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Abstract 

 

Moving beyond the stimulus contained in observable agent behaviour, i.e. understanding 

the underlying intent of the observed agent is of immense interest in a variety of domains 

that involve collaborative and competitive scenarios, for example assistive robotics, 

computer games, robot-human interaction, decision support and intelligent tutoring.  This 

review paper examines approaches for performing action recognition and prediction of 

intent from a multidisciplinary perspective, in both single robot and multi-agent 

scenarios, and analyses the underlying challenges, focusing mainly on generative 

approaches. 
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1. Introduction 

 

Designing and implementing algorithms for enabling machines, and in particular robots 

to recognise the actions of humans is a task that, although challenging, has substantial 

application potential. Applications for such algorithms include: 

 

• Surveillance: monitoring public areas for automatic recognition of threatening or 

abusive behaviour; crowd monitoring during evacuation of large buildings. 

• Ambient Intelligence and assistive devices: monitoring indoor environments and the 

actions of humans for assisted living. Applications in this area are usually focused on 

monitoring and assisting disabled or elderly people. 

• Entertainment and sports: recognising the actions of humans as an interface to games 

and virtual environments; better monitoring of athletes’ performance.  

• Robotics: recognising the actions of humans has novel robot applications such as 

learning by demonstration and imitation (Schaal 1999, 2003, Demiris and Hayes 

2002, Demiris and Khadhouri 2006) which have the potential to lead to easily 

programmable robots. 

 

A number of detailed surveys  (Aggarwal and Cai 1999, Moeslund and Granum 2000, 

Moeslund et al 2006, among others) have already explored how such actions can be 

captured, analysed and understood; what this paper will concentrate on is different 

approaches to move beyond the demonstrated stimulus, and investigate how less tangible 
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aspects of the demonstration, particularly the underlying goals and intentions of the 

demonstrator, can be inferred. This is a task that is particularly difficult, and might prove 

to be impossible in certain cases; however it is worthwhile to pursue since equipping 

machines with such capabilities will elevate their capacities as effective assistants. 

 

We will first examine some of the definitions related with intention and prediction, and 

proceed to examine alternative approaches for the prediction of intent; we will 

subsequently focus our discussion on generative approaches, using the HAMMER 

architecture (Demiris and Khadhouri 2006) as a representative example. The paper will 

conclude with a review of the more general and less explored problem of predicting the 

intention of groups of agents. Intention recognition is studied extensively in different 

disciplines and it is not possible to do justice to all of them in the space of a short review 

article. The purpose instead is to serve as an interdisciplinary introduction and 

demonstrate links between the different approaches, hopefully inspiring further 

interdisciplinary cooperation in intention recognition. 

 

2. Background - Intentions and goals in Humans 

 

People act not only as a response to external or internal stimuli, but also in order to 

achieve internally or externally posed goals. There has been a lot of theoretical and 

experimental work in determining the mechanisms involved in these processes, as well as 

clearly defining the associated terminology (e.g. Bratman 1990, Cohen and Levesque 

1990, Tomasello et al 2005). 
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Living in societies, humans also direct a lot of their behaviour in response to their 

interpretation and prediction of the intentions of others. Humans are quite good at this 

inference task, starting from a very young age. In an experiment by (Meltzoff, 1995, 

2007b), 18-month old children were shown unsuccessful acts involving a demonstrator 

trying but failing to achieve his goal, i.e. the children did not see a successfully reached 

end-state. The children however did not replicate the unsuccessful surface behaviour of 

the adult but proceeded to imitate the intended goal, even when it was never shown to 

them.  In adults, neuroscience data have been pointing to specialized human brain 

mechanisms for perceiving actions and intentions of other humans (for a review, see 

Blakemore and Decety, 2001). 

  

There are significant difficulties in perceiving intentions as well as action goals. The 

main one is the problem of inversion, the fact that an observed action can be the result of 

more than one intention. Consider the example of someone intentionally pushing you. 

