygous (IBS) haplotypes such as [111L111] and [111L111]
will have, on average, higher IBDL than two completely heterozygous haplo-
types such as [111L111] and [222L222] (the numbers denote observed marker
alleles). The strength of this statement depends on recombination patterns, i.e.
IBS information has greater weight with tight linkage than with loose link-
age, and on population history, i.e. high IBDL probabilities are more likely as
Ne decreases, or as T increases. The value of IBS information to predict IBD
also depends on initial levels of IBS, i.e. depends on marker allele frequencies
p at t = 0, because an extreme p leads to high levels of homozygosity among
random haplotypes.

We will develop a method (RM) that takes all this information into ac-
count, and accurately models four different mating schemes (populations). In
MS populations, individuals within a generation are hermaphrodites and can
mate with themselves. In ME populations, individuals are hermaphrodite but
cannot mate with themselves. In D populations, individuals are single sex and
can only mate with individuals of the opposite sex. In DH populations, every
male is mated to a fixed number of females each generation.
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In general, two marker haplotypes must be compared to predict IBDL, so it
is more useful to use the notation IBDiu, jv, which stands for the probability that
an allele at locus L carried by individual i on haplotype u is IBD with an allele
at the same locus carried by individual j on haplotype v.

2.2. Constructing an RM model to predict inbreeding

2.2.1. A single marker model

The regression model to predict inbreeding of individual i at locus
L (IBDi1,i2) is

IBDi1,i2 = θ1 + bXi (1)

where 1 and 2 refer to the two different alleles at locus L (IBDi1,i1 = 1),
θ1 (usually denoted as F̄) is the mean population inbreeding at one locus, b is
the regression coefficient relating observed IBS at the marker with expected
IBDi1,i2, and Xi = xi − x̄ is the adjusted IBS at the marker. Moreover, xi is an
observed variable with expectation x̄ (Eq. (A.1)), taking value 1 if individual i
is homozygous at the marker, or 0 otherwise.

The regression coefficient is b = σ(IIBD,IIBS )
σ2(IIBS ) , where IIBD is an indicator vari-

able taking value 1 if locus L is IBD, or 0 otherwise, and IIBS is another indi-
cator variable taking value 1 if a marker is IBS, or 0 otherwise. The variance
σ2 (IIBS ) (Eq. (A.3)), and covariance σ (IIBD, IIBS ) (Eq. (A.12)) are functions
of parameters p and θk=1...4, i.e. b ∝ (θk=1...4, p). Parameter θk is the proba-
bility of sampling an individual inbred at k loci. θk is a function of T , Ne,
recombination rates c between all loci (markers and locus L), and type of
population, i.e. θk ∝ (T,Ne, c, population), thus it contains information about
historical recombinations (i.e. about linkage disequilibrium). Note that θk is
different from IBDiu, jv, the former is a population expectation independent of
marker data (xi), the latter is a variable which is a function of θk, p and xi, i.e.
IBDiu, jv ∝ (θk=1...4, p, xi) ∝ (T,Ne, c, population, p, xi). Cockerham, Weir and
co-authors [2,25–27] developed exact formulae for θ2. We extended this theory
to predict approximations for θ3 and θ4 in all populations [6], using a model
similar to (1) but regressing IBD at neighbouring loci on IBD at a central locus.
The average inbreeding at one locus θ1 is equal to θ2 given c = 0.

In the absence of marker data IBDi1,i2 = θ1, and all individuals would have
the expected population inbreeding. Another situation in which different indi-
viduals will have the same predicted inbreeding at locus L is when they have
identical marker data.
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Table I. The vector of weights is R = GV−1. In RMh, which includes markers in-
teractions, V is the (co)variance of IBS among markers and marker pairs, and G the
covariance of IBS between markers or marker pairs, and IBD at locus L. The ele-
ments of V and G for two markers A and B are given below. It was assumed that
ΠA = ΠB = Π , and θA = θB = θ. Moreover, xi and yi denote IBS and IBD, respectively,
at locus i, and ηi j = θi j − θ2.

V xA xB xAB

xA (1 − θ) (1 − Π) (θ + (1 − θ)Π) ηAB (1 − Π)2 x̄AB (1 − θ) (1 − Π)
xB (1 − θ) (1 − Π) (θ + (1 − θ)Π) x̄AB (1 − θ) (1 − Π)
xAB x̄AB (1 − x̄AB)

G xA xB xAB

yL ηAL (1 − Π) ηBL (1 − Π) xAByL − x̄ABȳL

2.2.2. A multimarker model

Model (1) can be naturally extended to use M markers (vectors in bold)

IBDiu,iv = θ1 + R′X (2)

where R is a vector of weights, or partial regression coefficients, relating IBS
at all single markers and marker pairs with IBDiu,iv, and X is the vector of
adjusted IBS observations at all markers and marker pairs. So, for M markers,
the maximum size of R and X will be M(M+1)/2.

