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ABSTRACT
◥

Purpose:While immune checkpoint blockade (ICB) has become

a pillar of cancer treatment, biomarkers that consistently predict

patient response remain elusive due to the complex mechanisms

driving immune response to tumors. We hypothesized that a multi-

dimensional approach modeling both tumor and immune-related

molecular mechanisms would better predict ICB response than

simpler mutation-focused biomarkers, such as tumor mutational

burden (TMB).

Experimental Design: Tumors from a cohort of patients

with late-stage melanoma (n ¼ 51) were profiled using an

immune-enhanced exome and transcriptome platform. We

demonstrate increasing predictive power with deeper model-

ing of neoantigens and immune-related resistance mechan-

isms to ICB.

Results: Our neoantigen burden score, which integrates both

exome and transcriptome features, more significantly stratified

responders and nonresponders (P ¼ 0.016) than TMB alone

(P ¼ 0.049). Extension of this model to include immune-related

resistance mechanisms affecting the antigen presentation machin-

ery, such as HLA allele-specific LOH, resulted in a composite

neoantigen presentation score (NEOPS) that demonstrated further

increased association with therapy response (P ¼ 0.002).

Conclusions:NEOPS proved the statistically strongest biomark-

er compared with all single-gene biomarkers, expression signatures,

and TMB biomarkers evaluated in this cohort. Subsequent confir-

mation of these findings in an independent cohort of patients (n ¼

110) suggests that NEOPS is a robust, novel biomarker of ICB

response in melanoma.

Introduction
Checkpoint inhibitor therapy has demonstrated meaningful, if

varied, antitumor activity, with patient response influenced by

a variety of biological factors, including complex interactions

between the tumor, tumor microenvironment (TME), and immune

system (1–5). Numerous biomarkers of response to immune check-

point blockade (ICB) have been proposed, including PD-L1 expres-

sion, IFNg based signatures, tumor mutational burden (TMB), mis-

match repair deficiency, genetic alterations including those within the

antigen presentation machinery (APM), HLA LOH, and T-cell rep-

ertoire diversity (6–12).

Owing to the diversity of biological features that can influence

response to ICB therapy, there has been increasing effort toward

identifying biomarkers that integrate multiple biological features to

better predict response to immunotherapy (13). Work integrating

immunogenicity and neoantigen clonal structures predicted response

to ICB and prognosis in patients with melanoma, lung cancer, and

kidney cancers, suggesting broad applicability of the biomarker (14).

While these studies have yielded many positive results, challenges

remain; investigation of individual biomarkers can overlook the

cumulative impact of rare events, and more extensive integrative

studies have been impeded by the difficult task of assembling the

broad input data required for analysis.

To address these challenges, we used a validated, enhanced exome-

and transcriptome-based tumor profiling platform to generate the

broad tumor immunogenomic inputs required for an integrative

biomarker approach. We optimized this platform to elucidate tumor

mutational information as well as neoantigen prediction, immune

repertoire, gene expression, and HLA mutations/type from a single

formalin-fixed paraffin-embedded (FFPE) tumor sample and paired

normal sample. We then used this platform to profile a cohort of

patients with advanced melanoma (n ¼ 51) treated with anti-PD-1

ICB, allowing us to integrate a broad set of biological features. From

these data, we developed a novel composite framework for predicting

ICB response thatmodels biological mechanisms driving response and

resistance to cancer therapy.

Materials and Methods
Experimental design

Paired pretreatment FFPE tumor and normal blood sample was

collected and profiled using Personalis’ ImmunoIDNeXTplatform; an

augmented exome/transcriptome platform and analysis pipeline,

which produces comprehensive tumor mutation information, gene

expression quantification, neoantigen characterization, HLA (typing,

mutation, and LOH), T-cell receptor (TCR) repertoire profiling, and

TME profiling. These data were then analyzed together with clinical
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outcome, and a composite neoantigen score computed for each patient

along with additional biomarkers such as TMB.

Study population

A total of 51 patients with unresectable, stage III/IVmelanoma who

underwent treatment at the Inova Schar Cancer Institute (Annandale,

VA) were enrolled retrospectively without randomization or blinding.

Patients were treated with either nivolumab (480 mg i.v. every 4 weeks

or 240mg i.v. every 2 weeks), a combination of nivolumab and

ipilimumab (1mg/kg i.v. and 3mg/kg i.v., respectively, every 3 weeks),

or pembrolizumab (200 mg i.v. every 3 weeks). Solid tumor and blood

samples were collected within 3 months prior to treatment start. CT

scans were performed 10–12 weeks after treatment start, with follow-

up scans every 3 months. Responders were defined as complete

response or partial response. Nonresponders were defined as stable

disease or progressive disease. This study was conducted in accordance

with recognized ethical guidelines including the Belmont Report and

U.S. Common Rule, and was approved by the Human Research

Protections Program at Inova; protocol number 16-2427. In addition,

written informed consent was obtained from each patient.

Whole-exome sequencing

Whole-exome library preparation and sequencing was performed

as described previously (15, 16). Whole-exome capture libraries were

constructed using DNA from tumor and blood. Target probes were

used to enhance coverage of biomedically and clinically relevant genes.

Protocols were modified to yield an average library insert length of

approximately 250 bp. In addition, we used KAPA HiFi DNA Poly-

merase (Kapa Biosystems) instead of Herculase II DNA polymerase

(Agilent). Paired-end sequencing was performed using either HiSeq

2500 or NovaSeq instrumentation (Illumina).

