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ABSTRACT

In the problem of image interpolation, most of the difficul-
ties arise in areas around edges and sharp changes. Around
edges, many interpolation methods tend to smooth and blur
image detail. Fortunately, most of the signal information is
often carried around edges and areas of sharp changes and
can be used to predict these missing details from a sampled
image. A method for adding image detail based on the cone
of influence, the evolution of the wavelet coefficients across
scales, is presented in this paper.

1. INTRODUCTION

In its most basic form, image interpolation generates a larger
image from a smaller size image. Two different types of in-
terpolation can be classified as enlargement and zooming.

In the enlargement case, the idea is to decompose an im-
age into a collection of basis functions and then stretch those
basis functions to enlarge the image. Think of it as project-
ing an image onto a large screen. In this category, some well
known methods are pixel replication (the basis functions are
assumed to be the standard piecewise constant functions),
zero padding in the frequency domain (the basis functions
are sines and/or cosines) and zero padding in the wavelet
domain (the basis functions are the wavelets). The enlarge-
ment method works very well when the image resembles the
basis functions. For example, if we had a checker board im-
age, pixel replication would work perfectly. However, these
methods may not work as well when used on real images.
For example, zero padding in the frequency domain tends to
introduce a lot of ringing around edges.

The second type of interpolation is what we would call
zooming. In the zooming case, one would like to add in
extra detail as the image is enlarged. Think of zooming as
looking at an image through a microscope: the image be-
comes larger, but you also have more detail. This second
type of interpolation requires an image model, in order to
predict lost detail. In this category, there is a range of differ-
ent interpolation techniques. Some well known techniques
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are linear interpolation (with the model that the image is lo-
cally linear) and cubic interpolation (with the model that the
image is locally cubic). More recently interesting results
have been obtained using wavelets in trying to model real
images and in particular, to model smoothness found in real
images [1, 2, 4, 6, 7, 8]. By studying regularity measures of
the image, details can be added to the image by constraining
the image to the known (or assumed) regularity.

This paper is organized as follows. Section 2 is a review
of previous work [1, 2, 4, 6, 7]. It also introduces some of
the basic definitions and concepts which are required later
on. Section 3 presents our main idea and approach of adding
image detail based on the information of the wavelet coef-
ficients at coarser scales. Section 5 presents some of our
computational results and finally section 6 will conclude the
paper with future work that needs to be done in this direc-
tion.

2. REVIEW

A promising new approach to prediction over scale using
Hidden Markov Models (HMM) has been developed recently
[2]. Here the HMM is trained using an image database.
Once the parameters of the model are obtained, the pre-
diction of the detail signal is made and combined with the
measured coarse scale signal to reconstruct a cleaner im-
age. In [2] the algorithm was used for denoising by trying
to predict the correct values of the coefficients at the finest
scale from the coefficients at the coarser scales. The idea is
that the coarser scale coefficients are less affected by noise,
while the detail coefficients contain most of the noise. The
denoising idea can be easily extended to interpolation.

Other two methods of estimating detail based on infor-
mation across scale are largely based on the work and obser-
vations made in [6, 7]. First, let’s introduce some definitions
and notation.

The undecimated dyadic wavelet transform is computed
by projecting a discrete signalf onto a set of translations
and dilation of a mother wavelet :

 s;l(n) = 2�
s

2 (2�sn� l)



where the scales and the offsetl are integers. The wavelet
transform coefficients are thenws;l = hf;  s;li. In the
dyadic wavelet transform, each sample off has acone of
influence[3]. For completeness, we provide the definition
here.

Definition 1 Thecone of influenceof f(n0) in the scale-
space plane is the set of points(s; l) such thatn0 is included
in the support of s;l.

In [6, 7] the mathematical characterization of singularities
with Lipschitz exponents is explained. Looking at the dyadic
wavelet decomposition, the wavelet transform modulus max-
ima (the local maxima of the wavelet coefficients at a given
scale) locates all the singularities of a function by following
all the maxima lines when the scale goes to zero. Given a
functionf defined on[a; b] (a; b integers) and indexn0 2
[a; b], if there exists a scales0 > 0 and a constantC such
that the modulus maxima of the wavelet coefficients belong
to a cone defined by

jl � n0j � C2s (1)

thenf is uniformly Lipschitz [6]. Moreover, there exists
constantsA and� such that at each modulus maxima(s; l)
in the cone define by (1) we havejws;lj � A2s�

The Lipschitz regularity is computed by finding coeffi-
cient� such thatA2s� approximates at best the decay of the
wavelet coefficients over a range of scales larger than one.

Approaches [1, 4] use the Lipschitz property that near
sharp edges, the wavelet coefficients decay exponentially
over scale. At each index, an exponential fit over scale was
attempted for the wavelet coefficients. In [1] if the fit was
close enough to the exponential then it was used to predict
the detail signal at the finer scale. If not, nothing was added
to the data. In [4] the approach is similar to [1], but it tries
to extrapolate features in textured regions as well. Since the
Lipschitz condition does not work as well in the textured
regions, the authors identify two other constraints that the
higher resolution image must obey. Their algorithm alter-
natively projects the signal to satisfy the three basic con-
straints. In both cases the two directions in the image were
treated independently using 1D predictions over scale.

3. ADDING DETAIL

The approach to image interpolation which we call ‘Predic-
tion of Image Detail’ can be explained with the help of Fig-
ure 1. In Figure 1 the high resolution image is represented
as the signalX at the input to the filter bank. We assume
that the low resolution, more coarsely sampled image is the
result of a low-pass filtering operation followed by decima-
tion to give the signalA. The low-pass filter,L, represents
the effects of the image acquisition system. If we were able
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Fig. 1. Problem Formulation
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Fig. 2. Cone of Influence: Signal and Wavelet Transform

to filter the original high-resolution signal with the high pass
filter H to obtain the detail signalD in Figure 1, and if we
had a perfect reconstruction filter bank, it would then be
possible to reconstruct the original image. We do not have
access to the detail signalD, however, so we must estimate
or predict what it must be.