For example, assume markers A and B have been genotyped in individual i.
The vector R′ is [bA, bB, bAB], where bA(B) denotes the main effect of marker
A(B) on IBDiu,iv, and bAB denotes the effect of the interaction between markers
A and B on IBDiu,iv. R can be obtained as GV−1, where G is a vector of covari-
ances between IBS and IBD, and V is a matrix of IBS (co)variances among all
markers and marker pairs. Table I shows all the necessary elements to obtain
R in the two marker case. Appendix A contains all the necessary information
to expand Table I for any number of markers.

The vector of adjusted IBS observations is X′ = [XA, XB, XAB], where XAB =

xAB− x̄AB, and where xAB is an observed variable for IBS taking value 1 if both
markers A and B are simultaneously homozygous, and 0 otherwise (for more
details see App. A).

In theory, equation (2) can be extended to take into account higher order
marker interactions, e.g. IBS at marker triplets, quadruplets, etc. However,
in order to construct the appropriate model, parameters θk>4 are essential.
These multiloci parameters must be developed either by extending Weir and
Cockerham’s theory or by using our approximations [6].
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2.2.3. Haplotype versus genotype RM models

The ability of RM to use IBS at single markers and also joint IBS at marker
pairs, allows us to create a battery of models adaptable to particular experi-
mental needs. Here, we call genotype RM (RMg) the model that fits all markers
singly, and we call haplotype RM (RMh) the model that fits all possible marker
pairs in addition to single markers. Strictly speaking RMh, as implemented in
this manuscript, should be called a partial haplotype RM since no interactions
between 3 or more loci are fitted. RMh should be preferentially used when full
haplotype information is available otherwise RMg would be more appropriate.

2.3. Constructing an RM model to predict coancestry

Coancestry measures IBD between individuals. In MS populations, there is
no distinction between inbreeding and coancestry, and therefore equation (2) is
appropriate to calculate IBDiu, jv, for all i � j. Nevertheless, we have found that
more accurate results can be obtained using θk=1...4 at generation t+1 to predict
coancestry at generation t, because inbreeding in offspring equals coancestry
among parents.

In ME, D and DH populations, the probability that two haplotypes carry IBD
alleles at locus L depends on whether these haplotypes were sampled within
or between individuals. In Weir et al. [27], two θ2 parameters are calculated,
one within and the other between individuals. Thus, in equation (2), θ2 within
individuals should be used when i = j, and θ2 between individuals when i � j.

All IBDiu, jv probabilities are arranged in a gametic matrix of rank 2N. For
the purpose of analysis, this matrix is reduced to an individual matrix of rank

N where each cell (i, j) contains the probability IBDi j =
1
2

2∑
u,v=1

IBDiu, jv, where

u and v denote haplotypes within individuals i and j, respectively (App. B).

2.4. A coalescent-based method

Meuwissen and Goddard [13] inferred pair-wise IBD probabilities between
haplotypes using the coalescent theory, which is an approximate representation
of genealogies [7,8]. The coalescent recreates the phylogenetic tree among cur-
rent population members proceeding backwards in time, until a single expected
common ancestor is reached, and all lineages have merged.

Note that CM does not distinguish IBDiu, jv between a situation where i =
j (i.e. estimating inbreeding) from a situation where i � j (i.e. estimating
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coancestry), because it was derived only for MS populations. Another sub-
tle difference between CM and RM is that, at its core, CM estimates en bloc
IBD probabilities, i.e. the probability of IBD segments between two haplotypes
that include locus L and a region on both sides of L. This is a feature common
to other theories as well [17,18]. On the contrary, RM makes point inferences,
from locus to locus, without interpolating IBD statuses between loci, and there-
fore it is less restrictive in concept, particularly over large distances.

2.5. Simulations

A population is founded at generation zero (t = 0) with N unrelated and
non-inbred individuals. When simulating D and DH populations, we chose a
male to female ratio of 1:9, e.g. a cattle herd. All marker allele frequencies
are 0.5, and the population is in linkage equilibrium (LE) and Hardy-Weinberg
equilibrium (HWE). There are 11 biallelic markers in total, evenly spaced over
10 cM, and a QTL placed in the centre of that region, at 5 cM from each end
(i.e. on top of marker 6). At t = 0, each marker allele is labelled either 0 or 1
with probability 1/2, and QTL alleles are labelled 1 to 2N, so that we can eas-
ily distinguish what QTL alleles are IBD in later generations. The population
evolves over T discrete generations, with a fixed size per generation. Mating
is at random, although the specific mating pattern is one of four possible, i.e.
MS, ME, D or DH (see earlier). These mating schemes are all specifically
modelled in RM through parameters θk=1...4. The increase of IBD probabilities
at the QTL and the build-up of LD between QTL and markers occur because
of drift, i.e. no other evolutionary force is acting.