Alignment

Reads were mapped to the hs37d5 reference genome build. The

pipeline performs alignment, duplicate removal, and base quality score

recalibration (BQSR) using best practice guidelines recommended by

the Broad Institute (17, 18). The pipeline uses the Picard toolkit (RRID:

SCR_006525) for duplicate removal and Genome Analysis Toolkit

(GATK, RRID:SCR_001876) to improve sequence alignment and to

correct base quality scores (BQSR). Aligned sequence data are then

returned in BAM format according to the SAM (RRID:SCR_01095)

specification. A complete list of all major tools used for processing and

analysis can be found in Supplementary Table S1.

SNV and indel calling

GATK’s HaplotypeCaller was used to generate the core set of single-

nucleotide variant (SNV) calls and their accompanying quality

metrics. The pipeline then uses GATK’s variant quality score recal-

ibration module, which stratifies SNVs by their likelihood of repre-

senting false positive calls, and in-house SNV accuracy software, which

incorporates both genomic context and sequence alignment informa-

tion into a model that corrects miscalled variants. All calls were made

on BAM files recalibrated by GATK’s BAM processing tools. MuTect

(RRID:SCR_000559) was used to call somatic SNVs and indels, with

Vardict used for calling small somatic insertions or deletions (<50 bp).

Somatic SNV and indel calls were then combined and analyzed

through a comprehensively tested set of filters based on (i) alignment

metrics, such as sequence coverage and read quality, (ii) positional

features, such as proximity to a gap region, and (iii) likelihood of

presence in normal tissue.

Transcriptomic analysis

Whole-transcriptome sequencing was aligned using STAR (RRID:

SCR_015899; ref. 19) and normalized expression values in transcripts

per million (TPM) calculated by an in-house tool, Expressionist. For

RNA sequencing and alignment quality control, we evaluated the

followingmetrics: average read length, percentage of uniquelymapped

reads, average mapped read pair length, number of splice sites,

mismatch rate per base, deletion/insertion rate per base, mean dele-

tion/insertion length, and anomalous read pair alignments including

inter-chromosomal and orphaned reads. Three samples were withheld

from sequencing and analysis due to poor-quality RNA.

Immune infiltrate signatures

Immune infiltration scores were calculated using transcriptome

data from ImmunoIDNeXT. Semiquantitative scores representing the

enrichment of gene sets in single samples (19, 20)were calculated using

single-sample gene set enrichment analysis (21).We utilized a publicly

available set of reference gene expression signatures representing 17

cell types (22).With this approach, enrichment scores for the same cell

type (gene set) can be compared across samples, profiling immune

infiltration across the cohort.

TCRb clonality

We profiled TCRb clones using the ImmunoID NeXT transcrip-

tome, which provides augmented (approximately a 100� increase over

a standard transcriptome) coverage of TCRb. Only patients with

sufficient remaining evaluable material were included in this analysis

(n ¼ 28). We identified clones using MiXCR (RRID:SCR_018725;

ref. 23). Nonproductive clones which have a frameshift or premature

stop codon in the CDR3 sequence were filtered out, as well as low-

confidence clones which have an alignment score below threshold for

the V or J hit. Clonality was then calculated as 1-Pielou’s evenness (24).

Differential expression analyses

Counts per million (CPM) was calculated by normalizing read

counts by the total number of reads per sample. Only genes with

CPM > 0 in 25% or more of the samples were included for analysis.

Remaining data were then rlog transformed and differential gene

Translational Relevance

This work evaluates the predictive strength of a composite

biomarker, neoantigen presentation score (NEOPS), in a cohort

of patients with late-stage melanoma. NEOPS incorporates dam-

aging events in the antigen presentation machinery with predicted

neoantigens to stratify patient response to immunotherapy. Others

have previously reported that tumor mutational burden and RNA-

based signatures are associated with therapeutic response, albeit

with limited reproducibility. Data presented here demonstrate that

our integrative approach outperformed such single-analyte bio-

markers, suggesting that more complex models capturing multiple

aspects of tumor escape may provide more robust stratification of

patient response. We also demonstrate that data intensive biomar-

kers such as NEOPS are clinically practical, with comprehensive

tumor profiling in our clinical cohort achieved using limited tumor

tissue. These findings provide a novel composite biomarker of

response in patients with late-stage melanoma, as well as evidence

supporting the use of whole-exome and whole-transcriptome data

in a clinical setting.

Abbott et al.
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expression analyzed using the DESeq2 package (RRID:SCR_000154;

ref. 25). Genes with an Padjusted < 0.05, and a minimum log2 fold

change of  0.5 or >1 were considered differentially expressed.

Biological significance of differentially expressed genes (DEG) was

explored at the pathway level using MSigDB (Molecular Signatures

Database, RRID:SCR_016863) hallmark gene sets and Kyoto

Encyclopedia of Genes and Genomes (RRID:SCR_012773) gene

sets (26, 27).

Allele-specific HLA LOH

HLA LOH was detected using a machine learning–based algorithm

called DASH (Deletion of Allele-Specific HLAs; ref. 28). A set of 720

heterozygous genes from 279 patients were used to train DASH. The

features used for training the algorithm were gathered with the

following steps:

1. All tumor and normal reads were mapped to the patient’s allele-

specific HLA references sequences. No mismatches were allowed

except for alleles with an identified somatic mutation. Reads with

>20% of their total length soft clipped were removed.

2. Homologous alleles were aligned to find all patient-specific

mismatch positions.

3. Coverage values were calculated by Samtools at each mismatch

position (SNP and indel) for each homologous allele

4. Features were collected for each heterozygous gene pair. The

features included:

(i) Adjusted b-allele frequency: For each position of difference

(SNP or indel) between the homologous alleles, a b-allele

frequency (BAF) was calculated for both the normal and

tumor reads. To adjust for differences in probe capture of the

two alleles, the tumor BAF was divided by the normal BAF.