The immediate goal of the other agent is to displace you from a location, but the 

underlying intention is not clear until additional information are added into the equation – 

is the person that pushed me angry at me? Am I in danger in my previous location? The 

perception of the current context is crucial to correctly infer the intentions of other 

agents. 

 

The example above highlights the close relation of intentions and action goals, and the 

difficulty in drawing an exact division line between them. The terms goals and intentions 
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are frequently used interchangeably, but in general goals refer to more immediate 

desirable end-states while frequently intentions have a longer-term or higher level 

connotation. Tomasello et al 2005 define intentions as “a plan of action the organism 

chooses and commits itself to the pursuit of a goal – an intention thus includes both a 

means (action plan) as well as a goal” (p.676). We will use Tomasello’s definition as the 

working definition for this paper. 

 

3. Approaches to intention recognition 

 

(Kanno et al 2003) defines three types of intention recognition: keyhole recognition, 

intended recognition and obstructed recognition. In the first one, the observed agent is 

unaware of the observer, and proceeds executing the plan without any special 

consideration for the observer. In the second type the observed agent is aware of the 

observer and actively cooperates in the recognition, for example, by ensuring that crucial 

parts of the demonstration are not obstructed. In the third type, the observed agent is 

again aware of the observer but is actively trying to disrupt the recognition process and 

hide its intentions. More challenging issues such as adversarial reasoning and deception 

(Kott and McEneaney, 2006) can also come into play, where the agent will even execute 

actions that do not correspond to its intentions, in order to deceive or mislead the 

observer. The latter cases are however beyond the scope of the paper, and we will restrict 

the discussion in the keyhole and intended types of intention recognition. 
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Recognizing the goals and intentions of the actions of an agent is essentially a problem of 

model matching; the observer agent deploys a number of sensors, each reporting its 

observations about the state of the observed agent at a specified sampling rate. The 

collected data can be acted upon through two different approaches, descriptive vs. 

generative.  

 

Within the descriptive approach, patterns are characterised through the extraction of a 

number of low level features, and the use of a set of restrictions at the feature level, for 

example through Markov Random Fields (Isham 1981), or Deformable Models, popular 

in computer vision based applications (see (Jain et al 1998) for a review). The observer 

agent subsequently matches the observed data against pre-existing representations, and 

depending on what the task is (imitation of observed actions, collaboration etc), generates 

the actions corresponding to these representations. Pre-existing representations can have 

associated data that label these representations with the goals, beliefs, and intentions that 

underlie their execution. This approach corresponds to the “action-effects associations” 

method for intention interpretation in the review of (Csibra and Gergely, 2007), and to 

the “Theory of Event Coding” approach put forward by (Hommel et al 2001) based on 

William James’ ideomotor principle in which bidirectional action-effects associations are 

used to predict the goals of an action. 

 

Within the generative approach, a set of latent (hidden) variables is introduced; this set 

encodes the causes that can produce the observed data. They represent the intrinsic 

degrees of freedom underlying the structure of the observations, usually using probability 
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distributions. Using these variables for a recognition task involves modifying the 

parameters of the generating process until the generated data can be favourably compared 

against the observed data. Generative models are very popular in the machine learning 

community, with many variations in existence [e.g. Roweis and Ghahramani 1999, 

Bishop 2006, Buxton 2003]. 

 

The idea that the generative model can be used to explain or predict observed data has 

been gaining popularity in the robotics community who has been approaching the 

problem armed with an additional constraint, that of embodiment. The internal models 

here take the form of motor control models capable of driving an embodied system. 