The QTL effect was simulated in the last generation (T = 100 for monoe-
cious populations, and T = 50 for dioecious) by choosing a QTL allele at
random among all surviving alleles, and giving an effect of 1 to all alleles
identical to the chosen allele, or 0 otherwise. Thus, the frequency of the allele
with effect 1 ranged from 0.005 to 1, with a heritability ranging from 0 to ∼0.5,
and averaging ∼0.28. There was no polygenic variance, and the residual error
was drawn from a standard normal distribution. There were no other fixed or
random effects affecting the trait.

2.6. Comparing RM and CM in terms of power and robustness
of QTL detection

Power is the probability of detecting a true QTL, and robustness is the
independence between initial assumptions and final results. Both power
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and robustness were measured as residual log-likelihood ratios, i.e. LR =
−2 ln (LH0/LH1), between a model for the null hypothesis of an unlinked QTL
(H0: cL = 0.5), and a model for the alternative hypothesis of a linked QTL
(H1:cL < 0.5), where L is now the location at which LR is evaluated, and cL

denotes the recombination rate between location L and the true QTL location.
The phenotypes are modelled as y = µ + a + e, where y is a vector of

phenotypes, µ is a vector with the overall mean, a is a vector of additive QTL
effects for each individual, and e is a vector of random, normally distributed
residuals. The residual log likelihood of the previous model is

L
(
GL,σ

2
a ,σ

2
e

)
∝ −0.5

[
ln |V| + ln

∣∣∣1′V−11
∣∣∣ + (y − µ)′ V−1 (y − µ)

]

where σ2
a is the variance of vector a, which is equivalent to the QTL variance

estimated at location L, σ2
e is the variance of vector e, and GL is the matrix

of IBD probabilities among individuals at location L (1 denotes a unit vector).
The phenotypic variance is V = σ2

aGL + σ
2
eI, where I is the identity matrix.

This likelihood is maximised with respect to σ2
a and σ2

e at each location L
using ASREML [4].

The covariance between individuals due to the QTL was modelled with the
individual IBD matrix GL obtained with CM, RMh or RMg. Under H0, LR is
distributed with a probability mass of 1/2 at LR = 0 and continuously with a
density equivalent to 1/2 χ2

1 for LR ≥ 0 giving a critical value at a 5% error rate
of 2.7 [17]. We calculated LR at the midpoint between every consecutive pair
of markers (10 locations) plus marker 6 (the true QTL location), and averaged
the results over 1000 replicates. The results were virtually the same as with
100 replicates (not shown).

We chose as a measure of power the average LR at marker 6 given cor-
rect population parameters, and as a measure of robustness the same LR given
wrong population parameters. Robustness was studied only in the case of an
MS population, to allow fair comparisons with CM. There were four different
scenarios in which robustness was tested: (1) maximum LD among founders,
(2) p = 0.9 was correct but a wrong 0.5 was used, (3) Ne = 100 was correct
but a wrong 50 was used, and (4) only genotypes were available, i.e. marker
phases were unknown.

3. RESULTS

3.1. The effect of mating scheme on power of QTL detection

Figure 1 shows the impact of different random mating schemes on the per-
formance of RMh and CM. The plots are average LR obtained at 11 positions,
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Figure 1. Power of QTL detection under four different random mating schemes using
either CM (dotted line) or RMh (continuous line) to predict IBD. MS: Monoecious
with selfing, ME: Monoecious excluding selfing, D: Dioecious, DH: Dioecious with
hierarchical mating, LR = −2 ln (LH0/LH1), where LHi is the likelihood under Hi

hypothesis, cM: centi-Morgans. There were 1000 LR tests averaged at the centre of
each marker interval, and at marker 6 (5 cM from either end and where the QTL
is). Population parameters were: 10 males and 90 females; T = 100 for monoecious
schemes, and 50 for dioecious schemes; p = 0.5; and LE at generation 0. Significance
for a paired t-test of differences at marker 6: *** denotes p < 0.001, ** denotes
p < 0.01.