To attain a single feature, the median adjusted BAF was

taken within each 150 bp bin. Then, the median was taken

across all bins.

(ii) Allele-specific coverage ratios: For each position of differ-

ence between the homologous alleles, the ratio between the

tumor and normal coverage for each specific allele was

calculated. The values were normalized by the genome wide

ratio. The minimum value from the two alleles was taken at

each position. The median within each bin was calculated

and then the median across the bins was used as the feature.

(iii) Consistency of coverage: For each position of difference

between the homologous alleles, a 0 or 1 was assigned for

each allele depending on if it has higher coverage than the

other allele. The median value within all bins is calculated

and then the median value across all bins. The higher value

of the two alleles is taken for the feature value.

(iv) Tumor purity: The tumor purity value was called by

Sequenza.

(v) Tumor ploidy: The tumor ploidy value was called by

Sequenza.

(vi) Deletion of flanking regions: This is a binary feature—1 if

Sequenza calls a deletion in the 10,000 bp flanking the gene

and a 0 otherwise.

HLA deletion labels were manually curated through visualization

for all heterozygous genes. An XGBoost model was trained using

these features and labels to learn to predict occurrences of HLA

LOH. To increase specificity at low tumor purities with poor

training data, we implemented a secondary check that requires the

allele-specific coverage ratio to be <0.98 and the adjusted BAF to be

> 0.02 for HLA LOH to be detected. If HLA LOH was detected by

DASH, the allele with the lower coverage was labeled as deleted.

DASH was validated using cell line dilutions and allele-specific

digital PCR and demonstrated higher sensitivity and specificity than

LOH HLA. For every patient in this study, DASH was used to detect

HLA LOH for all heterozygous alleles. Additional details describing

this methodology can be found in Supplementary Materials and

Methods S1.

Neoantigen prediction and composite NEOPS

Putative neoantigens were generated using tumor-specific genomic

events (SNVs, indels, and fusions) that were verified using transcrip-

tomic data. For each tumor-specific genomic event, all peptides

containing the event were generated. All candidate peptides were

scored using SHERPA, a machine learning tool for predicting MHC

class I presentation (29).

SHERPA is a composite model that is trained on large-scale

monoallelic immunopeptidomics data of >70 alleles (HLA-A/HLA-

B/HLA-C). Monoallelic data were generated through stable transfec-

tions to the K562 HLA-null cell line. All immunopeptidomics data

were processed through PEAKs. Negative examples were generated by

randomly selecting peptides from the human proteome. Twenty times

as many negatives as positives were used to train the model. SHERPA

is a pan-allelic, pan-length model that incorporates the following

features:

1. Peptide sequence: The peptide sequence (8- to 11-mers). All

peptides were adjusted to a length of 11 amino acids by adding

padding to the middle of the sequence. The peptide was encoded

as using a BLOSUM62 matrix, resulting in an 11 � 10 matrix.

2. Peptide length: A number denoting the number of amino acids in

the peptide.

3. Allele binding pocket sequence: The binding pocket is represented

by the 34-mer amino acid sequence that this within 4 from the

peptide. The sequence is encoded using a BLOSUM62

substitution matrix.

4. Gene expression: The TPMof the gene fromwhich the neoantigen

is derived.

5. Peptide flanking region sequences: The five amino acids upstream

and downstream of the peptide. The sequences are encoded using

a BLOSUM62 matrix.

6. Propensity of a gene to engender presented peptides: Publicly

available multi-allelic immunopeptidomics data were

systematically reprocessed in a uniform pipeline. The number of

peptides mapping to each transcript-associated protein were

calculated. An expectation was determined using the TPM, the

length of the transcript, and the total number of peptides

observed. The feature was calculated as the observed count over

the expected value for each protein.

7. Propensity of a within-gene region to engender presented

peptides: Peptides were mapped on to all transcript-associated

proteins. To assign this feature, the peptide of interest wasmapped

to its respective protein and the coverage of all amino acids for that

peptide were averaged.

SHERPA uses an XGBoost machine learning model. Two models

were trained—a binding model, consisting of only the peptide and

binding pocket features, and a presentation model, consisting of all

features. Both SHERPA models return a rank score, similar to

NetMHCpan, that can be interpreted as the percentile of binding or

presentation probability compared with other random peptides with

Integrated Neoantigen and APM Data Predict Therapy Response
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the same allele. SHERPAwas benchmarked againstNetMHCpan4.0 on

an independent set of immunopeptidomics data from tumor samples

and attained higher overall sensitivity and specificity. Neoantigen

burden score (NBS) was calculated by filtering out peptides with a

presentation rank >0.5 (equivalent to NetMHCpan rank value), and

dividing by footprint size in Mb. Additional details surrounding

this methodology can be found in Supplementary Materials and

Methods S1.

To calculate the composite NEOPS, we developed an approach

which adjusts NBS to account for patient-specific tumor alterations

which may impair neoantigen presentation, including alterations

to the MHC and antigen presentation machinery, and HLA LOH.

Predicted neoantigens are filtered using the following criteria: (i)

Tumors harboring high impact (mutations called by MuTect, and

impact defined by SnpEff) mutations in beta-2-microglobulin

(B2M) are assigned a score of 0. (ii) High impact somatic variants

(called by Polysolver) in HLA-A, HLA-B, and HLA-C are identi-

fied, and all neoantigens predicted to be presented by the damaged

HLA are removed from consideration. (iii) Allele-specific HLA

LOH is determined using DASH, and neoantigens predicted to be

presented by the lost HLA allele(s) are removed from consider-

ation. All remaining neoantigens are then summed, and divided by

exome footprint in Mb to yield the final NEOPS value.

