
 

 

 University of Groningen

Prediction of Interfacial Debonding in Fiber-Reinforced Composite Laminates
Zhou, Yi; Huang, Zheng-Ming; Liu, Ling

Published in:
Polymer Composites

DOI:
10.1002/pc.24943

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Zhou, Y., Huang, Z-M., & Liu, L. (2019). Prediction of Interfacial Debonding in Fiber-Reinforced Composite
Laminates. Polymer Composites, 40(5), 1828-1841. https://doi.org/10.1002/pc.24943

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 16-08-2022

https://doi.org/10.1002/pc.24943
https://research.rug.nl/en/publications/b351cd6d-47cb-438f-88df-194af6bb098d
https://doi.org/10.1002/pc.24943


Prediction of Interfacial Debonding in Fiber-Reinforced
Composite Laminates

Yi Zhou,1 Zheng-Ming Huang,1* Ling Liu2

1School of Aerospace Engineering & Applied Mechanics, Key Laboratory of the Ministry of Education for

Advanced Civil Engineering Materials, Tongji University, 1239 Siping Road, Shanghai, 200092, China

2Micromechanics of Materials, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG,

Groningen, The Netherlands

An analytical method is established to estimate the load
level when interfacial debonding occurs between fibers
and matrix of a composite under an arbitrary load. Only
the transverse tensile strength and the components’
properties of the unidirectional (UD) composite are
required for this estimation. For internal stress analysis
based on micromechanics, the homogenized stresses in
matrix must be converted into true values because of
the nonuniform stress distribution due to embedded
fiber. The stress concentration factors (SCFs) of matrix
before and after the interfacial debonding are both
essential, between which the difference indicates the
effect of debonding on the stress fluctuations in matrix.
A final true stress is obtained by accumulating the prod-
ucts of stress increments of matrix arising before and
after debonding and corresponding SCFs. Letting the
predicted transverse tensile strength of a UD composite
with an initial perfect and later cracked interface be
equal to the measured corresponding value, a critical
von Mises stress of matrix at which the interfacial
cracks appear is obtained. For a UD composite sub-
jected to an arbitrary load, when the principal stress is
positive and the von Mises stress of matrix reaches the
critical value, the applied load level when interfacial
debonding occurs is determined accordingly. POLYM.

COMPOS., 40:1828–1841, 2019. © 2018 Society of Plastics

Engineers

INTRODUCTION

The fiber/matrix interface of composites plays a key role

in loading transferring between constituent materials. To

improve the overall load carrying capacity of composites, a

great many techniques have been developed to carry out

interface modifications, including liquid [1] and gas [2]

phase oxidations, coupling agent sizing [3], polymer

coating [4], ultrasonic [5], and irradiation [6] treatments.

Nevertheless, given a fiber and matrix system, it is still a

challenge to judge whether the interface between the two

components is strong enough under a certain loading con-

dition and how much potential improvement can be

achieved through interface modification. Efforts have been

made to characterize the interfacial strength of composites

for a long time [7]. So far, the most common ways are still

tests based on single fiber or fiber tow microcomposites

[8], such as the fiber fragmentation test [9], fiber pull-out

test [10], micro-drop technique [11], and cruciform

(or cross-shaped) specimen transverse tension experiment

[12]. Due to difference in dimension, the measuring objects

used in these tests are always different with an actual com-

posite on the aspects of mechanical and physical–chemical

conditions. Furthermore, manufacturing and testing these

microcomposite specimens are not easy for practice engi-

neers. So far, there is no experimental standard for these

microscopic tests to follow, thus a wide dispersion exists

among results obtained from repeat tests done by different

testers. Overall, measurements obtained from these

methods are not ideal to be directly used for predicting the

mechanical properties of composites [[8,11,13].

On the other hand, many works have also been done to

characterize the interfacial strength by measuring the mac-

roscopic mechanical behavior of a composite. [±45]s lam-

inates tension test, Iosipescu shear test, short-beam shear

test are most frequently used. Madhukar and Drzal [14]

compared the interfacial strengths of a material system

given by different measuring methods, including the three

macroscopic shearing tests and several microscopic tests,

finding that there were large discrepancies among results

obtained from these methods. They also pointed out that

none of these macroscopic shearing tests could character-

ize interfacial properties accurately. As explained in Ref.

[15], a macroscopic test could only characterize the inter-

facial strength qualitatively because the inside broken part

of a composite was difficult to observe clearly and com-

plex failure modes would influence the experimental
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result. Therefore, it is hard to deduce accurate micro-

scopic interfacial properties from macroscopic

measuring data.

Other works relying on computational simulations tend

to build models with assumed interfacial strengths and

compare the simulated mechanical properties with the mea-

surements to judge if the assumed properties are reason-

able. Blackketter et al. [16] developed a finite element

model (FEM) to determine an interfacial strength by com-

paring the analog value of the transverse flexural strength

of a composite with the corresponding measurement. Sun

et al. [17] used a method of cells to retrieve interfacial

strengths from off-axial tensile tests. Two off-axial tensile

strengths of a composite with different off-axial angles

were needed to determine the ratio of the interfacial tensile

and shear strengths, which is necessary for the application

of Hashin’s failure criterion. Hobbiebrunken et al. [18]

used FEM to estimate the interfacial strengths of a laminate

from three-point bending tests with a pre-assumption that

the maximum normal and shear stresses on the interface

when interfacial debonding occurs could be regarded as the

interfacial normal and shear strengths, respectively. They

admitted that the interfacial shear strength obtained in this

way was inaccurate [18]. Qi et al. [19] used a generalized

method of cells with the maximum stress failure criterion

to estimate the interfacial tensile strength based on trans-

verse fiber bundle tension test. The interfacial moduli were

assumed to follow a power law variation along the radial

direction. Thus it can be seen, there are various preassump-

tions about interfacial properties among these models with-

out a credible standard.

The purpose of this study is to estimate the load level

when interfacial debonding occurs and the failure strength

of a composite with an initial perfect and later cracked

interface subjected to an arbitrary load, with only the com-

ponents’ properties and the transverse tensile strength in

hand. When predict the mechanical behavior of a compos-

ite based on a micromechanical model, the homogenized

stresses in the matrix must be converted to true values in

terms of the stress concentration factors (SCFs). In other

words, each volume-averaged matrix stress component cal-

culated through a micromechanical model must be multi-

plied by a corresponding SCF before failure analysis

[20,21]. Such an SCF cannot be defined in a classical way

by dividing the maximum point stress by the surface-

averaged stress. It must be determined based on an aver-

aged quantity instead. The SCFs of the matrix in a compos-

ite subjected to transverse tension, transverse compression,

and transverse shear respectively have been derived based

on an assumption of perfect interfacial bonding [20,21]. In

this article, a new longitudinal shear SCF is derived. More

importantly, the transverse tensile SCF of composites with

interfacial cracks is put forward. While it is widely

accepted that bad interfacial adhesion tends to weaken the

ultimate strength of composites because interfacial cracks

hinder effective loading transferring between matrix and

fibers, few attention is given to the effect of interfacial

debonding on stress fluctuations in matrix, which is

reflected by the SCFs in this paper. To determine the load

level at the moment interfacial debonding occurs, the pre-

dicted transverse tensile strength of a UD composite with

an initial perfect and later cracked interface is assumed to

be equal to the measured counterpart, with a critical von

Mises stress of matrix determined accordingly. The com-

posite subjected to any other load is expected to undergo

interfacial cracks initiation if the current von Mises stress

in the matrix is equal to or greater than the critical value.

Different from other works about the interfacial debonding

problems, no specific microscopic interfacial strength

parameter is employed in this theory. Instead, there is only

one intuitive macroscopic mechanical property of a com-

posite, the transverse tensile strength, is related directly,

thus errors due to transformation of scales can be avoided.

To illustrate our theory, two UD composites are chosen as

examples with their components’ properties and transverse

tensile strengths given as known conditions. The interfacial

cracks initiations and ultimate strengths of the two compos-

ites under off-axial tension with different off-axial angles

are estimated, respectively, and compared with

measurements.

