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Human immunodeficiency virus-1 (HIV-1) in acquired immune deficiency syndrome 

(AIDS) relies on human host cell proteins in virtually every aspect of its life cycle. 

Knowledge of the set of interacting human and viral proteins would greatly contribute to 

our understanding of the mechanisms of infection and subsequently to the design of new 

therapeutic approaches. This work is the first attempt to predict the global set of 

interactions between HIV-1 and human host cellular proteins. We propose a supervised 

learning framework, where multiple information data sources are utilized, including co-

occurrence of functional motifs and their interaction domains and protein classes, gene 

ontology annotations, posttranslational modifications, tissue distributions and gene 

expression profiles, topological properties of the human protein in the interaction network 

and the similarity of HIV-1 proteins to human proteins’ known binding partners. We 

trained and tested a Random Forest (RF) classifier with this extensive feature set. The 

model’s predictions achieved an average Mean Average Precision (MAP) score of 23%. 

Among the predicted interactions was for example the pair, HIV-1 protein tat and human 

vitamin D receptor. This interaction had recently been independently validated 

experimentally. The rank-ordered lists of predicted interacting pairs are a rich source for 

generating biological hypotheses. Amongst the novel predictions, transcription regulator 

activity, immune system process and macromolecular complex were the top most 

significant molecular function, process and cellular compartments, respectively. 

Supplementary material is available at URL www.cs.cmu.edu/~oznur/hiv/hivPPI.html 

1. Introduction 

1.1.  Motivation 

Human immunodeficiency virus-1 (HIV-1) is the etiologic agent of acquired 

immune deficiency syndrome (AIDS) and continues to be a major health threat 

[1, 2].  The number of AIDS-related deaths was ~2.1 million in 2007 alone [3]; 
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an estimated ~33.2 million people worldwide are infected [3]. HIV-1 contains a 

single stranded RNA genome, which codes for only 15 proteins; thus, it relies 

on human cellular functions [4]. The virus exploits the host cell’s machinery 

such that it can successfully produce its progeny while at the same time avoid 

the immune system. Protein-protein interactions (PPIs) between HIV-1 and its 

host are vital at every step of the virus life cycle [1]. A recent functional 

genomic screen using siRNA technology revealed several hundred proteins 

critical for HIV-1 function [5]. An extensive survey of individual interactions 

described in the literature [6] has retrieved ~2500 pairs, of which ~1000 are 

likely direct physical interactions. Here, we propose to use data integration 

methods on these reported interactions in conjunction with a variety of different 

biological information sources to predict new PPIs between human and HIV-1.  

 

1.2.  Related Work 

In order to identify PPIs in general, many experimental methods are available 

[7]. Computational methods have been useful in assisting the experimental 

efforts by either prioritizing PPIs to be tested by subsequent experiments or by 

validating (or refuting) high-throughput screens [8]. Such computational 

methods include those based on over-representation of domain or motif pairs 

observed in interacting protein partners [9-13], or the conservation of gene 

neighborhood and gene order [14], gene fusion events [15, 16], or the co-

evolution of interacting protein pair sequences [17, 18]. Others designed kernels 

specific for PPIs that make use of the sequence signatures in interacting pairs 

[19] and protein structural information [20-22]. The large amount and 

heterogeneity of these multiple indirect and direct information sources suggests 

to integrate them in a supervised learning framework [23-26]. 

The computational methods above were applied to predicting PPIs within a 

single organism (“intra-species prediction”). In contrast, computational work on 

predicting PPIs between organisms (“inter-species prediction”), especially 

between host and pathogens has been limited. Dyer et al. [27] studied human-

Plasmodium falciparum interactions and estimated the probability of interaction 

based solely on sequence signature information [11]. Davis et al. [28] studied 

ten host-pathogen PPIs (not including HIV-1) using structural evidence with a 

comparative modeling approach: the host, pathogen protein pairs that share 

similarity to protein complexes with known structures are used to build 3d 

structural models of putative complexes and pairs with high quality models are 

filtered by functional and genomic experimental information. The applicability 

of these methods in the specific case of HIV-1, human prediction task is limited: 

most of the HIV-1 proteins do not contain domains, statistics on which would be 
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required in [27] and not all HIV-1 proteins have high similarity to proteins with 

known structure which is necessary for [28]. 