Validation cohorts

Replication of our findings was conducted using publicly available

next-generation sequencing (NGS) data collected from patients with

advanced melanoma who underwent ICB therapy (30). Whole-exome

and RNA sequencing (RNA-seq) data from this study were obtained

from dbGaP (NCBI database of Genotypes and Phenotypes, RRID:

SCR_002709; study accession: phs000452.v3.p1). Patients with mixed

responses to therapy (n ¼ 2) and low purity tumors (n ¼ 7) were

excluded from the analysis, leaving (n ¼ 110) evaluable patients for

validation. Clinical characteristics for the validation cohort are pro-

vided in the original study.

Statistical analysis

The Kaplan–Meier method was used to estimate progression-free

survival (PFS) and overall survival (OS). Univariate CoxPHmodels were

fit to compare the relative effects of increasing NBS and NEOPS on

survival using the rmspackage forR.Objective response ratewas reported

as proportion along with Clopper–Pearson exact confidence intervals

(CI). Fisher exact test and x
2 test were used to test for associations

betweengroups, and categorical variables.Whenconsidering thevariance

betweenmore than two groups, the Kruskal–Wallis H test was used. The

WilcoxonMann–Whitney rank-sum test (MWW)was used for numeric

pairwise comparisons. Benjamini–Hochberg correction was used to

adjust P values as listed. The Kolmogorov–Smirnov statistic was used

for RNA pathway analyses. Correlations between continuous variables

were determined using Kendall tau. Predictive models were generated

using logistic regression, and area under the receiver operating charac-

teristic (AUROC) used to determine ability to differentiate between

response and nonresponse using published methods and code (30).

All tests were two sided; FDR values of <0.1 for pathway analyses, and

P values of<0.05 for all other testswere considered statistically significant.

Data availability

Raw sequencing and cohort-level data are available in dbGaP (acces-

sion number: phs2388.v1.p1). Mutation, RNA count data, and patient-

level data are provided as Supplementary Tables. Code used for analysis

and plotting is available at https://codeocean.com/capsule/1428816/

tree/v1.

Results
Cohort clinical and genomic characteristics

We identified 51 patients with unresectable melanoma treated

with ICB at the Inova Schar Cancer Institute (Annandale, VA) for

inclusion in this study (Fig. 1). Median follow-up for the cohort was

24 months, with 33 of 51 patients (50%, 95% Clopper–Pearson CI of

50%–78%) presenting an objective response at first evaluation by

RECIST 1.1. The observed response rate is significantly higher than

that found in other studies, possibly due to sample size. Within the

cohort, tumors originated in the head and neck region (31%), trunk

(31%), extremities (25%), acral areas (6%), mucosa (4%), and 2%

from occult regions. In addition to these data, sex, age and other

subject demographics information is presented in Supplementary

Table S2. There were no statistically significant differences in

objective response rate between sites of disease origin. A total of

11 patients (22%) had progressed following prior treatment with

a checkpoint inhibitor, whereas 40 (78%) were naive to ICB.

Patients were administered either pembrolizumab (n ¼ 29, 57%),

nivolumab (n ¼ 15, 29%), or a combination of nivolumab and

ipilimumab (n ¼ 7, 14%).

Mutations associated with responding and nonresponding tumors

were investigated, revealing no significant single-gene predictors of

response following multiple hypothesis correction (patient-level

mutation data; Supplementary Table S3). Next, we investigated genet-

ically disrupted pathways (31, 32). The most frequently disrupted

pathways include RTK-RAS and WNT pathways (disrupted in 73%

and 51% of our cohort, respectively; Supplementary Fig. S1A). Muta-

tions were detected throughout the RTK-RAS pathway: numerous

RTKs were mutated, including ROS1 and ERBB4, RAS family genes

including NRAS, BRAF, and MAPK1 and MAPK2 (Supplementary

Fig. S1B).

Transcriptomic features are associated with response to ICB

We next investigated transcriptomic profiles within the cohort

(raw count data; Supplementary Table S4). From the RNA-seq

data, we identified 121 DEGs in responding patients (n ¼ 48

evaluable patients; Supplementary Table S5; Padjusted ≤ 0.05, log

fold change > 2 or 0.5). Enrichment was observed in 29 of these

genes, while reduced expression was observed in 92 (top 50

largest fold change genes, Fig. 2A; patient-level heatmap, Sup-

plementary Fig. S1C). Among the most strongly upregulated

genes (log2 fold change ¼ 3.28; FDR-adjusted P ¼ 0.0005) that

we detected was delta-like ligand 3 (DLL3), an inhibitory Notch

ligand that exhibits high expression in small cell lung cancer

(SCLC) and other tumors tissues (33). Because of its low cyto-

plasmic expression in normal tissue, compared with elevated,

homogeneous cell surface expression in tumors, it is currently

under investigation as a possible therapeutic target (34). Valida-

tion of DESeq2 results for DLL3 using MWW confirmed signif-

icance (MWW P ¼ 0.02). Though not significantly enriched at a

cohort level, IDO1 expression was detected at very high levels in

three individuals (median IDO1 TPM ¼ 10.36; outlier IDO1 TPM

¼ 1,955, 661, and 451; Supplementary Fig. S1D). Two of the

patients overexpressing IDO1 failed to achieve complete response

to therapy, possibly due to an IDO1-driven immunosuppressive

environment (35).