INTERNAL STRESS DETERMINATION

The homogenized stresses in fibers and matrix of a com-

posite have relationship below:

fσig=Vffσfig+Vmfσmi g , ð1Þ

where V is the volume fraction, with subscript f or m refer-

ring to fiber or matrix, respectively. Connecting the homog-

enized stresses in component materials with a bridging

tensor, [Aij], one has

fσmi g= ½Aij�fσ fj g: ð2Þ

Equations 1 and 2 lead to

fσfig= ðVf ½I�+Vm½Aij�Þ−1fσjg= ½Bij�fσjg , ð3Þ

fσmi g= ½Aij�½Bij�fσjg: ð4Þ

Further, the compliance tensor of the composite is given

by [22]

½Sij�= ðVf ½Sfij�+Vm½Smij �½Aij�ÞðVf ½I�+Vm½Aij�Þ−1: ð5Þ

½Sfij� and ½Smij � are the compliance tensors of fiber and

matrix, respectively. One can solve the bridging tensor

from Eq. 5. We adopt Bridging Model [22] to calculate

internal stresses for its simple explicit expression and

better accuracy compared with some other famous

models [23–25].
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With Bridging Model [22], the stresses in fibers and

matrix of a UD composite subjected to an arbitrary load

{σ011,σ
0
22,σ

0
33,σ

0
23,σ

0
13,σ

0
12} can be easily obtained:

σf11 =
σ011

Vf +VmA11

−
Vma12ðσ022 + σ033Þ

ðVf +VmA11ÞðVf +VmA22Þ
, ð6:1Þ

σm11 =
A11σ

0
11

Vf +VmA11

+
VfA12ðσ022 + σ033Þ

ðVf +VmA11ÞðVf +VmA22Þ
, ð6:2Þ

σf22 =
σ022

Vf +VmA22

, σm22 =
A22σ

0
22

Vf +VmA22

, ð6:3;6:4Þ

σm23 =
A22σ

0
23

Vf +VmA22

, σm12 =
A66σ

0
12

Vf +VmA66

, ð6:5;6:6Þ

A11 =E
m=Ef

11, A22 =A33 =A44 = 0:3 + 0:7
Em

Ef
22

, ð7:1;7:2Þ

A55 =A66 = 0:3 + 0:7
Gm

Gf
12

, A12 =A13 =
Ef
11v

m
−Emvf12

Ef
11−E

m
ðA22−A11Þ:

ð7:3;7:4Þ

Other Aij’s are all zero. Ef
11, E

f
22, G

f
12, and vf12 are longi-

tudinal, transverse, in-plane shear moduli, and longitudinal

Poisson’s ratio of fiber, respectively. E
m and ν

m are

Young’s modulus and Poisson’s ratio of matrix, respec-

tively, which have a relationship with in-plane shear mod-

uli as Gm = 0.5Em
/(1 + ν

m).

MAIN BARRIER TO STRENGTH PREDICTION

Based on a micromechanical model, what prediction

accuracy can be reached for the strength of composites?

Let us consider, for example, the E-Glass/LY556 UD com-

posite used in World-Wide Failure Exercise [26] and

attempt to calculate its transverse tensile strength, σ022.

According to the component materials’ properties provided

by Ref. [26], the homogenized internal stresses are calcu-

lated from Eqs. 6.1-6.4:

σf11 = −0:082σ022,σ
f
22 = 1:342σ

0
22,σ

m
11 = 0:134σ

0
22,σ

m
22 = 0:442σ

0
22:

ð8Þ

Hence, the transverse tensile failure of the composite

occurs when

σ
u, t
22 =minfYf=1:342, Ym=0:442g , ð9Þ

where Yf and Ym are the transverse tensile strengths of

fibers and matrix, respectively. For a composite subjected

to transverse tensile load, the matrix tends to be destroyed

first, thus one has σ
u, t
22 =Ym/0.422 here. The most straightfor-

ward way to determine Ym is making it equal to the original

tensile strength of matrix, hence one has Ym = σmu, t = 80MPa

for LY556 epoxy [26]. If so, however, the predicted

transverse tensile strength will be σ
u, t
22 = 181MPa, which is

�5.2 times as the corresponding measurement,

35 MPa [26].

This example is not a special case of strength prediction

based on micromechanics, indicating a significant error due

to direct application of original components’ information

and homogenized stresses. There are two ways to over-

come this barrier. One is replacing original strengths of

component materials with corresponding real allowable

strengths. The other is converting homogenized internal

stresses calculated from Eqs. 3 and 4 into “true” values.

We choose the second way because it is more applicable to

step-by-step loading conditions. The point-wise stresses in

a fiber are uniform [27,28], thus its homogenized and true

stresses are the same. However, stresses in matrix are not

uniform. Applying uniaxial tensile load to a plate with a

hole on it leads to stress concentration. Similarly, if the

hole is filled with a fiber, stress concentration generates as

well. Therefore, each of the true stress components is

obtained by multiplying the homogenized internal stress

with a corresponding factor, which is called stress concen-

tration factor (SCF) [20,21].

TRANSVERSE SCFS WITH PERFECT

INTERFACIAL BONDING

However, such an SCF cannot be defined in the classical

way by dividing the maximum point stress by the surface-

averaged stress. Instead, the new definition here is the ratio

of a line-averaged stress and the corresponding volume-

averaged stress of matrix. The SCFs of a composite sub-

jected to transverse tension, transverse compression, and

transverse shear, respectively, have already been derived in

previous work [20,21]. For completeness, they are briefly

introduced below.

The SCF of the matrix subjected to a transverse load is

derived through [21]

K22ðφÞ=
1

jR
!b

φ−R
!a

φj

ð

jR
!b

φj

jR
!a

φ j

~σm22
ðσm22ÞBM

djR
!
φj: ð10Þ

Symbols in Eq. 10 are introduced with illustrative

Fig. 1, which shows a representative volume element

(RVE) of a composite subjected to uniaxial load σ022. ~σ
m
22

is the stress distribution of matrix along the loading direc-

tion calculated with CCA model (concentric cylinder

assemblage). ðσm22ÞBM is the corresponding homogenized

stress obtained from Eq. 6.4. The integral direction angle φ

is defined as the inclined angle between the loading direc-

tion and the outward normal vector of failure surface. R
!a

φ

and R
!b

φ are vectors along the integral direction, both start-

ing from origin, but ending at the surfaces of fiber and

1830 POLYMER COMPOSITES—2019 DOI 10.1002/pc



matrix cylinders, respectively (Fig. 1), with superscript

a and b representing their lengths, which can be related by

Vf as

b= a=
ffiffiffiffiffi

Vf

p
: ð11Þ

Explicit expression of Eq. 10 is [21]

K22ðφÞ = 1 +
A

2

ffiffiffiffiffi

Vf

p
cos2φ +

B

2ð1−
ffiffiffiffiffi

Vf

p
Þ½V

2
f cos4φ+ 4VfðcosφÞ2

�

ð1−2cos2φÞ +
ffiffiffiffiffi

Vf

p
ð2cos2φ+ cos4φÞ�

�

ðVf +A22VmÞ=A22,

ð12:1Þ

A=
2Ef

22E
mðνf12Þ

2
+Ef

11fEmðνf23−1Þ−Ef
22½2ðνmÞ

2
+ νm−1�g

Ef
11½Ef

22 +E
mð1−νf23Þ+Ef

22ν
m�−2Ef

22E
mðνf12Þ

2
,

ð12:2Þ

B=
Emð1 + νf23Þ−Ef

22ð1 + νmÞ
Ef
22½νm + 4ðνmÞ2−3�−Emð1 + νf23Þ

, ð12:3Þ

where νf23 is the transverse Poisson’s ratio of fiber. For a

composite under uniaxial transverse tension, the fracture

surface is perpendicular to the loading direction, thus the

parameter φ in Eq. 10 equals to 0 (Fig. 1a). However, for a

composite under uniaxial transverse compression, φ equals

to an acute angle ϕ (Fig. 1b), which can be determined

with Mohr’s theory [21]:

ϕ=
π

4
+
1

2
arcsin

σmu,c−σ
m
u, t

2σmu,c
ð13Þ

Hence, the transverse tensile and compressive SCFs are

calculated from Eq. 12 as K t
22 =K22ð0Þ and Kc

22 =K22ðϕÞ
respectively. The transverse shear SCF of matrix is

obtained with Mohr’s theory [21]:

K23 = 2σ
m
u,s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K t
22K

c
22

σmu, tσ
m
u,c

s

: ð14Þ

σmu, t, σ
m
u,c, and σmu,s are original tensile, compressive, and

shear strengths of matrix, respectively.