These internal models exist in various forms, including forward and inverse models 

(explained below), as well as behaviours (Arkin 1998), schemas (Acosta-Calderon and 

Hu 2005, Pezzulo and Calvi 2006), varying in whether they act in a feedback (usually 

behaviours) or feedforward (usually schemas, inverse models) manner. A number of 

architectures have been proposed, using combinations of these internal models, including 

HAMMER (Demiris and Hayes 2002, Demiris and Khadhouri 2006), with an emphasis 

on modelling mirror neurons and robot learning by imitation applications, and MOSAIC 

(Wolpert et al 2003) with an emphasis on motor control. HAMMER in particular was 

designed with the aim of using the internal models of robots to both produce movement 

as well as perceive it when produced by others. We will proceed to explaining this in 

more detail in section 4 as a prototypical example of the prediction through synthesis 

approach. Alternative approaches also exist, including for example the use of repeated 

imitation games between agents (Jansen and Belpaeme, 2006). 



Preprint of journal paper appearing in Cognitive Processing, 8, pp 151-158. 
Formatted final version available at:  
http://link.springer.com/article/10.1007%2Fs10339-007-0168-9 
 

 

 

The idea that you can view perception as internal simulation, using your action models to 

predict ongoing demonstration (as in HAMMER) has many links with the simulationist 

perspective of cognitive functions (Hesslow 2002). Similar ideas to this have been put 

forward in other research fields, demonstrating the generality of the principle. For 

example, in the field of intelligent tutoring, John Anderson put forward a technique 

known as model tracing (Anderson 1990), where a runable model of the student’s 

cognitive skills in a particular domain is executed and compared with the student’s 

actions. Inserting “buggy rules” into the model results in suboptimal performance and 

errors; if these errors correlate well with the student errors, the rules are taken as a 

possible explanation of the deficiencies in the student’s knowledge, and actions are taken 

to repair these. In the field of speech perception, Liberman’s theory of speech perception 

[Liberman et al 1967] employs a similar perception through motor simulation approach; 

you understand speech through internal generation and reproduction of the acoustic 

signal. The neuroanatomical basis of this approach and its alternatives are examined in 

(Scott and Johnsrude, 2003). 

 

It is also worth noting an alternative to goal recognition that has been put forward, that is 

the “teleological interpretation of actions”. A comparative review against the other two 

approaches can be found in (Csibra and Gergely 2007), but briefly the approach performs 

a normative evaluation of observed actions based on the principle of rational actions 

(Csibra and Gergely 1998), which “allows for the assessment of the relative efficiency of 

the action performed to achieve the goal within the situational constraints given” (Csibra 
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and Gergely 2007, p. 70). The effect of an observed action can be seen as the goal 

depending on whether the outcome is judged to justify the action in the given context it 

was observed in.  

 

4. The Generative Embodied Simulationist Approach - The single agent case 

 

We will now use the HAMMER (Hierarchical Attentive Multiple Models for Execution 

and Recognition) architecture as a representative example of the generative embodied 

simulationist approach to understanding intentions. We will explain the operation of the 

architecture by starting from the second half of its acronym (MER – how a Model can be 

used both for Execution and Recognition of an action) in the next section, and proceed to 

explain how multiple models can be used concurrently, organised in hierarchies, and 

incorporate attention, in the sections after. 

 

4.1 Principles  

 

HAMMER utilizes the concepts of inverse and forward models. An inverse model is akin 

to the concepts of a controller, behavior, action, or motor plan. The inverse model’s 

function is to receive as input a measurement or estimate of the current state of the 

system and the desired target goal(s) and output the control commands that are needed to 

achieve or maintain those goal(s). A forward model of a modeled system (akin to the 

concept of internal predictor) is a function that takes as inputs the current state of the 

system and a control command to be applied to it and outputs the predicted next state of 
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the controlled system (Miall and Wolpert, 1996).  It is worthwhile to note that the term 

forward models have also been used in a modified version in different contexts (for a 

review of different usages, see Karniel 2002). 