i.e. at the centre of each marker interval plus at the true QTL position on
marker 6, along a chromosome segment of 10 cM. One thousand different
data sets were simulated within each of the mating schemes or populations
(MS, ME, D, DH). Both RMh and CM LR profiles are symmetric with respect
to the maximum average value located on marker 6, i.e. the results are unbi-
ased. The differences between RMh and CM across populations were small but
highly significant in most cases. The asterisks in Figures 1, 2 and 3 represent
p-values associated with the H0 hypothesis of no difference in mean LR be-
tween RMh and CM at marker 6 (paired t-test with 999 degrees of freedom).
Three asterisks denote p < 0.001, two denote p < 0.01, and ns denotes not
significant. We tested LR differences between methods at all other positions
on the chromosome. For example, the eleven p-values for the paired t-test in
the MS population of Figure 1 are <10−16, <10−5, 0.4, 0.01, <10−7, <10−14,
<10−8, <10−4, 0.5, <10−4, <10−14, indicating that unless the two profiles are
very close (e.g. as in the LD population in Fig. 2), differences in mean LR are
likely to be significant.

The average LR at marker six can be used as a measure of power of QTL
detection. Thus, RMh is more powerful than CM in dioecious populations,
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and less powerful in monoecious populations (p < 0.001 for a paired t-test in
ME, MS, and D, and < 0.01 in DH). This is unsurprising given that, on the
one hand, CM can use all haplotype information, whereas RMh uses partial
haplotype information up to all pair-wise marker interactions, and on the other
hand, RMh can model four different populations, whereas CM models only an
MS population.

In addition to the height, the sharpness of the profile also contains valuable
information for mapping QTL because sharper profiles correspond to smaller
confidence intervals around location estimates. RMh produced sharper profiles
than CM in dioecious populations, but not in monoecious populations.

Table II shows estimates of two alternative measures of power obtained at
marker six, i.e. the probability of rejecting the H0 of unlinked QTL with a
5% error rate, and the odds of RMh rendering a higher LR than either CM
or RMg. The probabilities of rejecting H0 were very similar across methods,
and although CM rejected H0 slightly more times than RHh, it happened less
than 2% of the time. The odds of RMh/CM denote how many times is RMh

more likely to render a higher LR than CM for the same data set. These odds
show clearer differences between methods than the proportion of times H0

is rejected. For example, the odds of RMh/CM in monoecious populations
was ∼0.9, whereas in dioecious populations was >1.6. In order to get the over-
all picture of power of these methods, all three measures of power (average
LR, probability of rejecting H0, and odds ratio) have to be considered together.
For example, in D populations, RMh rendered a larger LR than CM ∼2/3 of
the times (∼1.8 odds ratio), its average LR was only slightly larger (19.7 vs.
19.5) although significant (p < 0.001), but there were no differences in the
probability of rejecting H0 (∼0.9 for both methods). These power estimates re-
flect different features of the distribution of LR. For example, the distribution
obtained with RMh in D populations tends to be flatter, and with thicker and
longer tails than the distribution obtained with CM (not shown), explaining
why RMh has a larger mean than CM and why it tends to render more ex-
treme LR values. Even though, the proportion of the distribution greater than
the threshold 2.7 seems to be approximately equal for both methods.

Table II also shows estimates of QTL (σ2
QT L) and residual (σ2

e) variances

at marker six. Both methods overestimated σ2
QT L, and slightly underesti-

mated σ2
e. These biases increased with distance between the tested position

and the QTL (not shown). Nevertheless, CM was consistently less biased
than RMh. It is not clear what proportion of the bias was caused by the vari-
ance estimation procedure, i.e. constraining variances to be positive in REML
analyses, and what by the method of IBD estimation per se.
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Table II. Comparing RMh vs. CM, and RMh vs. RMg regarding power, robustness,
and variance components calculated at the true QTL location (marker 6).

Reject H0 Odds σ2
QT L σ2

e

Power

RMh CM RMh/CM RMh CM RMh CM

MS 87 88 0.9 ns 0.81 0.65 0.95 0.97

ME 87 88 0.92 ns 0.73 0.64 0.95 0.98

D 90 90 1.82 ∗∗∗ 0.82 0.63 0.99 0.99

DH 88 89 1.63 ∗∗∗ 0.78 0.59 0.99 0.98

Robustness

LD 80 83 0.85 ∗ 1.03 0.98 0.94 0.96

P 53 55 1.15 ∗ 1.56 0.82 1.06 1.14

N 83 84 1.21 ∗∗ 0.71 0.64 1.03 1.04

H 87 86 1.61 ∗∗∗ 0.58 0.5 0.97 0.99

RMh vs. RMg

RMh RMg RMh/RMg RMh RMg RMh RMg

C 86 85 1.22 ∗∗ 0.73 1.18 0.96 0.86

LD 81 79 0.63 ns 0.83 0.9 1 0.9

P 56 56 1.11 ns 1.83 4.69 1.05 0.86

H 86 87 1.11 ∗∗∗ 0.59 0.9 0.97 0.9

RMh(g): regression method using haplotype (genotype) model;
CM: coancestry method;
Reject H0: % times H0 is rejected at a 5% error rate;
Odds RMh/CM: number of times RMh renders a higher LR than CM;
odds RMh/RMg: number of times RMh renders a higher LR than RMg;
σ2