OTHER SCFSS WITH PERFECT INTERFACIAL

BONDING

SCF Under Longitudinal Shear

Equation 10 stands for the general way to derive a SCF

of matrix. It is clear that the key point to definite an SCF is

determining the integral line according to the fracture sur-

face orientation and the stress component on the numerator

of Eq. 10. Under a longitudinal shear load, the failure sur-

face of a UD composite is shown in Fig. 2 [29,30]. Follow-

ing Eq. 10, the longitudinal shear SCF is given by (Fig. 3)

K12ðφÞ =
1

ffiffiffi

2
p

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2−ðasinφÞ2
q

−acosφ�

ð

ffiffi

2
p

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 −ðasinφÞ2
p

−acosφ�

0

~σm12
ðσm12ÞBM

dS:

~σm12 is the in-plane shear stress of matrix, obtained from

CCA model as [28]

~σm12 = σ
0
12 1−a2

ðGf
12−G

mÞðx22−x23Þ
ðGf

12 +G
mÞðx22 + x23Þ

2

" #

: ð16Þ

ðσm12ÞBM is calculated from Eq. 6.6. Substituting Eqs. 16

and 6.6 into Eq. 15 leads to

FIG. 1. Schematic of a RVE used in defining SCF of matrix in a composite subjected to (a) a transverse ten-

sion (b) a transverse compression.
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K12ðφÞ = 1−
ðGf

12−G
mÞf

ffiffiffiffiffi

Vf

p
cosφ−Vf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−VfðsinφÞ2
q

g

ðGf
12 +G

mÞf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1−VfðsinφÞ2Þ
q

−

ffiffiffiffiffi

Vf

p
cosφg

2

6

4

3

7

5

ðVf +A66VmÞ
A66

:

ð17Þ

Under a transverse load, the matrix transverse stress

component in CCA model is uniform along the direction

parallel to fiber (along the x1-axial) [28]. However, a longi-

tudinal shear load results in nonuniform shear stress distri-

bution along the thickness direction (along the x3-axial), as

seen from Eq. 16 and Fig. 3. Thus, it is necessary to

average the results of Eq. 17 along the thickness direction,

that is

K12 =
1

2a

ð

a

−a

K12ðx3Þðdx3Þ=
1

πa

ð

π=2

−π=2

K12ðφÞcosðφÞðadφÞ

= 1−Vf

Gf
12−G

m

Gf
12 +G

m
WðVfÞ−

1

3

� �� �ðVf +A66VmÞ
A66

,

ð18:1Þ

WðVfÞ =
ð

a

0

1

a

ffiffiffiffiffiffiffiffiffiffiffi

1−
x23
a2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Vf

−
x23
a2

s

dx3

≈π
ffiffiffiffiffi

Vf

p 1

4Vf

−
4

128
−

2

512
Vf −

5

4096
V2
f

� �

:

Longitudinal Normal SCF

For a CCA model subjected to longitudinal tension or

compression, the stresses in matrix are uniform [28], thus

no stress concentration occurs. Therefore, the longitudinal

normal SCF of composites equals to one.

SCF WITH INTERFACIAL CRACKS

In our previous work, all SCFs are derived based on an

assumption of a perfect fiber/matrix interfacial bonding.

However, interfacial cracks were actually widely observed

in composites under various loading conditions [18,31,32].

Considering the significant effects of interfacial debonding

on ultimate strengths, it is necessary to derive the SCF for

the composites after interfacial cracks.

Supposing that there is a stable crack with central angle

of 2Ψ on the fiber/matrix interface of a CCA model sub-

jected to uniaxial tension, as shown in Fig. 4, the stress

field of matrix was derived by Toya [33] with the stress

FIG. 2. Failures of the matrix in a composite under a longitudinal shear.

FIG. 3. Schematic definition for the SCF of matrix under a longitudinal shear.
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component along the loading direction given by

(Appendix A):

~σm22 =
σ022
2
Re 2M zð Þ+ a2

z
−z

� �

M0 zð Þ− a2

z2
M

a2

z

� �

+M zð Þ
� �� �

,

ð19:1Þ

M zð Þ =F− a2k

z2
− F−0:5ð Þz+H +

C

z
+
D

z2

� �

χ zð Þ =M zð Þ,

ð19:2Þ

F =
1−ðcosψ + 2λsinψÞexp½2λðπ−ψÞ�+ ð1−kÞð1 + 4λ2Þsin2ψ

4
k
−2−2ðcosψ + 2λsinψÞexp½2λðπ−ψÞ�

,

ð19:3Þ
H = aðcosψ + 2λsinψÞð0:5−FÞ, ð19:4Þ

C = ðk−1Þðcosψ −2λsinψÞa2exp½2λðψ −πÞ�, ð19:5Þ

D= ð1−kÞa3exp½2λðψ −πÞ�, ð19:6Þ

χðzÞ= ðz−aeiψ Þ−0:5 + iλðz−ae− iψ Þ−0:5− iλ, ð19:7Þ

k =
μ1ð1 + κ2Þ

ð1 + ξÞðμ1 + κ1μ2Þ
,λ= −ðlnξÞ=ð2πÞ,ξ = ðμ2 + κ2μ1Þ=ðμ1 + κ1μ2Þ:

ð19:8Þ

κ1 =
3−vm

1 + vm
,κ2 =

3−vf

1 + vf
,μ1 =

Em κ1−1ð Þνm

1− νmð Þ2
h i

3−κ1ð Þ
,μ2 =

E f κ2−1ð Þνf

1− νfð Þ2
h i

3−κ2ð Þ
,

ð19:9Þ

The solution above is only applicable to plane stress

problems with isotropic fibers and matrix. To extend the

application scope of this method to plane strain cases,

according to the well-known relationship between plane

stress and plane strain states, only the elastic modulus and

Poisson’s ratio need to be replaced by

E =
E22

1−ν12ν21
and ν=

ν23 + ν12ν21

1−ν12ν21
:

Accordingly, Eq. 19.9 is changed into

κ1 = 3−4v
m,κ2 =

3−νf23−4ν
f
12ν

f
21

1 + νf23
,μ1 =

Em

2ð1 + νmÞ ,μ2 =
Ef
22

2ð1 + νf23Þ
:

ð20Þ

Substituting Eqs. 19, 11, 6.4, and 20 into Eq. 10 results

in (Appendix B)

K̂
t

22ðφÞ=Re e−2iφMðb0Þða2=b−bÞ+ e− iφ N1

a2

b0

� �

−N1

a2

a0

� �� �

+

�

e− iφð2 + e−2iφÞ½Nðb0Þ−Nða0Þ� ðVf + 0:3VmÞEf
22 + 0:7VmE

m

2ðb−aÞð0:3Ef
22 + 0:7E

mÞ ,

�

ð21:1Þ

N zð Þ=Fz+ a2k

z
− z−aeiψ
	 
0:5 + iλ

z−ae− iψ
	 
0:5− iλ

F−0:5ð Þ− D

a2z

� �

,

ð21:2Þ

N1 zð Þ=Fz + a2k

z
+
1

ξ
z−aeiψ
	 
0:5 + iλ

z−ae− iψ
	 
0:5− iλ

F−0:5ð Þ− D

a2z

� �

,

ð21:3Þ

where a0 = aðcosφ+ isinφÞ and b0 = bðcosφ+ isinφÞ. We use

“^” on head to represent quantities relevant to the condition

of interfacial debonding.

