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Abstract

We study the problem of predicting future k-records based on k-record data for a large class

of distributions, which includes several well-known distributions such as: Exponential, Weibull

(one parameter), Pareto, Burr type XII, among others. With both Bayesian and non-Bayesian

approaches being investigated here, we pay more attention to Bayesian predictors under balanced

type loss functions as introduced by Jafari Jozani, Marchand and Parsian (2006b). The results are

presented under the balanced versions of some well-known loss functions, namely squared error loss

(SEL), Varian’s linear-exponential (LINEX) loss and absolute error loss (AEL) or L1 loss functions.

Some of the previous results in the literatures such as Ahmadi et al. (2005), and Raqab et al. (2007)

can be achieved as special cases of our results.
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1 Introduction

Consider a sequence {Xi, i ≥ 1} of iid absolutely continuous random variables distributed according

to the cumulative distribution function (cdf) F (x; θ) and probability density function (pdf) f(x; θ),

where θ is an unknown parameter. An observation Xj will be called an upper record value if its value

exceeds all previous observations. Thus, Xj is an upper record if Xj > Xi for every i < j. Records of

iid random variables and their properties have been extensively studied in the literature. Interest in

records has increased steadily over the years since Chandler (1952) formulated the theory of records.

See Arnold et al. (1998), Nevzorov (2001) and the references therein for more details on applications
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of records. An upper k-record process is defined in terms of the k-th largest X yet seen. For a formal

definition, we consider the definition in Arnold et al. (1998), page 43, for the continuous case. Let

T1,k = k, and for n ≥ 2

Tn,k = min{j : j > Tn−1,k, Xj > XTn−1,k−k+1:Tn−1,k
},

where Xi:m denotes the i-th order statistic in a sample of size m. The sequence of upper k-records are

then defined by Rn(k) = XTn,k−k+1:Tn,k for n ≥ 1. For k = 1, note that the usual records are recovered.

These sequences of k-records were introduced by Dziubdziela and Kopocinski (1976) and they have

found acceptance in the literature. Using the joint density of usual records, the joint pdf of the first

n, k-records R(k) = (R1(k), ..., Rn(k)) is given by

f1,...,n(r(k); θ) = kn[F̄ (rn(k); θ)]
k

n∏
i=1

f(ri(k); θ)

F (ri(k); θ)
, (1)

where r(k) = (r1(k), ..., rn(k)) and F̄ ≡ 1− F , see, Arnold et al. (1998).

The problem of prediction of future usual (k=1) records based on observed record data has been

extensively studied by several statisticians in view of classical and Bayesian framework, see Ahsanullah

(1980), Awad and Raqab (2000), Dunsmore (1983), Ali Mousa et al. (2000), Jaheen (2003, 2004),

Madi and Raqab (2004), Ahmadi and Doostparast (2006) and Doostparast and Ahmadi (2006) among

others. Ahmadi et al. (2005) developed Bayesian inference and prediction based on k-record values

under a LINEX loss function.

The record statistics are of interest and importance, these statistics are applied in estimating strength

of materials, predicting natural disasters, sports achievements, etc. Consider a technical systems or

subsystems with k-out-of-n structure. A k-out-of-n system breaks down at the time of the (n−k+1)-th

component failure. So, in reliability analysis, the life length of a k-out-of-n system is the (n−k+1)-th

order statistic in a sample of size n. Consequently, the n-th upper k-record value can be regarded as

the life length of a k-out-of-Tn,k system. Several application of k-record values can be found in the

literature, for instance, see the examples cited in Kamps (1995) or Danielak and Raqab (2004b) in

reliability theory. Suppose that a technical system is subject to shocks, e.g. peaks of voltage. These

shocks may be modeled as realizations of records. If not record values themselves, but second or third

largest values are of special interest, then the model of k-record values is adequate. When record values

themselves are viewed as outliers, then second or third largest values are of special interest. Insurance

claims in some non-life insurance can be used as an example. So predicting future k-record values is an

important problem. Several statisticians have investigated upper bounds for the expectation of future

k-records, see Klimczak (2006), Klimczak and Rychlik (2004), Raqab (2004), Danielak and Raqab

(2004a, b) among others. One of the motivations here is the relative paucity of work concerning a

Bayesian approach to predicting future k-records.