QT L: QTL variance (true average variance = 0.4);
σ2

e : residual variance (true average variance = 1);
MS: monoecious with selfing (Ne = T = 100);
ME: monoecious excluding selfing (Ne = T = 100);
D: dioecious (Ne = 100, T = 50);
DH: dioecious with hierarchical mating (Ne = 100, T = 50);
LD: maximum LD among founders;
P: wrong p (true = 0.9, used =0.5);
N: wrong Ne (true = 100, used = 50);
H: wrong haplotypes (unknown marker phases);
C: correct parameters;
A non-parametric sign test was used to determine the significance of odds ratios:
p < 0.001(∗∗∗), p < 0.01(∗∗), p < 0.05(∗), or not significant (ns).
The comparison between RMh and RMg was for an MS population.
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Figure 2. Robustness of QTL detection under a monoecious population with selfing
using either CM (dotted line) or RMh (continuous line) to predict IBD. Population pa-
rameters were: N = 100; T = 100; p = 0.5; LE at generation 0. The parameter changes
were: LD denotes maximum LD among founders, P denotes p was 0.9 but assumed to
be 0.5, Ne denotes Ne was 100 but assumed to be 50, and H denotes haplotype errors.
LR = −2 ln (LH0/LH1), where LHi is the likelihood under Hi hypothesis, cM: centi-
Morgans. There were 1000 LR tests averaged at the centre of each marker interval, and
at marker 6 (5 cM from either end and where the QTL is). Significance for a paired
t-test of differences at marker 6: *** denotes p < 0.001, ns denotes p > 0.05.

In summary, RMh is slightly more powerful, and has sharper LR profiles
than CM in dioecious populations but not in monoecious populations. Different
measures of power help in understanding the performance of these methods,
since each measure was more sensitive to different properties of the distribution
of LR. The variance components were biased, especially σ2

QT L, and more for
RMh than for CM.

3.2. The robustness of CM and RM to wrong assumptions

Figure 2 shows LR profiles when one of the population parameters used in
the simulations was assumed to be inaccurately known, i.e. recreating a situa-
tion where there is poor historical information to predict IBDL. We examined
robustness in MS populations, because this is the only mating scheme mod-
elled by CM. It is expected that RMh will be more robust than CM in D and
DH populations.

The use of inaccurate historical parameters did not bias the location
estimates, but reduced the power of QTL detection in all cases, causing
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power losses from ∼1 to ∼8 LR units. Both methods were fairly robust to
misspecifications in all parameters but p. Underestimating homozygosity in
founders, i.e. assuming p = 0.5 when the real value was 0.9, caused the largest
observed power loss, probably due to an overoptimistic belief in the informa-
tion content of homozygous markers coupled with higher than expected levels
of homozygosity at any generation.

RMh and CM are robust to wrong parameters Ne and T (not shown), and
wrong LE assumption, i.e. when there is maximum LD among founders. In
all these situations, both methods rendered similar LR profiles (p > 0.05 for a
paired t-test everywhere but the most distant markers). Note that CM was more
powerful than RMh in MS populations under correct assumptions (Fig. 1).
Thus, the fact that LR profiles became almost identical when some parame-
ters were inaccurate, e.g. Ne, indicates that RMh lost less power, and therefore
it was more robust, than CM.

The two other scenarios in which robustness was tested were wrong p and
unknown haplotypes. RMh was less robust than CM in the former scenario but
more in the latter. The fact that RMh tends to give higher LR values than CM
in both scenarios (odds RMh/CM in Tab. II) can be explained by the shape of
the distribution of LR, i.e. more skewed and flatter for CM than for RMh (not
shown). Hence, although in more replicates RMh renders a higher LR than CM,
in some replicates CM renders an LR considerably larger than RMh.

Both methods still showed biased σ2
QT L estimates at marker six, but this

time, differences between methods were much smaller; especially when Ne
was wrong, there was maximum LD among founders, or marker phases were
unknown. The largest bias occurred in both methods when p was wrong, i.e.
both σ2

QT L and σ2
e were overestimated.

In summary, RMh lost less power relative to CM when Ne was wrong, there
was maximum LD among founders, or marker phases were unknown. More-
over, in all these situations both methods rendered very similar σ2

QT L estimates.
Only when p was wrong, CM still showed a small advantage of 0.2 LR units
over RMh.