 

The building block of HAMMER is an inverse model paired with a forward model 

(figure 1). When HAMMER is asked to rehearse or execute a certain action, the 

corresponding inverse model module is given information about the current state and, 

optionally, about the target goal(s). The inverse model then outputs the motor commands 

that are necessary to achieve or maintain these implicit or explicit target goal(s). The 

forward model provides an estimate of the upcoming states should these motor 

commands get executed. This estimate is returned back to the inverse model, allowing it 

to adjust any parameters of the action (an example of this would be achieving different 

movement speeds (Demiris and Hayes 2002)). The estimate can also be compared with 

the target goal to produce a reinforcement signal for the inverse model depending on how 

much the model’s motor commands brought the estimate closer to the target goal. 

Architectures involving combinations of inverse and forward models (in varying 

configurations, for example differing in how control is switched between multiple 

models) are used in motor control (Narendra and Balakrishnan 1997, Wolpert and 

Kawato 1998) due to their flexible modular structure, and have been advocated for use in 

imitation and learning (Demiris and Hayes 2002, Demiris and Khadhouri 2006, Schaal 

1999, Schaal et al 2003, Wolpert et al 2003).  
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The HAMMER architecture uses an inverse-forward model coupling in a dual role: either 

for executing an action, or for perceiving the same action when performed by a 

demonstrator. When HAMMER operates in action perception mode, it can determine 

whether a visually perceived demonstrated action matches a particular inverse-forward 

model coupling (figure 2),  by feeding the demonstrator's current state as perceived by the 

imitator to the inverse model. The inverse model generates the motor commands that it 

would output if it was in that state and was executing the particular action. In a sense, 

the imitator processes the actions by analogy with the self – “what would I do if I were in 

the demonstrator’s shoes?” 

 

In the perception or planning modes, the motor commands are inhibited from being sent 

to the motor system. The forward model outputs an estimated next state, which is a 

prediction of what the demonstrator's next state will be. This predicted state is compared 

with the demonstrator's actual state at the next time step. As seen in figure 2 below and 

the text that follows, this comparison results in an error signal that can be used to increase 

or decrease the behaviour's confidence value, which is an indicator of how closely the 

demonstrated action matches a particular imitator's action.  
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  Figure 1: HAMMER’s basic building block, an inverse model paired with a forward 

model (from Demiris & Hayes 2002, Demiris and Johnson 2003). The target goal (or 

intention) is marked optional since it might already be implicit in the functionality of the 

inverse model. 

 

 

An interesting point that arises here is how to learn these models; interested readers are 

referred to (Dearden and Demiris 2005) for some initial work on a developmental 

approach on how this can be achieved in robots. In these experiments, the robot 

associated self-generated actions with the feedback they produce once executed 

(including learning the feedback delays in the motor system). 

 

So far we have described how the ‘MER’ (Models for Execution and Recognition) part of 

HAMMER operates. It remains to be seen why the ‘HAM’ (Hierarchical Attentive 

Multiple) part is important, starting from the multiplicity aspect and continuing with the 

Hierarchies and Attention in the next section.  
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HAMMER consists of multiple pairs of inverse and forward models that operate in 

parallel (Demiris and Hayes 2002). As the demonstrator agent executes a particular 

action, and there are multiple models (possibilities) that can explain the ongoing 

demonstration, we feed the perceived states into all of the imitator's available inverse 

models. This will result into the generation of multiple motor commands (representing 

the multiple hypotheses as to what action is being demonstrated) that are sent to the 

forward models. The forward models generate predictions about the demonstrator's next 

state as described earlier and these are compared with the actual demonstrator's state at 

the next time step. The error signal resulting from this comparison affects the confidence 

values of the inverse models. At the end of the demonstration (or earlier if required) the 

inverse model with the highest confidence value, i.e. the one that is the closest match to 

the demonstrator’s action is selected and is offered as an estimate of the intention. 

(Demiris and Hayes, 2002) have described the relation of this process to a biological 

counterpart, the mirror system (Gallese et al, 1996), offering a number of explanations 

and testable predictions (Demiris and Hayes 2002, Demiris and Simmons, 2006), for 

example, a predicted dependency of the firing rate of the macaque monkey mirror 

neurons to the velocity profile of the demonstrated act.  