A second important feature of this paper is the proposed use of balanced type loss functions, which
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to us represent an interesting tool for decision making, or specifically here for predictions. In decision

theory, the loss function usually focusses on precision of estimation. However, goodness of fit is also

a very important criterion. Zellner (1994), introduced the notion of a balanced loss function in the

context of a general linear model to reflect both goodness of fit and precision of estimation. Often

loss functions reflecting one or the other of these two criteria, but not both have been employed

in statistical inferences. For example, least squares estimation reflects goodness of fit considerations

whereas the use of quadratic or LINEX loss functions involve a sole emphasis on precision of estimation.

Following Jafari Jozani, Marchand and Parsian (2006b) we introduce a general class of balanced type

loss functions of the form of

Lρ,ω,d0(y, d) = ωρ(d0, d) + (1− ω)ρ(y, d), (2)

where ρ(y, d) is an arbitrary loss function in predicting y by d, while d0 is a chosen a priori “target”

predictor of y, obtained for instance from the criterion of maximum likelihood predictor, least square or

unbiasedness among others. Our objective is to predict a future k-record based on a sample of observed

k-record data from Bayesian point of view for a general class of distributions under balanced type loss

functions as in (2). As first modelled by Jafari Jozani, Marchand and Parsian (2006a) for a squared

error ρ in (2), the choice of the target d0 in (2) is arbitrary. This constitutes a particularly appealing

feature with the Bayesian developments of Section 4 being applicable for any target predictor d0, such

as those presented in Section 3. In this paper, we shall use balanced squared error loss (BSEL), and

balanced absolute error loss (BAEL) or balanced L1 loss functions as symmetric BLFs and balanced

LINEX loss function as an asymmetric BLF to derive the Bayes predictions of the future k-records in

a general class of distributions based on a sample of k-record values observed.

2 Preliminaries

Let X1, X2, · · · , be a sequence of iid random variables from the class C1 of continuous distribution

functions with

F (x; θ) = 1− [Ḡ(x)]α(θ), −∞ ≤ c < x < d ≤ ∞, (3)

where α(θ) > 0 and G ≡ 1 − Ḡ is an arbitrary continuous distribution function, free of unknown

parameters with G(c) = 0 and G(d) = 1. The family in C1 is well-known in the lifetime experiments

as proportional hazard models (see for example Lawless, 2003), which includes several well-known

lifetime distributions such as: Exponential, Pareto, Lomax, Burr type XII, Resnick, Weibull (one

parameter) among others. Also, the family in C1 is a subclass of a regular one parameter exponential

family of distributions.

Let g(x) = d
dxG(x) be the pdf corresponding to G(x), then

f(x; θ) = α(θ)g(x)[Ḡ(x)]α(θ)−1,−∞ ≤ c < x < d ≤ ∞. (4)
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Suppose that R1(k), R2(k), ... is the sequence of k-records coming from (3) with α(θ) = θ, then the

following can be obtained easily ( see for instance Arnold et al., 1998):

• The joint pdf of R(k) = (R1(k), ..., Rn(k)) is given by

f1,...,n(r1(k), ..., rn(k); θ) = (kθ)n{Ḡ(rn(k))}kθ
n∏
i=1

g(ri(k))
Ḡ(ri(k))

. (5)

• The marginal pdf of the nth k-records, Rn(k), is given by

fn(rn(k); θ) =
(kθ)n

(n− 1)!
g(rn(k)){Ḡ(rn(k))}kθ−1{− log Ḡ(rn(k))}n−1. (6)

• The conditional pdf of Rs(k) given Rn(k) = rn(k), s > n is

fs|n(rs(k)|rn(k), θ) =
(kθ)s−n

(s− n− 1)!