3.3. Comparing haplotype and genotype models of RM

RMh was more powerful and robust than RMg in all cases except, pre-
dictably, when marker phases were unknown (Fig. 3). This is because RMg

does not use the structure of haplotypes to predict IBD. Nevertheless, it seems
that genotype information is sufficient to predict QTL location accurately, e.g.
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Figure 3. Differences between the genotype model RMg (dotted line) and the hap-
lotype model RMh (continuous line) in terms of power and robustness of QTL de-
tection, in a monoecious population with selfing. Population parameters: N = 100;
T = 100; p = 0.5; LE at generation 0. C denotes correct information, H incorrect
haplotypes, LD maximum LD among founders, and P wrong p (actual = 0.9, used =
0.5). LR = −2 ln (LH0/LH1), where LHi is the likelihood under Hi hypothesis, cM:
centi-Morgans. There were 1000 LR tests averaged at the centre of each marker inter-
val, and at marker 6 (5 cM from either end and where the QTL is). Significance for a
paired t-test of differences at marker 6: *** denotes p < 0.001.

less than half LR unit difference between RMh and RMg at marker 6, despite
variance components being consistently more biased with RMg than with RMh.

4. DISCUSSION

Genetic relatedness between individuals is a key parameter in QTL map-
ping via variance component estimation. In QTL mapping, individuals without
known pedigree are commonly assumed unrelated and non-inbred. However, if
they are sampled from the same population, then they are likely to be related to
some degree. Our prime interest in this study was to explore a new method to
estimate genetic relatedness among pedigree founders as IBD probabilities at
a locus as functions of distant relationships, i.e. historical, and marker similari-
ties. These IBD probabilities would then be used in mapping QTL via variance
components estimation. Thus, the approach consists of a family of linear re-
gression models that suits various QTL mapping scenarios, covering a range
of availability of multilocus data from genotypes to haplotypes.

We compared the power and robustness of QTL detection of two of these
models, RMh and RMg, against an alternative method, CM. This focus on CM
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as a base for comparison was justified since other methods available for esti-
mating IBD do not take into account population history, encounter difficulties
in weighting information from several markers, or do not consider information
from linked markers [10, 22, 24].

In general, differences in statistical power and robustness between RM
and CM were small, although sometimes significant (N.B. Sample sizes of
1000 simulations were used in the comparison). RMh tended to be more pow-
erful than CM in dioecious populations, but not in monoecious populations.
The main advantage of CM over RMh is that it uses more LD information con-
tained in haplotypes. RMh captures LD information from single markers and
all possible interactions between marker pairs, but not from marker triplets or
higher-order interactions, whereas CM uses the full haplotype structure to infer
IBD probabilities. It would be theoretically possible to increase the accuracy
of RMh by modelling these higher order marker interactions. However, most
of the information used to predict IBD appears to come from genotypes rather
than haplotypes, since differences between RMh and RMg are small (Fig. 3).
Reassuringly, RMg was more powerful than RMh when marker phases (i.e.
haplotypes) were unknown.

The RM and CM methods both require historical information that is poorly
known in reality. Power losses occur when population parameters are wrong
or model assumptions are not fulfilled. For this reason, these methods should
ideally be robust in addition to powerful. Robustness was studied in MS popu-
lations, because this is the only mating scheme explicitly accounted for in CM.
Thus, taken relative power loss with respect to the ideal situation as a measure
of robustness (compare Figs. 1 and 2), RMh is slightly more robust than CM
in some scenarios but not all. For example, the difference in average LR at
marker six between CM and RMh was 0.4 under ideal conditions (Fig. 1, MS),
however this difference dropped, vanished or favoured RMh when population
parameters or haplotypes were inaccurately known (Fig. 2). The exception was
when p was wrong, where a difference of 0.4 LR units was maintained between
methods.

Both methods rendered biased estimates of variances, especially of σ2
QT L.

In general, RMh was more biased than CM, however differences diminished or
disappeared when population history, or haplotypes, were inaccurately known.
Nevertheless, we cannot rule out the possibility that part of that bias is due
to the variance component estimation method, i.e. REML, because variances
were constrained to be positive.

Differences in computational speed between methods were negligible in
samples of 100 individuals and 11 markers, i.e. CM needed ∼10 seconds
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to calculate IBD at one location compared to ∼0.1 seconds for RMh, in a
Dec-Alpha XP1000, with 667 MHz and 1152 Mb of memory. We do not yet
know what would be the behaviour of these methods had they been challenged
with thousands of markers in thousands of individuals, a likely future scenario
where computational speed can be a serious limiting factor.