1.3. Approach 

Here, we propose a supervised learning framework to predict PPIs between 

HIV-1 and human proteins by integrating multiple biological information 

sources. This framework has been found useful in integrating heterogeneous 

biological information to predict intra-species interactions [23-26]. However, 

the inter-species prediction task is comparatively more challenging: high-

throughput interaction datasets from yeast two hybrid and mass spectrometry 

based screens  are not yet available publicly and many other useful sources such 

as co-expression pattern of genes [24] are not directly applicable. Nevertheless, 

there is another potentially exploitable source of information: the human protein 

interactome (set of intra-human interactions) itself. The proteins that the 

pathogen will target should in principle depend on interaction relationships 

between human proteins because the virus makes use of the existing 

communication pathways within the cell. Capitalizing on this source of 

information, we developed a number of features incorporating existing 

knowledge of human intra-PPIs and integrated these features together with other 

available information sources to predict HIV-1, human interactions.  

2. Data and Methods 

Details can be found in the supplementary online material Methods section. 

2.1. Classification Framework 

The task is formulated as a binary classification problem, where each protein 

pair belongs to either the ‘interaction’ or ‘non-interaction’ class. A protein pair 

is described by a feature vector, where each feature is derived from one or more 

biological information sources. We solve the classification problem utilizing the 

Random Forest classifier (RF) [29]. We chose the RF based on its robustness in 

scenarios where the features are noisy and redundant, as is the case here. The 

RF method has been highly successful in predicting intra-species PPIs [24, 26]. 

Initial tests comparing other classifiers for the HIV-1, human inter-species PPI 

prediction task also suggested the RF to be suited best (data not shown).  

2.2. Dataset 

2.2.1 Interacting protein pairs: Interactions between HIV-1 and cellular 

proteins reported in the scientific literature were retrieved from the NIAID 

database [6]. The dataset included 2512 interactions involving 1406 human 
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proteins. Note that in addition to the 15 HIV-1 proteins, the database includes 

interactions for the precursors of the envelope (env gp160) and gag (gag pr55) 

and the gag product, p1. We excluded gag p1 due to the limited information 

available for this protein. Each interaction in the database is represented by one 

or more descriptive key phrases. Some entries are more likely associated with 

direct physical PPIs than others (e.g. “interacts with” as compared to “causes 

accumulation of”). Based on the keywords we grouped the interactions into two 

exclusive groups: Group 1 represents most likely direct physical interactions. In 

Group 2, interactions may also be indirect (Supplementary Table S1). Group 1 

interactions included 1063 protein pairs involving 721 human proteins. Group 2 

included 1447 pairs involving 914 human proteins. The Group 1 interactions 

constituted the “interaction class” and were used in model building and testing, 

whereas Group 2 was used to mine the final predictions. 

2.2.2 Non-interacting protein pairs: Since it cannot be proven that two proteins 

do not interact, there is no "gold standard" negative set available. For training 

and testing purposes in the PPI prediction task it is therefore common to choose 

protein pairs uniformly at random from the set of protein pairs which are not 

known to interact, and treat them as negative interactions [30]. This is 

rationalized by the fact that the probability that two randomly chosen proteins 

interact is small and most methods are able to handle contamination from the 

small number of potential false negative (FN) matches. In the testing phase, the 

negative to positive ratio was set as 100:1, a value chosen based on the average 

number of interactions involving HIV-1 proteins. In training, the negative to 

positive example ratio is optimized for each cross validation step on the training 

data. 

2.3. Features 

We devised a total of 35 features (Supplementary Table S3). Some features are 

specific to HIV-1, human protein pairs, while others are related only to human 

or HIV-1 proteins, and some are derived from the human interactome (Fig. 1). 

2.3.1 GO similarity features: The Gene Ontology (GO) [31]  provides a defined 

vocabulary of protein attributes for molecular function, cellular component and 

biological process; proteins are annotated with one or more descriptive GO 

terms. For each of the three ontologies we developed two features: ‘pairwise 

GO similarity’ measures the similarity between the HIV-1 and human proteins 

in a pair, while ‘neighbor GO similarity’ refers to the similarity between the 

HIV-1 proteins and the human protein’s human interactors (Fig. 1). 
2.3.2 Graph properties of the human interactome: Three graph property 

features were derived from topological properties of the human intra-PPI 
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network: degree, clustering coefficient and betweenness centrality. The degree 

of a node in a network is the number of its neighbors; whereas clustering 

coefficient [32] is the ratio of the edges present among its neighbors to the all 

possible edges that could be present between them. Betweenness centrality for a 

node is calculated as the fraction of shortest paths between node pairs that pass 

through the node of interest [33]. A node with a high betweenness centrality is 

located in a ‘bottleneck’ and has control over the information flow between 

other nodes.  