To calculate the transverse tensile SCF of a composite

with interfacial cracks, which is denoted asK̂
t

22, the integral

direction angle φ must be reconsidered. As the transverse

cross section of a UD composite is isotropic, it is likely that

a tensile load applied in this plane would result in fracture

occurring along the direction of the maximum line-

averaged stress. In other words, K̂
t

22 equals to the maxi-

mum value of K̂
t

22ðφÞ, given by

K̂
t

22 = K̂
t

22ðψÞ=max K̂
t

22ðφÞ,0� ≤φ ≤ 90�
n o

=Re e−2iψMðbeiψ Þða2=b−bÞ−e− iψ N2−N1

a2

b
e− iψ

� �� ��

+ e− iψ ð2 + e−2iψ Þ½Nðbeiψ Þ−N3�
ðVf + 0:3VmÞEf

22 + 0:7VmE
m

2ðb−aÞð0:3Ef
22 + 0:7E

mÞ
,

�

ð22:1Þ

N2 = aFe
− iψ + akeiψ ,N3 =Fae

iψ + e− iψak: ð22:2Þ

Hobbiebrunken et al. have shown in the fig. 7 of Ref. [18]

that the fracture surface of a composite after interfacial

debonding tends to initiate from interfacial crack tips [18],

which is consistent with the starting point of our integral line.

FIG. 4. Schematic failure of a transverse tensile-loaded composite with

an interface crack.
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At last, let us discuss how to determine the center angle

of interfacial cracks, which is denoted by 2Ψ . Owing to

Poisson’s deformation, a part of fiber/matrix interface near

to the coordinate axis perpendicular to applied load (x3-

axial in Fig. 4) will be in the compressive state. Thus, there

must be a terminal point for interfacial crack propagation.

At this terminal point, the interfacial crack will not con-

tinue to expand, for which the critical condition is that the

radial relative displacement between fiber and matrix faces

at the crack tip equals to 0. Based on Toya’s solution [33],

this critical condition is written as (Appendix C)

Re G0−
1

k
−

2 1−kð Þ
kexp iφð Þexp 2λ ψ −πð Þ½ �

� �

R eiφ
	 


� �

φ =ψ −γ

= 0,

ð23Þ

G0 =
1−ðcosψ + 2λsinψÞexp½2λðπ−ψÞ�+ ð1−kÞð1 + 4λ2Þsin2ψ

2−k−kðcosψ + 2λsinψÞexp½2λðπ−ψÞ� ,

ð24:1Þ

R exp iφð Þð Þ = exp i φð Þð Þ−eiψ
� �0:5 + iλ

exp i φð Þð Þ−e− iψ
� �0:5− iλ

exp − i φð Þð Þ,
ð24:2Þ

γ =
2λðJ21 + J22 Þ

J21 + J
2
2 −2J2J3

, ifξ< 1, ð25:1Þ

γ = −
2λðJ21 + J22 Þ

J21 + J
2
2 −2J2J3

, ifξ> 1, ð25:2Þ

J1 = kG0−1−2ð1−kÞξexpð2λψÞcosðψÞ, ð25:3Þ
J2 = 2ð1−kÞξexpð2λψÞsinðψÞ, ð25:4Þ

J3 = 2ð1−kÞξexpð2λψÞ½J1cosðψÞ−J2sinðψÞ�=J2: ð25:5Þ

Substituting γ obtained from Eqs. 25.1 or 25.2 into Eq.

23, the debonding angle 2Ψ can be solved, with the SCF

K̂
t

22 determined from Eq. 22.

It is noted that if γ = 0, a singular solution of Ψ will be

obtained from Eq. 23. There always exist deviations in the

measurements of original fiber and matrix properties.

Therefore, for this special case, it is acceptable to adjust

slightly a certain fiber or matrix mechanical property

parameter to avoid the singular solution.

INTERFACIAL CRACK DETECTION

In general, the fiber/matrix interface of a composite is ini-

tially bonded perfectly before being applied any load. Consid-

ering a UD composite subjected to uniaxial transverse tensile

loadσ022, when the applied stress is increased to a certain

level, for example, σ̂022, interfacial debonding happens.

Many reports have pointed out that, once debonding occurs

the interfacial cracks tend to develop rapidly into the final

stable state [18,34,35]. Therefore, it is reasonable to neglect

the brief process of this unstable interfacial crack propaga-

tion, during which the debonding angle 2φ grows from

0 to 2Ψ and the applied load only increases slightly. For

simplicity, the whole loading process is divided into two

stages, between which the point of demarcation is the load

level when interfacial cracks appear. The central angles of

interfacial cracks in these two stages are 0 and 2Ψ , respec-

tively, with the corresponding SCFs beingK t
22 andK̂

t

22.

From Eq. 6.4, the transverse stress component in matrix

when debonding occurs is

σ̂m22 =
0:3Ef

22 + 0:7E
m

ðVf + 0:3VmÞEf
22 + 0:7VmEm

σ̂022: ð26:1Þ

Furthermore, the corresponding longitudinal stress is

obtained from Eq. 6.2:

σ̂m11 =
VfA12

ðVf +VmA11ÞðVf +VmA22Þ
σ̂022: ð26:2Þ

Supposing that the transverse stress in the matrix when

final failure occurs is σ
m,Y
22 and the composite’s ultimate

transverse tensile strength is Y, one gets

K̂
t

22ðσ
m,Y
22 − σ̂m22Þ+K t

22σ̂
m
22 = σ

m
u, t, ð27:1Þ

where

σ
m,Y
22 − σ̂m22 =

0:3Ef
22 + 0:7E

m

Vf + 0:3Vmð ÞEf
22 + 0:7VmEm

Y − σ̂022
	 


: ð27:2Þ

From Eqs. 26.1, 27.1, and 27.2, the critical transverse

tensile load is derived:

σ̂022 =
K̂

t

22Y

K̂
t

22−K
t
22

−
ðVf + 0:3VmÞEf

22 + 0:7VmE
m

ð0:3Ef
22 + 0:7E

mÞðK̂ t

22−K
t
22Þ

σmu, t: ð28Þ

If the value of Eq. 28 of a composite is near to, equal

to, or greater than the transverse tensile strength, the mate-

rial can be considered to have a sufficiently strong interface

that can bring component materials’ strengths into full play.

Otherwise, the material system will undergo interfacial

debonding, which significantly influences the load carrying

capacity of the composite. It can be seen that the intuitive

information given by Eq. 28 is valuable for jugging the

necessity of interfacial modification.

The last question is which quantity should be chosen to

judge whether interfacial debonding would occur in a given

material system under a certain loading condition. It is likely

that von Mises stress would be suitable because it can repre-

sent the comprehensive stress level well. A critical von Mises

stress obtained from true stresses of matrix is defined as

σ̂me =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðσ̂m11Þ
2
+ K t

22σ̂
m
22

	 
2
−K t

22σ̂
m
11σ̂

m
22:

q

ð29Þ

When the composite is subjected to a planar step-by-

step load, the von Mises stress of matrix at a certain load-

ing step is determined through
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ðσme Þl =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðσm11Þ
2
l + ðσm22Þ

2
l −ðσm11Þlðσm22Þl + 3ðσm12Þ

2
l

q

, ð30Þ

ðσm11Þl = ðσm11Þl−1 + dσm11, ð31:1Þ

ðσm22Þl = ðσm22Þl−1 +K22dσ
m
22, ð31:2Þ

ðσm12Þl = ðσm12Þl−1 +K12dσ
m
12, ð31:3Þ

K22 =

K t
22, if dσm22 > 0 and before interface crack

K̂
t

22, if dσm22 > 0 and after interface crack

K c
22, if dσm22 < 0

:

8

<

:

ð32Þ

l is the sequence number of the loading step and {dσm11,

dσm22, dσm12} are the homogenized stress increments of

matrix caused by the l-th loading increment. Applying the

Bridging Model [21], {dσm11, dσm22, dσm12} are calculated

from Eqs. 6.2, 6.4, and 6.6 by replacing {σ011,σ
0
22,σ

0
12}

with {dσ011,dσ
0
22,dσ

0
12}.

If the first principal stress of matrix is positive, debond-

ing occurs when

ðσ1mÞI > 0 and ðσme ÞI ≥ σ̂me , ð33Þ

where ðσ1mÞl is the first principal stress obtained from

{ðσm11Þl,ðσm22Þl,ðσm33Þl}. It can be seen from Eqs. 30 and 33

that interfacial debonding is caused by not only transverse

tensile stress, but also other stress components. However,

the effects of debonding on composite materials’ strengths

along other directions are less significant than that on the

transverse tensile strength [18,34,35]. Therefore, in this

work, only the transverse tensile strength of a composite is

chosen as the input parameter to represent the quality of

interface, while loads applied from other directions are also

considered when judge whether interfacial debonding

occurs.