Notwithstanding its greater power in dioecious populations, there are further
important advantages in RM related to its scope for expansion and improve-
ment. RM is based on a multiple regression, and therefore one could fit a range
of models easily in order to optimise for speed without reducing too much
accuracy. For example, one could drop interactions between markers far from
locus L, which may contain negligible information, whilst keeping all single
marker effects and interactions between marker pairs close to L. In this way,
one could construct less parameterised models without much loss in accuracy,
i.e. achieving parsimony. Moreover, the key elements in RM are the multilocus
IBD parameters θk=1...4. Thus, exact θk=1,2, and approximated θk=3,4, allowed
us to model four different randomly mating populations, without mutation,
migration or selection. Choy and Weir [1] developed expressions for θ2 under
recurrent random selection, hence broadening the applicability of our method.
However, the theory of long-term genetic contributions may offer a better al-
ternative for modelling these parameters in non-randomly selected populations
because, for example, it appropriately models selection as a non-markovian
process [28]. We do not know of an equivalent parameter in the coalescent
theory that could be used in CM. Furthermore, a recent publication expanded
the two loci theory to include mutation and migration rates [23]. New develop-
ments of RM into this area could overcome the problem of hidden population
structures in mapping QTL [5].

Finally, if a pedigree was available, then the RM method should be used to
predict IBD among pedigree founders, provided they are genotyped, and then
pedigree information should be applied to estimate IBD among all their de-
scendants (e.g. [16]). Neither CM nor RM can take into account ungenotyped
pedigree ancestors. Therefore, with this exception in mind, this joint procedure
would ensure that all information available in a sample, i.e. markers, haplo-
types, pedigree and population history, is used when mapping QTL.

In summary, given that methods to recapture historical information must
deal in most circumstances with uncertainty in the key population parameters,
and that populations may greatly differ in their mating schemes, the family of
models presented in this study offers (RM) a robust, yet powerful, approach to
map QTL using population history and multiple marker information.
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APPENDIX A

We will specify the parameters used in equation (2). The theory of digenic
descent measures provides most of the building blocks required to obtain all
the parameters [2, 25–27]. This theory predicts θ2 (IBD at two loci simulta-
neously) at generation t from its expected value in the previous generation. In
fact, the theory calculates non-IBD probabilities iteratively, transforming them
to IBD probabilities in the last generation. In ME, D and DH populations, θ2
differs when haplotypes are sampled within or between individuals. The single
locus θ1 is equal to θ2 given c = 0.

The weights in equation (2) are R = V−1G, where V−1 is the inverse of the
IBS covariance matrix between markers, and G is a covariance vector between
IBS at markers and IBDL. The corrections in X are the expected IBD at single
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and pair of marker loci. We will proceed with the details of how to calculate X
and R.

Remember that in what follows, IBS (homozygosity) statuses at marker
loci are obtained comparing two different haplotypes, within or between
individuals.

(i) Elements of X

The vector X contains IBS information from markers. For example, given
markers A and B, then X′ = [xA − x̄A, xB − x̄B, xAB − x̄AB], where xi = 1 if
locus i is IBS (homozygous), or 0 otherwise, xi j = 1 if loci i and j are both IBS,
or 0 otherwise, and x̄i and x̄i j are the corresponding population expectations.
The expected IBS at locus A in the population is

x̄A = θA + (1 − θA)ΠA, (A.1)

where ΠA =
∑

p2
A is the initial homozygosity at locus A, and θA is the prob-

ability of IBD at locus A. We need to specify each locus, therefore θA will
denote θ1 at locus A, θAB will denote θ2 at loci A and B, etc.

The expected simultaneous homozygosity at markers A and B is

x̄AB = θAB+(θA − θAB)ΠB+(θB − θAB)ΠA+(1 − θA − θB + θAB)ΠAΠB. (A.2)

For the special case of two unlinked loci, and assuming ΠA = ΠB = Π and
θA = θB = θ (and therefore θAB = θ

2), it can be shown that x̄AB = x̄A x̄B =

(x̄A)2 = (x̄B)2, which is the square of (A.1).

(ii) Elements of V

The matrix V is a symmetric matrix containing the co-variances of IBS
among marker loci. The rank of V is equal to the total number of terms fit-
ted in the model. Let us assume a model with two main effects, from markers
A and B, and their interaction. In this case, the diagonal elements of V are the
variances σ2 (xA), σ2 (xB) and σ2 (xAB), and the (upper) off-diagonal elements
of V are the covariances σ (xA, xB), σ (xA, xAB), and σ (xB, xAB) (Tab. II).