 
Figure 1. Schematic showing features that incorporate knowledge of the human protein interactome. 

These features can be conceptually grouped into two categories: 1) graph properties of human 

protein j in human protein interaction network, which include degree, clustering coefficient and 

betweenness centrality of node j 2) the similarity of the HIV-1 protein, i, to human protein j’s 

interaction partners denoted by fneigh (i,j) in the figure. The maximal similarity to the neighbors is 

used. Five features are derived; GO function, process and location similarity in addition to post 

translational modification and sequence similarity. 

 

2.3.3 ELM-ligand feature: Functional sequence motifs which mediate binding 

were downloaded from the Eukaryotic Linear Motif (ELM) database [34]. For 

example, the sequence pattern PXXDY (ELM id: LIG_SH3_5) is recognized by 

SH3 domains. The feature evaluates whether an ELM motif is found in a given 

HIV-1 sequence and its ligand domain is present in the human protein. The 

HIV-1 sequences mutate rapidly and some motifs are very short. To avoid false 

positive matches, we only consider a motif match if it is conserved in multiple 

HIV-1 sequences; the feature value is weighted with the specificity of the motif. 

2.3.4 Gene expression features: Four features reflect differential expression 

patterns of human genes across HIV-1 infected vs. uninfected samples.  

2.3.5  Tissue feature: This feature encodes whether the tissues that the human 

proteins are expressed in are susceptible to HIV-1 infection or not. 
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2.3.6 Sequence similarity features: For each pair, two sequence similarity 

features are employed, pairwise sequence similarity and similarity of the HIV-1 

protein sequence to human protein’s human binding partners.  
2.3.7 Posttranslational modification similarity to neighbor: Some PPIs require 

binding partners to be in a certain posttranslationally modified state and some 

HIV-1 proteins mimic the posttranslational modification of the human protein’s 

interaction partner [35]. This feature captures if the HIV-1 protein shares any 

modification with at least one of the interaction partners of the human protein. 

2.3.8 HIV-1 protein type features (ptf): We included a set of features (one for 

each HIV-1 protein, with values 1 for pairs that include a particular HIV-1 

protein and 0, otherwise) to include the information of how likely an HIV-1 

protein is to be in an interaction with a human protein.  

2.4. Feature Importance  

In constructing trees in the RF, at each node the attribute causing the highest 

decrease in the Gini index is chosen as split. Let p denote the fraction of 

interacting pairs assigned to node i and 1-p the fraction of the non-interacting 

pairs, the Gini index is computed as )1(2 ppGi −= [29]. Gini feature 

importance is derived from the Gini index and is the sum of all decreases in the 

forest due to a given feature, normalized by the number of trees in the forest. 

2.5. Performance Evaluation 

Classifier performance was evaluated with 3-fold cross validation in 10 repeat 

runs to obtain average values. When evaluating the performance of a classifier 

on an imbalanced test set such as is the case here, computing accuracy is not 

useful because a high true-negative (TN) rate can easily be obtained by chance. 

Therefore, we evaluated the quality of our predictive model using two figures of 

merits which ignore the success on the TN rate: the receiver operating curve 

(ROC) and precision vs. recall curve [36]. We employ the Mean Average 

Precision (MAP) score to summarize the precision vs. recall curve and the area 

under the ROC (AUC) to summarize the ROC curve as a scalar score which 

ranges between 0 and 1 [36]. Since the low FP region of the ROC curve is of 

particular interest in the PPI prediction task, the partial AUC scores R50, R100, 

R200 and R300 were determined, measuring the area under the ROC curve until 

reaching 50, 100, 200 and 300 FP predictions, respectively. 
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2.6. GO Enrichment 

GO enrichment of the human proteins involved in the predicted interactions was 

identified using Ontologizer 2.0 [37] using the child-term parent intersection 

method [38] and using Bonferroni correction for multiple hypothesis testing. 

3. Results and Discussion 

3.1. Classifier Performance 

We trained an RF classifier with a rich feature set derived from several 

biological information sources. The performance of the model was evaluated 

through 10 repeated 3-fold cross validation experiments. The average precision 

vs. recall curve of these experiments is given in Fig. 2 (solid line). Table 1 lists 

the average MAP, AUC and partial AUC scores of the model. The model 

achieves an average MAP score of 0.23 (±0.02) indicating that, on average, of 

all pairs predicted as interacting, 23% are TP. For PPI predictions, this is a very 

good performance: because of the highly skewed class distribution the 

probability of predicting a TP is not 0.5 as when positive and negative pairs are 

equally distributed, but is ~0.01 (for a ratio positive: negative pairs of 1:100).  
 