 

4.2 Attention, hierarchies and perspective taking 

 

4.2.1 Attention 
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The multiple models formulation, as stated so far, assumes that the complete state 

information will be available for and fed to all the available inverse models. Since each of 

the inverse models requires a subset of the global state information (for example, one 

might only need the arm position of the demonstrator rather than full body state 

information), we can optimise this process by allowing each inverse model to request a 

subset of the information from an attention mechanism, thus exerting a top-down control 

on the attention mechanism. Since HAMMER is inspired by the “simulation theory of 

mind” point of view for action perception, it asserts that, for a given behaviour, the 

information that it will try to extract during the demonstration is the state of the variables 

it would control if it was executing this behaviour (Demiris and Khadhouri 2006). Apart 

from improving on the resource requirements of the architecture above, this novel 

approach provides a principled way for supplying top-down signals to attention. The 

saliency of each request can then be a function of the confidence that each inverse model 

possesses, removing the need for ad-hoc ways for computing the saliency of top-down 

requests. Top-down control can then be integrated with saliency information from the 

stimuli itself, allowing a control decision to be made as to where to focus the observer’s 

attention. An overall diagram of this is shown below (figure 2): 
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Figure 2: Inverse models submit requests to the attention mechanism, exerting top-down 

control 

 

Strategies for selecting among the different requests can include “equal time sharing”, or 

“highest priority first”, or other suitable resource scheduling algorithms (Demiris and 

Khadhouri 2006).  

 

Although this architecture is based on a principled approach on how the observer’s 

internal models and prior knowledge influence what parts of the stimulus will be attended 

to, the relation to biological (for example, (Flanagan and Johansson 2003)) and 

developmental data requires further exploration. 

 

4.2.3 Hierarchical Organisation of the inverse and forward models 
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How are human action models organised? Recent evidence on how infants encode goals 

suggests hierarchical representations (Bekkering et al., 2000; Gleissner et al. 2000, 

Wohlschlager, 2003), and recent brain imaging data have also begun to shed light into 

these hierarchical representations in adults (Hamilton and Grafton, 2007). In robots, 

hierarchical formulations have been proposed and used (Demiris and Johnson, 2003, Tani 

and Nolfi 1999), but their relation to biological data has not been explored (but see 

(Byrne and Russon 1998, Demiris and Simmons 2006)).  

 

The important issues to consider in hierarchical organisations is the nature of abstraction 

or generalisation (if any) that we achieve by moving into higher levels of the hierarchy, 

i.e. how inverse and forward models can be put together to form “higher models”. In the 

‘subsumption architecture’ (Brooks 1986) for example, higher levels provide the gating 

for the lower levels but do not provide any generalisation. In (Demiris and Johnson 2003) 

inverse models are formed by allowing lower level models to be placed in parallel or in 

sequence based on whether there are overlapping degrees of freedom between the body 

structures that the inverse models control. HMOSAIC (Wolpert et al 2003) proposes a 

three level hierarchy with the low level dynamics at the lower level, sequences of 

elements at the middle level, and symbolic representations of tasks at the higher level. 

Despite these first attempts, further theoretical advancements will be required, in order to 

be able to merge the prediction of proximal motor intentions that architectures such as 

HAMMER and MOSAIC can provide and higher “theory of mind” type of tasks that a 

more general simulation theory of mind would require. 
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4.2.4  Perspective Taking 

 

The simulationist approach to understanding intentions requires the observer to take the 

perspective of the demonstrator, i.e. to “step into the demonstrator’s shoes”. Useful 

information on how such mechanisms can be implemented is available from 

developmental work on gaze following, which can be viewed as the lowest end of 

perspective taking. Work by (Brooks & Meltzoff, 2002, 2005) has shown that one year 

old infants can follow the gaze of adults and realise that it is not a meaningless movement 

but is directed at an object. The evidence points to a use of first-person experience (our 

own internal models) to make third-person attributions; for example, (Meltzoff, 2007a, 