The failure strength of a composite is determined by

estimating the carrying capacities of the component mate-

rials respectively. Tsai-Wu’s criterion is used to determine

whether the matrix is destroyed under a given loading con-

dition, while generalized maximum normal stress failure

criterion [22] is applied to fiber. Thus the conditions of

material failure can be written as

F1 σm11
	 
2

l
+ σm22
	 
2

l
− σm11
	 


l
σm22
	 


l

h i

+F2 σm12
	 
2

l

+F3 σm11
	 


l
+ σm22
	 


l

h i

≥ 1,
ð34:1Þ

F1 = 1=ðσmu, tσmu,cÞ,F2 = 1=ðσmu,sÞ
2
,F3 = 1=σ

m
u, t−1=σ

m
u,c: ð34:2Þ

ðσfeq, tÞl ≥ σfu, t or ðσfeq,cÞl ≥ −σfu,c, ð35:1Þ

ðσfeq, tÞl =
ðσ1f Þl, if ðσ3f Þl < 0,

½ðσ1f Þ
3
l + ðσ2f Þ

3
l �

1
3

, if ðσ3f Þl = 0
,

(

ð35:2Þ

ðσfeq,cÞl =
ðσ3f Þl, if ðσ1f Þl > 0,
ðσ3f Þl−ðσ1f Þl if ðσ1f Þl ≤ 0

:

�

ð35:3Þ

where ðσ1f Þl, ðσ2f Þl, and ðσ3f Þl are the three principal stresses

of the fiber.

ILLUSTRATION

For validating the method proposed in this article,

Kevlar-49 fiber/epoxy and E-glass fiber/8804 epoxy UD

composites are chosen as examples, with their components’

properties and transverse strengths listed as known condi-

tions. Besides, with the constituent thermoelastic proper-

ties, the thermal residual stresses are calculated by applying

the micromechanical method in Ref. [36] and considered

together with applied stress in final failure analysis. To

illustrate how to utilize the method put forward in this arti-

cle, the procedure for calculating the off-axial tensile

strengths of the two composites will be introduced step by

step, with the predicted results compared with correspond-

ing measurements.

With the components’ information of two composites

gained from Refs. [37–40], the corresponding SCFs are cal-

culated for later usage. The original parameters of Kevlar-

49 fiber/epoxy materials used in Fig. 5 are [37,38]

Ef
11 = 124:1 GPa, Ef

22 = 4:1 GPa, Ef
22 = 4:1 GPa, νf12 = ν

f
23 =

0:35, σfu, t = 2060 MPa, αf
11 = −5.7σf

u, t = 2060. × 10−6�C−1,

αf
22 = α

f
33 × 10−6�C−1, Em = 3:45 GPa, νm = 0:35, σmu, t = 69

MPa, σmu,c = 120 MPa, σmu,s = 50 MPa, αm = 65 × 10−6�C−1,

and Vf = 0:55, while parameters calculated are K t
22 = 1:08,

Kc
22 = 1:07, K̂

t

22 = 2:74, and K12 = 1:17. Correspondingly,

the parameters of E-glass fiber/8804 epoxy materials used

in Fig. 6 are [39,40]: Ef
11 = 71 GPa, Gf

12 = 28:2 GPa,

Gf
12 = 28:2 GPa, νf12 = ν

f
23 = 0:26, σfu, t = 1500 MPa,

αf
11 = 6:9× 10−6�C−1, αf

22 = α
f
33 = 6:9× 10−6�C−1, Em = 3:1

GPa, νm = 0:29, σmu, t = 70 MPa, σmu,c = 86 MPa, σmu,s = 39

MPa, αm = 70× 10−6�C−1 and Vf = 0.51, while SFCs are

K t
22 = 2:97, Kc

22 = 2:02, K̂
t

22 = 5:61 and K12 = 1.38. The

transverse tensile SCF of the Kevlar fiber reinforced system

without interfacial cracks is close to 1, because the trans-

verse modulus of the Kevlar fiber is close to that of the

matrix. Nevertheless, the transverse tensile SCF of the

Kevlar fiber reinforced system increases significantly after

interfacial debonding. This change is even more obvious in
FIG. 5. Comparison of different schemes’ predictions with experiments

[41] for off-axial tensile strengths of a Kevlar-49/epoxy UD composite.
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the E-glass fiber/8804 reinforced system. After investigat-

ing some other material systems used in World-Wide Fail-

ure Exercise [26], it was found that, on one hand, an

increase in stress fluctuation intensity of matrix due to

interfacial debonding is universal among various material

composites. On the other hand, the stress fluctuation inten-

sity, which is characterized by SCFs, plays an important

role in determining the failure strength of composites.

Therefore, in addition to the well-known reason that inter-

facial cracks hinder the loading transferring between com-

ponent materials, the increasing stress concentration is also

a significant factor for strength reduction due to interfacial

debonding.

With the transverse strengths of the two material sys-

tems provided by Refs. [37–40], the load levels when inter-

facial debonding occurs under 90 � off-axial tension are

calculated from Eq. 28. The calculated results (1.1 MPa for

the Kevlar fiber reinforced and 40.9 MPa for the glass

fiber-reinforced composites) are smaller than two compos-

ites’ respective transverse tensile strengths (27.7 MPa for

the Kevlar fiber-reinforced and 45.3 MPa for the glass

fiber-reinforced composites), which means that these two

composites will undergo interfacial debonding under trans-

verse tension. Moreover, the critical von Mises stresses, are

calculated form Eq. 29 in this step (1.2 MPa for the Kevlar

fiber reinforced and 59.6 MPa for the glass fiber-reinforced

composites).

Given an off-axial tensile load increment, dσθ, where θ

is the off-axial angle, the stress increments

{dσ011,dσ
0
22,dσ

0
12} can be obtained through a coordinate

transformation. Now take the Kevlar fiber reinforced com-

posite with θ of 30 � as the example to explain how to

determine the load level when interfacial cracks appear,

which is denoted by σ̂0θ. First, the homogenized stresses in

the matrix are obtained from Eqs. 6.2, 6.4, and 6.6 as

σm11 = 0:115σθ, σ
m
22 = 0:234σθ, and σm12 = −0:32σθ. Multiply-

ing SCFs accordingly, one can get the true stresses in

matrix before interfacial debonding as σm11 = 0:115σθ,
σm22 = 0:253σθ, and σm12 = −0:374σθ. Then the load level

when interfacial debonding occurs in this example can be

calculated from Eq. 33 as σ̂0
300

= 1:11=0:684 = 1:623 MPa.

In the same way, for the Kevlar fiber-reinforced composite

under off-axial tension with other off-axial angles, one can

obtain σ̂0
450

= 1:28 MPa, σ̂0
600

= 1:19 MPa. Similarly, for the

E-glass fiber-reinforced composite, one have σ̂0
300

= 103:7

MPa, σ̂0
450

= 66:7 MPa, σ̂0
600

= 50:4 MPa. The results indi-

cate that interfacial debonding occurs under various loading

conditions. The interfacial cracks here are different from

manufacturing defects, which already exist before loading.

Instead, the interfaces in examples are perfect at first but

cracked later when the applied load gets to a certain level.

Comparatively speaking, the Kevlar fiber-reinforced mate-

rial system enters debonding stage much earlier than the E-

glass fiber-reinforced composite, indicating that the latter

material has got a better interfacial property. This result is

consistent with the common observations, which suggests

that Kevlar fiber-reinforced polymer composites often

undergo interfacial debonding long before the ultimate

failure.