Next, we performed gene set enrichment analysis (GSEA) to

identify differentially regulated pathways (26, 27). Inflammatory

signaling cascades were among the most highly enriched of those

profiled (Fig. 2B; significance set as FDR < 0.1; Supplementary

Abbott et al.
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Table S3). Activation of these pathways likely results from other

enriched pathways; cellular differentiation of Th17 is driven by the

cytokine TGFb, which induces RORgt in Th17 cells, and along with

IL6, induces the Th17 lineage (36, 37). The observed enrichment of

Th17 may also be positively regulated by the observed increase in

STAT3 signaling, which serves to promote Th17 differentiation.

Figure 1.

Study schema. Pretreatment blood normal and tumor samples were collected from 51 patients with unresectable, stage III/IV melanoma who underwent anti–PD-1

therapy. Samples were profiled using Personalis’ ImmunoID NeXT platform, an enhanced exome/transcriptome platform and analysis pipeline, which produces

comprehensive tumormutation information, gene expression quantification, neoantigen characterization, HLA (typing,mutation, and LOH), TCR repertoire profiling,

MSI detection, oncovirus identification, and TME profiling. These data were then analyzed together with clinical outcome, and a composite neoantigen score

computed for each patient along with additional biomarkers, such as TMB.

Figure 2.

Transcriptomic features associated with response. A, Top 50 DEG. Fold change shown comparing responding patients to nonresponding patients. Benjamini–

Hochberg corrected P values below 0.05 are shown, n ¼ 48. B, GSEA identified significant enrichment of pathways related to immune function among genes

upregulated in responding patients. Benjamini–Hochberg corrected P values below 0.05 are shown. C, TCRb clonality is elevated in responding patients, compared

with nonresponders (n ¼ 28; MWW; P ¼ 0.047). D, Significantly longer PFS was observed in high-clonality patients when compared with those with low clonality

(n¼ 28; two-sided KM log-rank test;P¼0.0043). High/low stratificationwas calculated independently for old/youngpopulations (median cohort age used as cut-off

point). E,Characterization of tumor-infiltrating lymphocytes. TREG, regulatory T cell; NK cell, natural killer cell; CAF, cancer-associated fibroblast. All boxplots inC and

E cover the IQR from 25th percentile at their lower bound to the 75th percentile at their upper bound, with median indicated by a horizontal line. The upper whisker

includes the largest value within 1.5� IQR above the 75th percentile. The lower whisker includes the smallest value within 1.5� IQR below the 25th percentile.
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Immune repertoire and immune cell associations with

therapeutic response

The adaptive immune system is able to respond to a broad array of

antigens due to its large repertoire of unique TCRs. To characterize the

pretreatment tumor-immune landscape, we profiled and analyzed

TCRb repertoire diversity using ImmunoID NeXT in a subset of

patients (n ¼ 28 patients). Clonality was determined for the clonal

abundance of all productive TCRb sequences using 1-Pielou’s even-

ness. As intratumoral heterogeneity is thought to be a determinant of

immune response (38), we compared mutant-allele tumor heteroge-

neity scores (39), which estimate tumor heterogeneity, and TCRb

clonality. Here, we identified a significant association (MWW, P ¼

0.014) between high tumor heterogeneity and clonal diversity of the

TCRb repertoire (Supplementary Fig. S1E). TCRb clonality was found

to be significantly associated with therapy outcome (MWW, P ¼

0.047; Fig. 2C), and PFS (two-sided Kaplan–Meier (KM) log-rank test,

P ¼ 0.0043; Fig. 2D), but not treatment history (Supplementary

Table S6).

Characterization of immune and stromal cell populationswithin the

TME in our cohort was carried out using publicly available gene

sets (22), which were used to produce semiquantitative immune

infiltration scores. Using this approach, we found that responding

and nonresponding patients largely shared similar distributions of

immune cells (Fig. 2E).

TMB as a biomarker of response to ICB

In the discovery cohort, median nonsynonymous TMB was 4.07

mutations/Mb [interquartile range (IQR), 0.95–12.455] (Fig. 3A),

consistent with values observed in prior literature and The Cancer

Genome Atlas datasets (Supplementary Fig. S2A). C>T transitions

make up the bulk of identified SNVs (76%; Supplementary Fig. S2B),

and mutational signatures (40) found in the cohort most strongly

associated with UV-induced DNA damage (Supplementary Fig. S2C

and S2D). The most commonly identified driver mutation occurred in

BRAF, in 33% of patients, followed by 20% NRAS and 16% NF1 in the

study population. Response rate for the different genomic subtypes did

not significantly vary from the expected response rate (Supplementary

Fig. S2E). The elevated number of triple wild-type (WT) patients likely

arises from the reduced frequency of BRAF, which are typically

observed at higher rates (41).

Figure 3.

Genomic features and the tumor mutational landscape in melanoma patients. A, Mutation in driver genes of patients receiving anti–PD-1 therapy. Top bar plot

represents mutational load. Tiled plot showsmutated genes (rows) by sample (columns), with tile color indicatingmutation type. The bar plot to the right represents

the number of patients with mutations in the specified gene, colored to indicate mutation type. Under the tiled plot, the first line represents therapeutic response, as

either response (partial or complete response; dark green; n ¼ 33), or nonresponse (black; n ¼ 18). B, Comparison of TMB in tumors harboring different driver

mutations revealed significant variation (KW; P¼ 0.00012). Values are plotted on log10 scale. C, Comparison of TMB in different melanoma types, and sites of origin

revealed significant global variation (KW; P ¼ 0.016), with significant variation found in comparison with melanomas originating in the head and neck. Values are

plotted on log10 scale. D, Comparison of TMB in responding versus nonresponding patients revealed significant associations (MMW; P ¼ 0.049). All boxplots in