Meltzoff & Brooks, 2004) have shown that once infants had experience with blindfolds, 

the interpretation of others who wear blindfolds also changes. Although various 

algorithmic solutions to perspective taking have been proposed (Johnson and Demiris, 

2005, Breazeal et al 2006, Trafton et al 2005), higher levels of perspective taking, like the 

ones discussed in this paper, including beliefs, desires, and intentions remain difficult 

challenges in robotics. In (Johnson and Demiris 2005) perceptual perspective taking 

allowed an observer robot to “place itself in the demonstrator robot’s perceptual shoes” 

and engage the inverse models that were compatible with the demonstrator’s viewpoint 

rather than its own viewpoint. Although there is still a lot of work to be done in robotics 

on this aspect, research on the development of perspective taking and its roots in gaze 

following (Meltzoff, 2005, 2007a), as well as relevant neuroscience data for the adult 
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cases (e.g. Jackson, Meltzoff, and Decety, 2006) can provide robotics researchers with 

useful information regarding potential implementation approaches. 

 

5. The multi-agent case 

 

Intention recognition and prediction is of importance also for applications involving 

groups of agents, particularly in adversarial scenarios such as competitive sports (Beetz et 

al 2005) and military simulations (Tambe 1996). It is also of use in cooperative situations 

where the behaviour of an agent is dependent on its partner’s or team’s behaviour (Grosz 

and Hunsberger, 2003, Kanno et al 2003). The multiplicity of agents involved 

complicates intention recognition in two important ways: 

 

• To predict the intention of the group it is not sufficient to track and predict the 

actions of individual agents in the group. It is necessary to attempt to infer the 

joint intention or shared plan of the agents as a group. This is not simply the sum 

of the intentions of the individual agents, but needs to be found within the agents’ 

“shared cooperative activity” (Bratman, 1992), which Bratman defined as a 

combination of mutual responsiveness, commitment to the joint activity and 

commitment to mutual support. (Tambe, 1996) presented a system, RESCteam, 

which constructs explicit teams models and tracks them at the team level; as a 

result, they avoid the execution of a large number of individual agent models. 

• In addition to recognising activity, it is crucial to recognise an agent’s identity, 

and its position in the social structure i.e. in what sub-team does it belong to, and 
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what is its role (Sonenberg and Tidhar, 1999). Given that an agent within a team 

can assume more than one role, the action it is performing can be interpreted in 

different ways depending on the role it is believed to have. 

 

Methods that attempt to simultaneously identify subgroups as well as recognise their 

behaviour have begun to appear (Devaney and Ram 1998, Sukthankar and Sycara 2006), 

but their source of information are spatiotemporal traces of the agents, which convey 

little information, making the problem particularly hard. The observer does not affect 

these traces, but remains a passive observer. Mutual support, one of the key aspects of 

shared cooperative activity (Bratman, 1992), might be particularly important here since 

mutual support might necessitate intention updating depending on the performance of 

subgroups; the change of activity to a set of agents based on an action we caused on 

another set of agents might reveal important information regarding the correlation of the 

activities and roles of the two sets, and give clues as to their joint intention. 

 

Conclusions  

 

We reviewed the different approaches to action recognition and prediction of intent, 

distinguishing between descriptive and generative approaches, and surveying the 

generative architectures available, using HAMMER as the main example. Prediction of 

intent remains a challenging task, with advancements needed at all levels, both 

theoretical, as well as technological, particularly if the application involves groups of 

agents. Solutions, as in the past in active learning and active vision, might be found in the 
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active involvement of the observer while the operation is unfolding, so that the intricate 

correlations between activities of multiple agents can be revealed. 
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