Our approach to adding image detail is based on the be-
havior of edges across scales in the scale-space domain. To
gain an understanding of our approach, in Fig. 1 we have
generated a signalf and ploted its dyadic decomposition in
the scale-space domain. The approach of [1, 4] was to use
only the modulus maxima information to estimate the de-
tail coefficients at finest level. However Fig. 2 suggests that
there may be a lot more to adding details, than just using
the modulus maxima information. It suggests, that maybe
we can use the entire cone of influence, from the coarser
scales, for adding details to the finest scale.

In particular, the energy of the wavelet coefficients around
edges, is concentrated inside the cone of influence. Or,
equivalently, the energy outside the cone of influence is small.
We use this observation together with the theory of opti-
mal recovery for estimating the coefficients of the fine scale
from the known coefficients, inside the cone of influence, at
the coarser scales.
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Fig. 3. Geometric Diagram of Ellipsoid Class

4. OPTIMAL RECOVERY

In this section we briefly review the theory of optimal re-
covery as applied to the interpolation problem [9]. We then
propose an applications, based on a wavelet decomposition
image model, of this theory to image interpolation. The
interpolation problem may be viewed as a problem of esti-
mating missing samples of a signal. This latter problem can
be examined using the theory of optimal recovery. The the-
ory of optimal recovery provides a broader setting, which
not only illuminates some of the standard results on inter-
polation, but also indicates how to analyze the interpola-
tion problem when the signal inputs belong to filter classes,
other quadratic, ellipsoidal classes, or other types of classes.
Locally, at locationn0, we model the image as belonging to
a certain ellipsoid signal classK based on the wavelet coef-
ficients:

K = ff 2 Rn : Energy(woutside of cone) � 1g

= ff 2 Rn : fTQf � 1g

= ff 2 Rn : fT IIT f � 1g

whereQ = IIT must be chosen to represent the energy of
the wavelet coefficients outside the cone of influence. That
is, I is the collection of s;l such thatn0 is not included in
the support of s;l. The filter classK is represented by the
ellipsoid of Fig. 3.

The known samples, in the cone of influence, determine
a hyper-planeX . The intersection of the hyper-plane and
ellipsoid is a hyper-circle inX . The intersection depends
upon the known wavelet coefficients inside the cone of in-
fluence,wcone: we call itC(wcone). Formally,

C(wcone) = ff 2 X : If = wcone; kfkQ � 1g (2)

For a linear mappingU, the image ofC(wcone) underU
is the range of values thatUf can take. The optimal re-
covery problem is to select the value inX which is a best
approximation over allUf inUC(wcone). The Chebyshev

center has been shown to be the minimumQ-norm sig-
nal on the hyper-plane determined by the known samples.
The solution to this problem is well-known: see Golomb
and Weinberger [9]. If the collection of known samples is
wcone, the minimum norm signal isI�1wcone, whereI�1 is
the pseudo-inverse with respect to theQ-norm. The signal
I�1wcone is the unique signal inX with the property,

kI�1wconekQ = inf
If=wcone

kfkQ

In addition to the optimal estimatêf(n0) for the pixel to be
interpolated,f(n0), this theory also provides an expression
for the remaining worst-case error. The worst case error
is the point furthest from the center of the hyper-circle in
the direction of the estimate we are making. When the best
approximation is used, this maximum error is given by

E(errormax) = max
C(wcone)

jf(n0)� f̂(n0)j

=
q

1� kI�1wconek2QkPF�n0kQ;

wherePF�n0 is the orthogonal projection of thef(n0) rep-
resenter (the vector which by taking theQ inner product
with f , picks up thenth0 entry off ), onto the plane parallel
to the hyper-planeX .

Note that the only part of the error term which depends on
the values of the known wavelet coefficients iskI�1wconekQ.
This can be viewed as a measure of how consistent the data
samples are with the signal class model, a class member-
ship measure. It was used used as a weight of deciding how
much of the predicted detail should be used. The weight is
larger around edges.

5. RESULTS

Using the prediction over scale algorithm, we have used
Daubechies number 2 wavelets to low pass filter the orig-
inal image (Fig. 4) and then decimate by two to obtain Fig.
5. (Note that Fig. 5 is the decimated image, enlarged using
pixel replication.) In [5] it was shown that the optimal
interpolation filter for a prefiltered (with linear filterh) and
down-sampled image, in the Golomb-Weinberger sense, is
the autocorrelation function ofh. In our example, we have
filtered the down-sampled image with the autocorrelation of
the decimation filter (which turns out to be cubic interpola-
tion) to obtain the cubic interpolated image of Fig. 6. Fi-
nally, using the optimal recovery approach presented in this
paper we have added detail coefficients to obtain the image
of Fig. 7

6. CONCLUSION

In this paper we have presented a method of adding detail
based on the cone of influence and the theory of optimal re-
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Fig. 4. Original Image
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Fig. 5. Decimated Image

Cubic Interpolation
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Fig. 6. Cubic Interpolation
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20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

Fig. 7. Cone Interpolation

covery. If the down-sampled image was assumed to have
originated from a low-pass process, followed by decima-
tion, good results were obtained by estimating the fine scale
wavelet coefficients. The estimate of the fine scale detail
was based on the cone of influence and optimal recovery
theory.
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