The variance of IBS at marker A is σ2 (xA) = x2
A − (x̄A)2, where x̄A is given

in (A.1), and x2
A =

1∑
i=0

i2P (xA = i) = P (xA = 1) = x̄A. Hence, this variance

is σ2 (xA) = x̄A (1 − x̄A), which after using (A.1) and simplifying the algebra
renders,

σ2 (xA) = (1 − θA) (1 − ΠA) (θA + (1 − θA)ΠA) . (A.3)
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The variance of simultaneous IBS at loci A and B is

σ2 (xAB) = x2
AB − (x̄AB)2 = x̄AB (1 − x̄AB) , (A.4)

since x2
AB =

1∑
i=0

i2P (xAB = i) = P (xAB = 1) = x̄AB, given in (A.2).

The covariance between IBS at markers A and B simultaneously is
σ (xA, xB) = x̄AB − x̄A x̄B, thus

σ (xA, xB) = (θAB − θAθB) (1 − ΠA − ΠB + ΠAΠB) , (A.5)

which simplifies to
σ (xA, xB) = ηAB (1 − Π)2

when ΠA= ΠB = Π , and θA = θB = θ. The parameter ηAB = θAB − θ2 has
been called the identity disequilibrium function [2], and it is an estimate of the
variation of IBD across loci due to the combined effects of drift and linkage.

The covariance between IBS at a single marker and simultaneous IBS at
a pair of markers depends on whether the single marker is included in that
pair or not. When only markers A and B have been genotyped, the appropriate
covariance between locus A and loci A and B is

σ (xA, xAB) = xAxAB − x̄A x̄AB = x̄AB (1 − x̄A) , (A.6)

since xAxAB = x̄AB, see (A.1) and (A.2).
There are additional covariances in V when 3 or more markers are used, for

example, with markers A, B, C and D, the additional covariances areσ
(
xi, x jk

)
,

σ
(
xi j, xik

)
, and σ

(
xi j, xkl

)
, where i � j � k � l = A, B, C or D. The covariance

between IBS at marker A and simultaneous IBS at markers B and C is

σ (xA, xBC) = x̄ABC − x̄A x̄BC, (A.7)

where the term x̄ABC is

θABC +
∑

i< j

(
θi j − θABC

)
Πk +

∑

i

θi −
∑

j

θi j + θABC

Π jΠk

+

1 −
∑

i

θi +
∑

i< j

θi j − θABC

ΠAΠBΠC (A.8)

where i � j � k = A,B, or C.
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Equation (A.8) involves 2 and 3-loci IBD parameters. A simple and accurate
method for predicting simultaneous IBD at 3 and 4 loci has been proposed
elsewhere [6].

The covariance between two pairs of markers with a common marker, for
example between pairs AB and AC, is

σ (xAB, xAC) = xABxAC − x̄AB x̄AC = x̄ABC − x̄ABx̄AC, (A.9)

since xABxAC = x̄ABC. The covariance between two completely different pairs
of markers, for example between pairs AB and CD, is

σ (xAB, xCD) = x̄ABCD − x̄AB x̄CD, (A.10)

where x̄ABCD is

θABCD +
∑

i< j<k

(
θi jk − θABCD

)
Πl +

∑

i< j

θi j −
∑

k

θi jk + θABCD

ΠkΠl

+
∑

i

θi −
∑

j

θi j +
∑

j<k

θi jk − θABCD

Π jΠkΠl

+

1 −
∑

i

θi +
∑

i< j

θi j −
∑

i< j<k

θi jk + θABCD

ΠiΠ jΠkΠl, (A.11)

where i � j � k � l = A, B, C or D. The covariances (A.5), (A.6), (A.7), (A.9)
and (A.10) reflect the build-up of LD due to the combined action of linkage
and drift. Hence, they are expected to be zero if there is neither linkage nor
drift, and greater than zero in all other cases.

(iii) Elements of G

The vector G contains the covariances between IBS at single or pairs of
markers and IBDL. For example, the covariance between IBSA and IBDL is

σ (xA, yL) = xAyL − x̄A · ȳL = ηAL (1 − ΠA) , (A.12)

where ȳL = θ, and ηAL = θAL − θ2, and where the joint probability of IBSA and
IBDL, is

xAyL = θAL + (θ − θAL)ΠA. (A.13)

The covariance between simultaneous IBSAB and IBDL is

σ (xAB, yL) = xAByL − x̄ABȳL, (A.14)
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where

xAByL = θABL + (θAL − θABL)ΠB + (θBL − θABL)ΠA

+ (θ − θAL − θBL + θABL)ΠAΠB.

APPENDIX B

The matrix calculated with CM and RM provides IBD relationships for ev-
ery gametic pair, and therefore it has rank 2N, where N is the number of in-
dividuals in the sample. Let us call this matrix G. It is possible to transform
G into an N rank matrix Q with Q = 1

2KGK′, where K = I∗ [1, 1], and I is
an identity matrix with rank N, and * denotes the Kronecker product between
matrices [16].

To access this journal online:
www.edpsciences.org