          

 

 

 

 

 

 
Figure 2. The average precision vs. recall curve of the Random Forest model trained on the complete 

feature set, in comparison to models trained with a subset of features. The top 3 Gini features are 

degree, betweenness centrality, and GO neighbor process similarity features. The top 6 Gini features 

are the top 3 Gini features plus clustering coefficient, GO neighbor function, and location features. 

These are compared to two baseline classifiers, where 6 features are randomly selected from the set 

of features that does not include the top 6 Gini features, with and without protein type features (ptf). 
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      Table 1. Averages (Avg) and standard deviations (Std) of MAP, AUC and partial AUC scores. 
 

 MAP AUC R50 R100 R200 R300 

Avg 0.2300 0.9150 0.0670 0.1073 0.1682 0.2156 

Std 0.0217 0.0120 0.0135 0.0169 0.0204 0.0230 

3.2. Feature Importance 

Biologically, it is of interest to identify the features that contribute the most to 

the classification of protein pairs. This not only helps reveal relationships 

between different data sources, but can also suggest which data should be 

generated by experiments to find novel interactions in this and other host-

pathogen systems. We assessed feature importance based on the Gini 

importance of the RF classifier (see Methods). Strikingly, the graph property 

and the GO neighbor similarity features are ranked at the top (Fig. 3).   

 
 
 
 
 
 
 
 
 
 
 

    

 

 

Figure 3.  RF Gini importance measures for each feature. Protein type features are grouped together. 

 

 To assess the extent to which these features are predictive, we built models 

using the same train/test data splits as before with only the top 3 and top 6 Gini 

features (Fig. 2). The top 3 Gini features are degree, betweenness centrality and 

neighbor GO process similarity (Fig. 3) and the top 6 Gini features in addition 

include clustering coefficient, neighbor GO function, and cellular location 

similarities.  These models are compared to two baseline models. In the first, the 

RF classifiers were trained with 6 features selected randomly from the set of 

features excluding the top 6 Gini features. These random feature sets include the 

17 protein type features (ptf), one for each HIV-1 protein. Since these vectors 

alone do not contain much information, this model forms a weak baseline. A 

second stronger baseline was built, where the 6 features are randomly selected 
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from the set of features excluding ptf and the top 6 Gini features. Fig. 2 

compares the performance of the above 5 models. The top 6 Gini model 

performs quite strongly compared to both baselines. However, this model is not 

as good as the model built using the complete feature set  The top 3 Gini model 

performs significantly worse than the top 6 Gini model, but significantly better 

than the two baseline models suggesting that the additional top 3 features 

contain independent and complementary information. Statistical significance of 

these differences (Fig. 2) was confirmed based on paired t-test comparison of 

the 30 experiments’ MAP scores (at a significance level of 0.05).  

The above analysis reveals that the graph features and neighbor similarity 

features are very informative confirming our intuition in incorporating human 

interactome knowledge into the model. Graph properties have also been found 

previously useful in the intra-PPI network prediction task [39-42]. Furthermore, 

it has been proposed earlier that pathogens exploit network properties of the 

human interactome: it was shown that the Epstein–Barr virus targets high degree 

human proteins [43] and it was found recently that pathogens tend to interact 

with host proteins with high degrees and  betweenness centrality [44].  

The significant performance difference between the top 6 Gini model and 

the complete model (Fig. 2) indicates that the low ranked features also 

contribute to the final performance. For example, the removal of protein type 

features levels off the precision vs. recall curve with respect to the complete 

feature set (Supplementary Fig. S2). The reason why some of these features’ 

Gini importance scores are very low could be due to their low coverage 

(Supplementary Table S3).  

3.3. Mining Predicted Pairs with siRNA and in Virion Data 

A final model was trained with all available Group 1 interactions, according to 

the standard methodology that typically the larger the training data, the better 

the model. We then ranked all HIV-1, human pairs according to their RF score. 