B–D cover the IQR from 25th percentile at their lower bound to the 75th percentile at their upper bound,withmedian indicated by a horizontal line. The upperwhisker

includes the largest value within 1.5� IQR above the 75th percentile. The lower whisker includes the smallest value within 1.5� IQR below the 25th percentile.
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TMB varied significantly between tumors harboring different driver

mutations (Kruskal–Wallis, P ¼ 0.00012; Fig. 3B), different sites of

disease origin (Kruskal–Wallis, P¼ 0.016; Fig. 3C), as well as between

responding and nonresponding patients (P ¼ 0.049; Fig. 3D). The

relatively small variance between TMB in responding and nonre-

sponding patients in this cohort (Fig. 3D) could be due to the

confounding effects of melanoma subtype, and varying tumor purity,

as these measures have recently been shown to limit TMB’s effective-

ness as a predictive biomarker (30, 42).

A neoantigen-based biomarker approach achieves stronger

correlation with response to ICB

We developed two different neoantigen models, one score based on

neoantigen burden (NBS), and another that extended this model to

account for impairment to neoantigen presentation and other estab-

lished resistance markers, creating a composite NEOPS.

To calculate NBS, we developed an integrative computational

pipeline that utilized broad exome- and transcriptome-derived fea-

tures. Putative neoepitopes were predicted from SNVs, indels, and

fusions detected from both exome and transcriptome sequencing. To

improve MHC class I neoantigen prediction, we generated mass

spectrometry–based peptide binding data from monoallelic HLA-

transfected cell lines. These data were used to train an improved

machine learning algorithm which integrates HLA binding, protea-

somal cleavage, and gene expression information to improve neoanti-

gen prediction. Using this approach, we surveyed the neoantigen

landscape across different driver mutations in this cohort, revealing

significant variation among subtypes (Kruskal–Wallis, P ¼ 1e-04;

Supplementary Fig. S2F). Counter to what was observed with TMB,

we did not detect a significant association across disease sites of origin

(Kruskal–Wallis, P ¼ 0.08; Supplementary Fig. S2G), suggesting that

neoantigen burden may be robust to these influences, despite being

strongly correlated with TMB (Kendall tau ¼ 0.8625637, P < 2.2e-16;

Supplementary Table S6). In addition, no significant variance was

observed between treatment-naive and treatment-experienced

patients (Supplementary Table S6). We found that neoantigen burden

was significantly elevated in patients that responded to therapy in the

current cohort (MWW, P ¼ 0.016; Fig. 4A), and confirmed these

findings in an independent validation cohort of 110 patients with

advanced melanoma (30) who received ICB (MWW, P ¼

0.021; Fig. 4B). Patients with above median (high) predicted neoanti-

gens had longer PFS than those with low neoantigen load (two-sided

KM log-rank test, P ¼ 0.002; Fig. 4C). While PFS of high neoantigen

burden patients was not significantly longer than those with low

Figure 4.

Neoantigen burden is associated with response to therapy. A, Neoantigen burden is significantly higher in responding patients compared with nonresponding

patients (n¼48;MWW;P¼0.016). Boxplot covers the IQR from the 25thpercentile at its lower bound to the 75th percentile at its upper bound,withmedian indicated

by a horizontal line. The upper whisker includes the largest value within 1.5� IQR above the 75th percentile. The lower whisker includes the smallest value within 1.5�

IQR below the 25th percentile. B, Similar findings were observed in the validation cohort, with patients who responded to therapy presenting significantly higher

neoantigen burden (MWW; P ¼ 0.021). C, Significantly longer PFS was observed in patients with high neoantigen burden when compared with those

with low neoantigen burden (two-sided KM log-rank test; P ¼ 0.002). D, AUROC for the neoantigen model was 0.71, and the cross-validation AUROC mean

was 0.69 (log-likelihood ratio P ¼ 0.0329).
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neoantigen burden in the validation cohort, marked improvements to

OS were observed (two-sided KM log-rank test, P ¼ 0.085, Supple-

mentary Fig. S2H and P¼ 0.005, Supplementary Fig. S2I). AUROC for

the NBS model was 0.71 and the cross-validation AUCmean was 0.69

(log-likelihood ratio P ¼ 0.0329; Fig. 4D).

Integrating antigen presentation into a composite neoantigen

score strengthens association with ICB response

We hypothesized that accounting for alterations in the APM that

could interfere with neoantigen presentation could improve the

performance of themodel as these events have been noted individually

to impact patient response to ICB. To explore this, we created NEOPS,

a computational model that adjusts the NBS to account for patient

specific tumor alterations that could interfere with neoantigen pre-

sentation, including HLAmutations, HLA LOH, and B2Mmutations.

Contribution of each NEOPS feature to model performance is pre-

sented in Supplementary Table S7. Analysis of patients in this cohort

using NEOPS resulted in improved prediction of therapy outcome,

when compared with neoantigen burden and TMB alone (MWW, P¼

0.002; Fig. 5A), a finding which was replicated in our validation cohort

(MWW, P ¼ 0.01; Fig. 5B). In addition, NEOPS was significantly

associated with longer PFS (two-sided KM log-rank test, P ¼

0.0046; Fig. 5C). Model performance is improved with the inclusion

of the additional features: AUROC for NEOPS increased to 0.76 and

the cross-validation AUC mean was 0.75 (log-likelihood ratio P ¼

0.0057; Fig. 5D). In contrast to what was found for neoantigen burden

in the validation cohort, PFS of patients with high NEOPS was

significantly longer than those with low NEOPS (two-sided KM

log-rank test, P ¼ 0.05; Supplementary Fig. S2J). Greater significance

was also achievedwhen analyzingOS,whichwas significantly longer in

patients with high NEOPS (two-sided KM log-rank test, P ¼ 0.002;

Supplementary Fig. S2K). Comparison of log relative hazard predicted

for NBS and NEOPS demonstrates greater proportional reduction in

relative hazard with increasing NEOPS (HR ¼ 0.399, P ¼ 0.026)

compared withNBS (HR¼ 0.545, P¼ 0.046; Supplementary Fig. S2L).