After predicting load level of debonding, the stress incre-

ments of the matrix are amplified with the corresponding

SCFs, respectively, with the final true stresses obtained from

Eqs. 31 and 32. In this way, the true stresses of matrix in

the Kevlar fiber composite with θ = 30 � are σm11 = 0:115σθ,
σm22 = 0:411 + 0:641 (σθ-1.623) and σm12 = −0:374σθ. Accord-
ing to thermoelastic properties provided by Refs. [38,40],

the transverse thermal residual stresses in the matrix of the

Kevlar fiber-reinforced composite is calculated to be −0.54

MPa, while that of the E-glass fiber/8804 epoxy composite

is 8.1 MPa. Together with the true stresses calculated

before, the off-axial tensile strength of a composite is cal-

culated from Eqs. 34 and 35. In this example, as the matrix

failure occurs first, the predicted ultimate 30 � off-axial ten-
sile strength of the Kevlar fiber composite is obtained from

Eq. 34 as σ
u, t
300

= 80:1 MPa, which is very close to the mea-

sured one, 83.4 MPa [41].

The measurements of two composite materials are pro-

vided by Pindera et al. [41] and Mayes et al. [39] and

shown in Figs. 5 and 6, respectively. Predictions based on

three different considerations have been made, with corre-

sponding results presented in Figs. 5 and 6 for comparison.

In the first prediction, the stresses in matrix are regarded as

uniform, with no SCF employed. Another is done by tak-

ing stress concentration into consideration but ignoring

interfacial debonding. Hence, only SCFs based on the

assumption of perfect interfacial bonding are used in this

prediction. The last one is achieved based on the method

proposed in this article, following the steps mentioned in

this chapter. All SCFs are applied in the third prediction,

including the SCF of composites with cracks on fiber/

matrix interface. It can be seen from Figs. 5 and 6 that, as

expected, the results given by the prediction without any

SCFs applied (the first one) are far away from the experi-

mental data, whereas those come from the prediction with

both stress concentration and interfacial debonding consid-

ered (the third one) are closest to the measurements. For

the second prediction, although the results for the E-glass

FIG. 6. Comparison of different schemes’ predictions with experiments

[39] for off-axial tensile strengths of a E-glass/8804 UD composite.
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fiber-reinforced composite are accurate enough (Fig. 6),

those for the Kevlar fiber-reinforced material system show

significant errors (Fig. 5). Moreover, three kinds of predic-

tions give out the same longitudinal tensile strength for

each composite, which matches well with measurements.

In order to display the results of most off-axial angles more

clearly, the predictions with off-axial angles smaller than

10 � are not included in the figures. On the whole, the

method established in this paper can significantly improve

the prediction accuracy of the failure strength of compos-

ites, especially for material systems with relative weak

fiber/matrix interface.

CONCLUSIONS

The SCF of matrix in the composites with interfacial

cracks has been derived in this article to quantify the stress

concentration after fiber/matrix interface debonding. When

considering the effects of interfacial strength on the failure

strength of composites, other researchers mainly focus on

how interfacial cracks hinder the loading transferring between

fibers and matrix, whereas this study pays more attention to

the increasing intensity of stress fluctuation in matrix. For

instance, the theory put forward in this article also has impor-

tant practical significance. On one hand, with the standard

established in this work, material researchers can obtain more

intuitive information about the interface performance in a

given material system under arbitrary loads, which is defi-

nitely helpful for determining the necessity of interface modi-

fication. On the other hand, with the method proposed in this

study, one can predict the strength of composites much more

conveniently and accurately by using only transverse tensile

strength and original constituent information.
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APPENDIX A

TOYA’S SOLUTION

The model developed by Toya [33] was subjected to

two orthogonal loads T
∞

and N
∞

at infinity, as shown in

Fig. A1. In the following, the equations taken directly from

Toya [33] will be labeled with a suffix T. For instance, Eq.

2.3T implies that the equation was labeled Eq. 2.3 in Toya

[33]. The stresses in the matrix read [33]

~σm33 + ~σ
m
22 =WðzÞ +WðzÞ = 2Re½WðzÞ�, ð2:3TÞ

~σm33−~σ
m
22 + 2i~σ

m
23 = ðz−

a2

z
ÞW 0ðzÞ+ a2

z2
½Wða

2

z
Þ +WðzÞ�,

ðAIII:10TÞ

where W0 (z) = dW (z)/dz. The function W (z) had the fol-

lowing expressions:

W zð Þ = k c0 + c2=z
2

	 


−k c0−d−1=kð Þz +A1 +B1=z +C1=z
2

� �

χ zð Þ,
ð3:7TÞ

c0 =G1 + iH1, ð3:28:1TÞ

c2 = a
2 N∞ −T∞ð Þe2iΛ, A1 = a cosψ + 2λsinψð Þ d−1

k
−c0

� �

,

ð3:30TÞ;ð3:31TÞ

B1 =
1−k

k
a2 N∞ −T∞ð Þ cosψ −2λsinψð Þexp 2iΛ+ 2λ ψ −πð Þ½ �,

ð3:32TÞ

C1 = −
1−k

k
a3 N∞ −T∞ð Þexp 2iΛ+ 2λ ψ −πð Þ½ �, ð3:33TÞ

G1 =
0:5 N∞ + T∞ð Þ 1− cosψ + 2λsinψð Þe2λ π−ψð Þ� �

−0:5 1−kð Þ 1 + 4λ2
	 


N∞ −T∞ð Þsin2ψ cos2Λ

2−k−k cosψ + 2λsinψð Þe2λ π−ψð Þ ,

H1 =

4μ1ω∞

1 + κ1
1 + cosψ + 2λsinψð Þe2λ π−ψð Þ
h i

+
1

2
1−kð Þ 1 + 4λ2

	 


N∞ −T∞ð Þsin2ψ sin2Λ

k + k cosψ + 2λsinψð Þe2λ π−ψð Þ ,

ðð3:28:2TÞ;ð3:28:3TÞÞ

FIG. A1. The model considered by Toya [33].
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d−1 =
N∞ + T∞

2
+
4μ1iω∞

1 + κ1
,k =

ζ

1 + ξ
, ð3:15:1T;3:9TÞ

λ= −ðlnξÞ=ð2πÞ,ξ= ðμ2 + κ2μ1Þ=ðμ1 + κ1μ2Þ, ð3:3T;2:20TÞ

ζ= μ1ð1 + κ2Þ=ðμ1 + κ1μ2Þ,χðzÞ= ðz−aeiψÞ−0:5 + iλðz−ae− iψÞ−0:5− iλ:
ð2:21T;3:2TÞ

Moreover, for a plane stress state problem, one has (see

p. 326 in Ref. [33])

κ1 =
4

1 + vm
−1,κ2 =

4

1 + vf
−1: ðA:1Þ

WðzÞ represents the conjugate result of W (z). WðzÞ
stands for the result of W (z) when all the parameters in

W (z) except for z take conjugates. From Eq. 3.2T, one gets

χðzÞ = ðz−ae− iψ Þ−0:5− iλðz−aeiψ Þ−0:5 + iλ = χðzÞ: ðA:2Þ

In the formulas above, ω
∞

represents a rotation at infin-

ity (p. 330 in Ref. [33], and μ1 and μ2 denote shear moduli

of the matrix and fiber, respectively.

Subtracting Eq. 2.3T on both-hand sides from

Eqs. AIII.10T, setting Λ = 0 (Fig. A1), N
∞

= 0, ω
∞

= 0,

and T∞ = σ022 to deteriorate Fig. A1 into Fig. 4a, and recog-

nizing that the real part on the left-hand side of the result-

ing equation is ~σm22, which should match the real part on

the right-hand side, one obtains Eq. 19.