The score measures the difference between positive and negative votes from the 

decision trees in the trained RF model and reflects the likelihood of an 

interaction. The derived ranked order list is available in the supplementary 

online material. The set of predicted interactions depends on the chosen RF 

score threshold; lowering the threshold will increase the TP rate at the expense 

of a higher FP rate. Table 2 (top) presents the number of predicted interactions 

for different cutoff values. At the lowest threshold we considered (0), 2100 

novel interactions are predicted, of which 1 in 5 interactions is expected to be 

true based on precision measured on the hold out set. 

 The unknown predicted pairs (Group 2 and novel) were examined in light 

of the 281 human genes that have been reported in the siRNA screen to have an 
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effect on HIV-1 infection upon silencing [5] and 314 human proteins highjacked 

by HIV-1 in its virion [45]. Table 2 (bottom) gives the size of the overlap of our 

Group 2 and novel predictions with these two datasets. Although the 

comparison cannot provide means to verify the predictions; the overlapping 

pairs would be of interest to HIV-1 virologists: the siRNA data provide 

experimental evidence pointing at their functional relevance and the in virion 

overlapping set could help differentiate between mere by-stander human in 

virion proteins from those with functional roles for the virus. 

 
Table 2. Number of predicted pairs at different choices of RF score cutoff. Average recall and 

precision was calculated on the held-out test sets in cross-validation experiments. The second part of 

the table presents the overlap (the number of the predicted pairs including the reported human gene) 

between the new predictions (Group 2 and Novel) and siRNA [5] and in Virion [45] datasets (for 

details, see text). ‘Interactor’ refers to the predicted interactions, where the human protein is at least 

one of the siRNA reported human protein’s interaction partner. 

Cutoff Predictions Group   1 Group 2 Novel Recall Precision 

≥ 0.00 3372 1040 232 2100 0.51 0.20 

≥ 0.50 1942 1034 141 767 0.37 0.29 

≥ 1.00 1440 1023 68 349 0.26 0.36 

≥ 1.50 1085 894 34 157 0.18 0.41 

≥ 2.00 622 538 15 69 0.13 0.47 

≥ 2.50 279 243 8 28 0.09 0.47 

Group2 Novel 

in Virion siRNA Interactor in Virion siRNA Interactor 

≥ 0.00 34 4 120 246 46 1064 

≥ 0.50 24 3 83 101 13 441 

≥ 1.00 10 1 43 48 5 212 

≥ 1.50 5 1 24 17 2 99 

≥ 2.00 3 1 13 8 1 49 

≥ 2.50 2 0 7 4 0 25 

3.4. Functions of Predicted Interacting Pairs 

The rank-ordered lists of predicted interacting pairs are a rich source for 

generating biological hypotheses that can be experimentally validated. For 

example, we predict that the HIV-1 protein tat and the vitamin D receptor 

(VDR) interact with a high RF score of 1.96.  Tat is a regulatory protein of 

HIV-1, its main role is to transactivate HIV-1 transcription from the viral long-

terminal repeat (LTR) promoter [47]. VDRs are members of nuclear receptors, 

which act as ligand-inducible transcription factors in response to hormones [48]. 

Variations at the VDR locus are associated with susceptibility and progression 
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of AIDS and other immune diseases [49, 50]. The only interaction reported in 

the NIAID for VDR is a Group 2 interaction with env gp120. Recently, it was 

reported that tat acts with VDR in a synergistic manner as a stimulator for HIV-

1 LTR activity, providing an independent validation of the functional 

significance of our prediction [51].  

 A global analysis of the predicted interactions by assessing the enrichment 

of GO functional terms in predicted Group 2 or novel interactions revealed 31 

molecular processes, 19 biological functions and 14 cellular components 

(Supplementary Tables S5-S7) at significance level 0.01. For example, 

transcription regulator-, ligand-dependent nuclear receptor-, MHC class I 

receptor-, and protein kinase C activities are highly enriched molecular 

functions, while immune system process and response to stimulus are highly 

represented processes and macromolecular complex, membrane-enclosed lumen 

and plasma membrane were the top most significant cellular compartments. 

4. Conclusions  

Computational methods can be very effective in assisting experimental efforts in 

identifying interacting protein pairs within a single organism. This paper 

extends these methods to predicting interactions between hosts and pathogens, 

here human and HIV-1. Features derived from multiple genomic and functional 

data sources and exploiting our knowledge of the human protein interactome 

were integrated in a supervised learning framework. We inspected our 

predictions with independent biological datasets to identify the most promising 

interacting pairs. By providing these new testable hypotheses we hope that our 

predictions will accelerate experimental efforts to define a reliable network of 

HIV-1, human protein interactions.  
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