The improvement with NEOPS can be understood biologically with

the finding that 23.5% of patients in the discovery cohort, and 17.27%

of patients in the validation cohort had at least one mechanism

potentially affecting antigen presentation, suggesting these features

may frequently influence therapy response. A review of damaging

HLA mutations across the cohort revealed deleterious variants in

many patients (patients 25 and 38 highlighted in Fig. 6A). We

Figure 5.

Composite neoantigen presentation score is more strongly associated with response to therapy than neoantigen burden alone. A, Composite NEOPS is significantly

higher in responding patients comparedwith nonresponding patients (n¼48;MWW;P¼0.002).B, Similar findingswere observed in the validation cohort, with high

responding patients presenting significantly higher NEOPS (n¼ 110; MWW; P¼ 0.010). C, Significantly longer PFS was observed in patients with high NEOPS when

comparedwith thosewith lowNEOPS (two-sided KM log-rank test; P¼0.0046). Boxplots inA andB cover the IQR from the 25th percentile at its lower bound to the

75th percentile at its upper bound, withmedian indicated by a horizontal line. The upper whisker includes the largest value within 1.5� IQR above the 75th percentile.

The lower whisker includes the smallest value within 1.5� IQR below the 25th percentile. D, AUROC for the NEOPSmodel was 0.76, and the cross-validation AUROC

mean was 0.75 (log-likelihood ratio P ¼ 0.0057).

Abbott et al.

Clin Cancer Res; 27(15) August 1, 2021 CLINICAL CANCER RESEARCH4272

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
lin

c
a
n
c
e
rre

s
/a

rtic
le

-p
d
f/2

7
/1

5
/4

2
6
5
/3

1
9
2
1
7
4
/4

2
6
5
.p

d
f b

y
 g

u
e

s
t o

n
 2

2
 A

u
g

u
s
t 2

0
2
2



identified two distinct somatic HLA mutations in patient 25; a stop

gain mutation in HLA-A02:01, and a splice region variant in HLA-

B15:01 (allele fraction¼ 0.473 and 0.368, respectively), that can lead to

the loss of surface expression of HLA-A02:01 and possible misfolding

of HLA-B15:01. 38.9% of neoantigens in this patient were predicted to

bind to the damaged alleles (Fig. 6B), suggesting potentially severe

impairment of neoantigen presentation. Of note, this patient was an

outlier in the nonresponding cohort, with much higher neoantigen

burden, suggesting impaired neoantigen presentation beyond that

which is captured in NEOPS may be a contributing factor to ICB

resistance. In another outlier patient (high neoantigen burden, non-

responder), a damaging frameshift variant was detected in B2M at a

high allelic fraction (Fig. 6A), also potentially impacting antigen

presentation. HLA LOH was also examined in this cohort, as it can

potentially impact neoantigen presentation. HLA LOH is an acquired

resistance mechanism that facilitates immune escape by reducing

capacity for presentation of tumor neoantigens to the immune sys-

tem (15). As the process of HLA loss is governed by selective pressures

within the TME, particularly at later stages of tumor evolution, we

hypothesized that within our cohort of patients with late-stage mel-

anoma allele-specific HLA LOH could contribute to reduced thera-

peutic response despite apparent elevated neoantigen burden. We

found that HLA LOHwas themost prevalent form of HLA disruption,

occurring in 19.6% of evaluable patients (10/51), with three individuals

presenting LOH across all non-homozygous HLAs (these data and

other patient-level values are presented in Supplementary Table S8).

Highlighting one such case, we see that matched normal tissue from

the patient generally presents even allele-specific coverage across

HLAs A and C (Fig. 6C, HLA-A at left, HLA-C at right). In contrast,

tumor tissue from this patient exhibits broad imbalances in allele-

specific coverage spanning large portions of each HLA, with low levels

of coverage in HLA-A01:01 and HLA-C07:01. BAF shows absolute

difference from the normal. Consistently, lower ratio of coverage is

observed in the lost alleles (Fig. 6C, bottom plots), which are predicted

to present approximately 54% of this patient’s neoantigens, likely

reducing capacity for presentation to the immune system.

Validation of model performance for both NBS and NEOPS was

attempted in the same cohort, thoughwe found reduced performance for

bothmodels (AUC0.63 and 0.65, respectively; Supplementary Table S7).

One factor likely contributing to the reduced predictive strength is the

relatively poor coverage ofHLAA,B, andCgenes in the validation cohort

(median coverage of 66.95 in the validation cohort vs. 250.01 in the

discovery cohort). Despite this, comparison of AUC values between

NEOPS and previously described models and transcriptomic signatures

highlights the strength of this approach (Supplementary Table S7).

Discussion
In our study, we show that a composite approach likeNEOPS,which

models both biological mechanisms, and impairment of neoantigen

Figure 6.

Changes to APM that may contribute to immune evasion.A, Somatic HLAmutations detected in patient 25may lead to the loss of surface expression of HLA-A02:01

andpossiblemisfolding ofHLA-B15:01. Adamaging frameshift variantwasdetected inB2M in patient 38, possibly impairing allMHCclass I presentation in that patient.