APPENDIX B

DERIVATION ON INTEGRATION

Substituting Eq. 19.1 into Eq. 10 results in the following

integration:

K̂
t

22 φð Þ = σ022

jR
!b

φ−R
!a

φj

Re

ð

jR
!b

φj

jR
!a

φj

a2

z
−z


 �

M0 zð Þ− a2

z2
M a2

z


 �

+M zð Þ
h i

+ 2M zð Þ
h i

2 σm22
	 


BM

d R
!
φ

�

�

�

�

�

�

8

>

>

<

>

>

:

9

>

>

=

>

>

;

:

ðB:1Þ

As z = e
iφ
Rφ, we have dRφ = e

-iφ
dz. The upper and lower

bonds in Eq. B.1 change to b0 = beiφ = b(cosφ + isinφ) and

a0 = aeiφ = a(cosφ + isinφ) accordingly. Namely,

K̂
t

22 φð Þ = Vf +A22Vmð Þ
2A22 b−að Þ

Re e− iφ
ð

b0

a0

a2

z
−z

� �

M0 zð Þ− a2

z2
M

a2

z

� �

+M zð Þ
� �

+ 2M zð Þ
� �

dz

8

<

:

9

=

;

:

ðB:2Þ

The integration of Eq. B.2 can be separated into the fol-

lowing ones:

ð

b0

a0

a2

z
M0 zð Þ− a2

z2
M zð Þ

� �

dz=

ð

b0

a0

d
a2

z
M zð Þ

� �

=
a2

z
M zð Þ

� �b0

a0

=
a2

b0
M b0ð Þ− a2

a0
M a0ð Þ= e− iφ a2

b
M b0ð Þ−aM a0ð Þ

� �

,

ðB:3aÞ

ð

b0

a0

−zM0 zð Þdz= e−2iφ
ð

b0

a0

−zM0 zð Þdz= −e−2iφ zM zð Þf gb0a0 −
ð

b0

a0

M zð Þdz

2

4

3

5

= e− iφ aM a0ð Þ−bM b0ð Þ½ �+ e−2iφ
ð

b0

a0

M zð Þdz,

ðB:3bÞ

ð

b0

a0

−
a2

z2
M

a2

z

� �� �

dz=

ð

b0

a0

M
a2

z

� �

d
a2

z

� �

=

ð

a2=b0

a2=a0

M zð Þdz=
ð

a2=b0

a2=a0

M zð Þdz:

ðB:3cÞ
It is noted that as the integral range in Eq. B.3c is out-

side the matrix domain, the integrand M (z) must be chan-

ged to that within the fiber region. According to Toya [33],

when z takes a value within the fiber region, the function

M (z) is still given by Eq. 19.2, with the function χ (z)

changed toχ2ðzÞ, where

χ2ðzÞ= −χðzÞ=ξ = −
1

ξ
ðz−aeiψ Þ−0:5 + iλðz−ae− iψ Þ−0:5− iλ = χ2ðzÞ:

ð3:5TÞ

Substituting Eqs. B.3a–B.3c into Eq. B.2 results in

ð

b0

a0

a2

z
−z

� �

M0 zð Þ− a2

z2
M

a2

z

� �

+M zð Þ
� �

+ 2M zð Þ
� �

dz

= e− iφ
a2

b
M b0ð Þ−aM a0ð Þ

� �

+ e− iφ aM a0ð Þ−bM b0ð Þ½ �

+ e−2iφ
ð

b0

a0

M zð Þdz +
ð

a2=b0

a2=a0

M zð Þdz + 2
ð

b0

a0

M zð Þdz

= e− iφM b0ð Þ a2=b−bð Þ+
ð

a2=b0

a2=a0

M zð Þdz + 2 + e−2iφð Þ
ð

b0

a0

M zð Þdz:

ðB:4Þ

The remaining work is to integrate M (z). Let us intro-

duce an auxiliary function,

R0ðzÞ= ðz−aeiψ Þ0:5 + iλðz−ae− iψ Þ0:5− iλ

= ðz2 + a2−2za cosψÞ0:5ðz−aeiψ Þiλðz−ae− iψ Þ− iλ:

It follows that

dR0

dz
= 0:5ð2z−2a cosψÞðz2 + a2−2za cosψÞ−0:5 z−aeiψ

z−ae− iψ

� �iλ

+ iλðz2 + a2−2za cosψÞ0:5 z−ae iψ

z−ae− iψ


 �iλ−1 ðz−ae− iψ Þ−ðz−aeiψ Þ
ðz−ae− iψ Þ2

= ðz−acosψ −2aλsinψÞðz−aeiψ Þ−0:5 + iλðz−ae− iψ Þ−0:5− iλ:
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Therefore,

ð

F−0:5ð Þz +H½ �χ zð Þdz=
ð

F−0:5ð Þ z−a cosψ + 2λsinψð Þ½ �χ zð Þdz

= F−0:5ð Þ
ð

dR0

dz
dz= F−0:5ð ÞR0 zð Þ:

Similarly, from
d R0=zð Þ

dz
= −

1
z2
R0 zð Þ+ dR0

zdz
= −a2 1

z2
+




2λ sinψ −cosψ

az

�

χ zð Þ and C
z
=Dð2λ sinψ −cosψ

az
Þ, one gets

ð

ðC
z
+
D

z2
ÞχðzÞdz= −D

R0ðzÞ
a2z

. Finally,

ð

b0

a0

M zð Þdz =
ð

b0

a0

F−
a2k

z2

� �

dz−

ð

F−0:5ð Þz+H½ �χ zð Þdz−
ð

C

z
+
D

z2

� �

χ zð Þdz

= Fz +
a2k

z
− F−0:5ð ÞR0 zð Þ+DR0 zð Þ

a2z

� �b0

a0
=N b0ð Þ−N a0ð Þ ,

ðB:5aÞ

ð

a2=b0

a2=a0

M zð Þdz= Fz +
a2k

z
+
1

ξ
F−0:5ð ÞR0 zð Þ +DR0 zð Þ

a2z

� �� �a2=b0

a2=a0

=N1

a2

b0

� �

−N1

a2

a0

� �

,

ðB:5bÞ

where N(z) and N1(z) are given by Eqs. 21.2 and 21.3,

respectively. Substituting Eqs. B.5a and B.5b into Eq. B.4,

applying Eq. B.2, one can obtain Eq. 21.1.

APPENDIX C

DETERMINATION OF A CRACK ANGLE

Using polar coordinates (ρ, θ), Toya [33] obtained the

relative displacements of the two faces of the crack under

uniaxial tension (Fig. 4a):

uρ + iuθ = −
1

2
A2σ

0
22a G0−

1

k
−
2 1−kð Þa

kt
exp 2λ ψ −πð Þ½ �

� �

R0 tð Þ
t

,

ð3:54TÞ

A2 =
k

4

1 + κ1

μ1
+
1 + κ2

μ2

� �

: ð3:39TÞ

In Eq. 3.54T, t = aeiφ is a point on the interface (p. 328)

in Ref. [33], G0 and R(eiΦ) = R0(t)/t are given in Eqs. 24.1

and 24.2, respectively. The crack angle Ψ must fulfill

uρðtÞ = uρðaeiφÞjφ =ψ = 0: ðC:1Þ

However, Eq. 24.2 implies that Eq. C.1 is fulfilled auto-

matically, thus no Ψ can be solved from it. On the other

hand, both England [42] and Toya [33] pointed out that the

relative displacement at another point of the interface with

a smaller central angle, 2φ = 2(Ψ − γ), was also zero. In

other words, Eq. C.1 should be replaced by Eq. 23.

To simplify Eq. 23, let us consider the norm and phase

angle of the variable½expðiðφÞÞ−eiψ �, which are given,

respectively, by

jexpðiðφÞÞ−eiψ j = jcosφ−cosψ + iðsinφ= sinψÞj

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcosφ−cosψÞ2 + ðsinφ−sinψÞ2
q

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2−2½1−2sin2ð0:5ðψ −φÞÞ�
q

= 2sinð0:5jψ −φjÞ ,

ðC:2aÞ

Arg exp iφð Þ−eiψ½ �= tan−1
sinφ−sinψ

cosφ−cosψ

� �

= tan−1
sinφ−sin φ+ γð Þ
cosφ−cos φ+ γð Þ

� �

= tan−1
sinφ sin 0:5γð Þ−cosφ cos 0:5γð Þ
cosφ sin 0:5γð Þ+ sinφ cos 0:5γð Þ

� �

= tan−1
−cos φ+ 0:5γð Þ
sin φ+ 0:5γð Þ

� �

= − 0:5π−φ−0:5γð Þ =φ+ 0:5γ−0:5π:

ðC:2bÞ

Similarly,

jexpðiðφÞÞ−e− iψ j= jcosφ−cosψ + iðsinφ+ sinψÞj

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2−2ðcosφ cosψ −sinφ sinψÞ
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2−2cosðψ +φÞ
p

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2−2½1−2sin2ð0:5ðψ +φÞÞ�
q

= 2sinð0:5ðψ +φÞÞ ,

ðC:3aÞ

Arg exp iφð Þ−eiψ½ �= tan−1
sinφ+ sinψ

cosφ−cosψ

� �

= tan−1
sinφ+ sin φ+ γð Þ
cosφ−cos φ+ γð Þ

� �

= tan−1
2sinφ cos2 0:5γð Þ + 2cosφ sin 0:5γð Þcos 0:5γð Þ
2cosφ sin2 0:5γð Þ+ 2sinφ sin 0:5γð Þcos 0:5γð Þ

� �

= tan−1
cos 0:5γð Þ
sin 0:5γð Þ

� �

= 0:5π−0:5γ:

ðC:3bÞ

Hence, RðexpðiφÞÞ= ½expðiðφÞÞ−eiψ �0:5 + iλ½expðiðφÞÞ−e− iψ �0:5− iλ

expð− iðφÞÞ = ½2sinð0:5jψ −φjÞeðiðφ + 0:5γ−0:5πÞÞ�0:5 + iλ ×
½2sinððψ +φÞ=2Þeðið0:5π−0:5γÞÞ�0:5− iλeð− iφÞ.