B, 38.9% of neoantigens predicted to be presented by patient 25 are predicted to bind to the damaged alleles described in A. C, Four panels showing the NGS

sequence-based evidence for HLA LOH inHLA-A andHLA-C of patient 54. HLA-B is not shown. The first row shows the raw read coverage of both homologous alleles

in the normal sample. The second row shows the raw read coverage of both homologous alleles in the tumor sample. Both plots have vertical gray lines representing

the positions of difference between the two alleles. Because of strictmapping parameters requiring all reads tomapwithoutmismatch, differences in coverage at the

gray lines represent true differences in coveragebetween the alleles. The third panel shows theBAF from the normal sample (gray) and the tumor sample (black). The

BAF in the tumor samplemust be considered in light of theBAF in thenormal samplebecause of primer hybridizationdifferencesbetween the alleles. The fourth panel

shows the ratio in coveragebetween the tumor andnormal samples for each allele. These values havebeennormalizedby the tumor andnormal readdepth across the

whole exome. The expected value with no copy-number change is 1, shownwith a dashed gray line. Both the third and fourth panel show data only for themismatch

positions between the two alleles.
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presentation can serve as a strong predictor for ICB therapy response.

Here, NEOPS achieved greater separation of ICB therapy responders

and nonresponders than TMB and other single analyte/gene, and

expression signatures examined in the discovery cohort. We then

further demonstrated the value ofNEOPS by confirming thesefindings

in a large independent validation cohort. Broadly, we show that

integrative, composite biomarker approaches like ours combining

both DNA and RNA features, tumor and immune features, and

response and resistance biomarkers can better model the complex

biological mechanisms underlying ICB therapy response, and poten-

tially improve patient stratification.

These results are consistent with an increasing body of literature

across multiple cancer types that have demonstrated that neoanti-

gens can guide immune response, promoting clinical response to

immunotherapy (43, 44). While we observed only weak association

between response and TMB, stronger association between neoanti-

gen burden and patient response was apparent. Recent work (30)

suggests that this finding may be attributed to confounding effects

of the distribution of melanoma subtypes within this cohort, which

negatively impact the predictive power of TMB, but not neoantigen

burden. Future studies leveraging large cohorts such as that found

in work by Conway and colleagues (45) will likely reveal further

subtleties surrounding this relationship. It is possible that the

increased robustness of neoantigen burden as a biomarker is

achieved through the inclusion of additional data from subsequent

processing steps, as well as RNA expression levels, as this measure

has been found to correlate with protein representation in the

MHC-bound peptide repertoire (46).

While elevatedmeasures of neoantigen burden predict in partwhich

patients will benefit from immunotherapy, additional resistance

mechanisms arising from genetic variation in the antigen presentation

machinery, both at a germline as well as somatic level, may further

modulate immune response by diminishing capacity for neoantigen

presentation (10). We detected a collection of damaging APM altera-

tions that have been previously associated with reduced response to

immunotherapy, including HLA class I and B2Mmutations, and LOH

in HLA class I genes (8, 15, 47, 48). By accounting for these escape

mechanisms, and combining them into a composite neoantigen score,

we captured a fuller representation of tumor antigen presentation to

the immune system compared to simpler models such as TMB,

increasing the predictive strength of this biomarker. This approach

will likely yield exciting results when applied to non–small cell lung

carcinoma and squamous cell carcinoma of the head and neck patient

cohorts, as HLA LOH is a prevalent escape mechanism in these, and

other tumor types (49). Indeed, work by Filip and colleagues (49)

which leverages data from >3,500 tumors found allele-specific expres-

sion loss at frequencies above 45% in head and neck, lung adenocar-

cinoma, pancreatic, and prostate cancers. This, combined with the

well-documented prevalence of somatic mutations in class I HLA

genes suggests a broad pervasiveness of damaging APM events cap-

tured by NEOPS.

In this study, we identified additional factors influencing patient

response outside of neoantigen burden. The outlier, non-responding

patient in the validation cohort with high NEOPS presents with

metastatic desmoplastic melanoma, which is associated with high

levels of mutational burden and distinct clinicopathologic and genetic

features compared with typical cutaneous melanomas, likely explain-

ing the comparatively highNEOPS (50).While thismay explain lack of

concordance with predicted outcome in this case, it also highlights

some of the limitations of our approach. These limitations are read out

as reduced NBS and NEOPS model performance in the validation

cohort, where we also observe small relative improvements in PFS and

OS. One possible factor impacting performance is reduced coverage of

the HLA region in the validation cohort, which contributes critical

information for calculating NBS and NEOPS. Discovery cohort sam-

ples have significantly increased coverage in the region (median

66.95� coverage in the validation cohort vs. 250.01� in the discovery

cohort), and therefore increased confidence in HLA calls. This has

wide-ranging effects, from predicting neoantigen presentation to

calling HLA LOH.While this makes validation challenging, we believe

it also demonstrates the strength of our augmented capture approach

for library preparation and sequencing. These observations also

suggest that there are opportunities to further expand our composite

biomarker approach to model other mechanisms of therapy resistance

or response that extend beyond neoantigen presentation.

Given the complex nature of resistance to immunotherapy, as well

as potential toxicities associated with treatment, there is a need for

biomarkers that can more accurately predict therapeutic response.

Here we demonstrate that a composite biomarker approach can

significantly improve stratification of patient response. We also dem-

onstrate that data intensive biomarkers like NEOPS can also be

clinically practical, with comprehensive tumor profiling in our clinical

cohort achieved using very limited tumor tissue. Composite biomarker

approaches like this may increasingly serve as important tools for

precision immunotherapy as comprehensive exome and transcrip-

tome-scale tumor immunogenomic profiling tests gain clinical

adoption.
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