As r iλ = ðelnrÞiλ = eiðλlnrÞ, one further obtains

RðexpðiφÞÞ = expð− iφÞ½4sinððψ −φÞ=2Þsinððψ +φÞ=2Þ�0:5

expðiλlnð2sinððψ −φÞ=2ÞÞÞ×
expð− iλlnð2sinððψ −φÞ=2ÞÞÞ½expðiðφ+ 0:5γ−0:5πÞÞ�0:5 + iλ

½expðið0:5π−0:5γÞÞ�0:5− iλ

= 2½sinð0:5Þjψ −φjsinððψ +φÞ=2Þ�0:5expðiλlnðsinððψ −φÞ=2Þ=
sinððψ +φÞ=2ÞÞÞ×
exp½−λðφ + 0:5γ−0:5πÞ + λð0:5π−0:5γÞ�expfi½−0:5φ�g
= 2½sinð0:5jψ −φjÞsinððψ +φÞ=2Þ�0:5exp½λðπ−ψÞ�×
exp½i½λlnðsinððψ −φÞ=2Þ=sinððψ +φÞ=2ÞÞ−0:5φ�g:

ðC:4Þ

For any two variables A and B, one has AB=

jAjexpðiφAÞjBjexpðiφBÞ= jAjjBjexp½iðφA +φBÞ�. In other

words, Re(AB) = 0 is equivalent to φA + φB = ±0.5π,

where φA and φB are the phase angles of A and B,
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respectively. A solution to Eq. 23 is equivalent to that to

the following equation:

Arg G0−
1

k
−

2 1−kð Þ
kexp iφð Þexp 2λ ψ −πð Þð Þ

� �

+Arg R exp − iφð Þð Þ½ � = �π

2

Substituting Eq. C.4 into the last equation leads to

tan−1 2 1−kð Þexp 2λ ψ −πð Þ½ �sinφ
kG0−1−2 1−kð Þexp 2λ ψ −πð Þ½ �cosφ

� �

+ λ ln
sin 0:5 ψ −φð Þ½ �
sin 0:5 ψ +φð Þ½ �

� �

−
φ

2
= �π

2
,

or, tan−1
2 1−kð Þξexp 2λψð Þsinφ

kG0−1−2 1−kð Þξexp 2λψð Þcosφ

� �

+ λln
sin 0:5 ψ −φð Þ½ �
sin 0:5 ψ +φð Þ½ �

� �

−
φ

2
= �π

2
,

ðC:5a;C:5bÞ

in which φ = Ψ − γ. Let us consider two different cases.

When ξ ≤ 1, we have

k =
μ1ð1 + κ2Þ

ð1 + νÞðμ1 + κ1μ2Þ
=

μ1 + κ2μ1

μ1 + κ2μ1 + μ2 + κ1μ2
< 1,λ = − lnðξÞ=ð2πÞ ≥ 0,

2ð1−kÞexp½2λðψ −πÞ� > 0andk−1 > 1 > 0:5ð1 + 4λ2Þsin2ψ :

Hence, kG0 =
1−ðcosψ + 2λ sinψÞexp½2λðπ−ψÞ� + ð1−kÞð1 + 4λ2Þsin2ψ

2=k−1−ðcosψ + 2λ sinψÞexp½2λðπ−ψÞ� < 1.

Noticing that both sin φ and cos φ are > 0, it follows that

tan−1 2 1−kð Þξexp 2λψð Þsin φð Þ
kG0−1−2 1−kð Þξexp 2λψð Þcos φð Þ

� �

< 0: ðC:6Þ

At thesametime, λln
sin 0:5 ψ −φð Þð Þ
sin 0:5 ψ +φð Þð Þ

� �

≤ 0: ðC:7Þ

Equations C.6 and C.7 imply that one should choose

−0.5π on the right-hand side of Eq. C.5. Equation C.5b is

further simplified to

λ ln
sin 0:5 ψ −φð Þ½ �
sin 0:5 ψ +φð Þ½ �

� �

=
φ

2
−
π

2
− tan−1 2 1−kð Þξexp 2λψð Þsinφ

kG0−1−2 1−kð Þξexp 2λψð Þcosφ

� �

,

with

sin 0:5 ψ −φð Þ½ �
sin 0:5 ψ +φð Þ½ �

= exp
1

λ

φ

2
+ tan−1 kG0−1−2 1−kð Þξexp 2λψð Þcos ψ −γð Þ

2 1−kð Þξexp 2λψð Þsin ψ −γð Þ

� �� �� �

:

In other words,

exp
1

λ

ψ −γ

2
+ tan−1 kG0−1−2 1−kð Þξexp 2λψð Þcos ψ −γð Þ

2 1−kð Þξexp 2λψð Þsin ψ −γð Þ

� �� �� �

−
γ

2sin ψð Þ = 0:

ðC:8Þ

To derive the last equation, the conditions that sin

(0.5γ) ≈ 0.5γ, sin(Ψ − 0.5γ) ≈ sin(Ψ ) and −0.5π −

tan−1(1/ω) = tan−1(ω) were taken into account. As a geo-

metrical interpretation of Eq. C.8 is that the relative dis-

placement in the radial direction between the fiber and

matrix faces attains the minimum, the first-order deriva-

tive of the function γf(γ) (because of γ > 0) must be zero

at γ. Namely,

d γf γð Þð Þ
dγ

=

�

γexp
1

λ
tan−1 J1=J2ð Þ + ψ

2


 �

� �

1

λ

J3J2

J21 + J
2
2

−
1

2

� �

+ exp
1

λ
tan−1 J1=J2ð Þ + ψ

2


 �

� �

−
γ

sin ψð Þ

�

= 0,

ðC:9Þ

where J1, J2, and J3 are defined by Eqs. 25.3-25.5. It is

noted that as γ is much smaller than Ψ , the variable Ψ − γ

in all the functions in Eq. C.9 and Eqs. 25.3-25.5 has been

replaced by Ψ . From Eq. C.9, one obtains

γ =
λexp 1

λ
tan−1 J1=J2ð Þ + ψ

2

	 
� �

exp 1
λ
tan−1 J1=J2ð Þ+ ψ

2

	 
� �

1
2
−

J3J2
J2
1
+ J2

2

h i

+ λ
sin ψð Þ

: ðC:10Þ

Equation 25.1 is resulted from Eq. C.10 as

λ� exp 1
2λ

2 tan−1 J1=J2ð Þ +ψ½ �
� �

sin ψð Þ.
If ξ > 1, we have λ = −ln(ξ)/(2π) < 0. In such a case, a

minimum value of the function γf(γ) is no longer able to be

assumed. Instead, we request f(γ) to attain the minimum.

From the latter condition, one has

f 0 γð Þ
sin ψð Þ =

1

γ
exp

1

λ

ψ −γ

2
+ tan−1 J1=J2ð Þ

h i

� �

1

λ
−
1

2
+

J3J2

J21 + J
2
2

� �

−
1

γ2
exp

1

λ

ψ −γ

2
+ tan−1 J1=J2ð Þ

h i

� �

= 0,

which gives out Eq. 25.2.
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