(
log

Ḡ(rn(k))
Ḡ(rs(k))

)s−n−1
g(rs(k))
Ḡ(rs(k))

(
Ḡ(rs(k))
Ḡ(rn(k))

)kθ
. (7)

The following results are an immediate consequences of (5) and (6):

• Rn(k) is a complete sufficient statistic for θ among the first n k-records.

• − log Ḡ(Rn(k)) has a Gamma distribution with parameters n and kθ.

• The maximum likelihood estimator (MLE) of θ is θ̂mle = −n
k log Ḡ(Rn(k))

.

• The UMVUE of θ is θ̂U = 1−n
k log Ḡ(Rn(k))

.

Suppose that we observed the first n upper k-record values R(k) = r(k) from a distribution, with cdf

and pdf given, respectively, by (3) and (4) with α(θ) = θ. Let R̂ω,s(k) = ψ(R(k)) be the point predictor

of Rω,s(k), then we consider the balanced type predictive loss function as follows:

Lρ,ω,R0
s(k)

(Rs(k), R̂ω,s(k)) = ωρ(R0
s(k), R̂ω,s(k)) + (1− ω)ρ(Rs(k), R̂ω,s(k)), (8)

where ω ∈ [0, 1) and ρ(Rs(k), R̂ω,s(k)) is an arbitrary loss function in predicting Rs(k) by R̂ω,s(k),

while R0
s(k) is a chosen a priori “target” predictor of Rs(k), obtained for instance from the criterion

of maximum likelihood predictor, best linear unbiased predictor, best linear invariant predictor, or

conditional median predictor among others. In the sequel, we first derive the target predictor R0
s(k) of

Rs(k) based on observed records via two methods namely, conditional median and maximum likelihood.

3 Non-Bayesian Prediction

There are several non-Bayesian methods for predicting future k-records. Here we present two schemes,

maximum likelihood and conditional median prediction, when the parent distribution is as in (4) with

α(θ) = θ.
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3.1 Conditional median prediction

The median of the distribution of Rs(k) given Rn(k) = rn(k), whose density is given in (7), is called the

conditional median predictor (CMP) (see, Raqab and Nagaraja, 1995). The CMP, given in (9) below,

depends on θ but we can derive a plausible predictor by using a plug-in estimate of θ. We have∫ R0
s(k)

rn(k)

fs|n(rs(k)|rn(k), θ)drs(k) =
∫ d

R0
s(k)

fs|n(rs(k)|rn(k), θ)drs(k).

Now, suppose that we observed Rn(k) = rn(k) then by taking t = log
(
Ḡ(rn(k))

Ḡ(rs(k))

)
the above identity can

be rewritten as follows∫ log

(
Ḡ(rn(k))

Ḡ(R0
s(k)

)

)
0

ts−n−1e−kθtdt =
∫ ∞

log

(
Ḡ(rn(k))

Ḡ(R0
s(k)

)

) ts−n−1e−kθtdt.

From the above identity we conclude that

R0
s(k) = Ḡ

−1 (
Ḡ(rn(k))e

−Med(W )
2kθ

)
, (9)

where W has chi-square distribution with 2(s−n) degrees of freedom and Med(W ) stands for median

of W . Substituting the MLE and unbiased estimator of θ in (9) we get

R0
M,s(k) = Ḡ

−1 (
[Ḡ(rn(k))]

(1+
Med(W )

2n
)
)

(10)

and

R0
U,s(k) = Ḡ

−1
(

[Ḡ(rn(k))]
(1+

Med(W )
2(n−1)

)
)
, (11)

respectively. For s = n+ 1, using the fact that Med(χ2
(2)) = log 4, (10) and (11) reduce to

R0
M,n+1(k) = Ḡ

−1 (
[Ḡ(rn(k))]

(1+ log 4
2n

)
)

and R0
U,n+1(k) = Ḡ

−1
(

[Ḡ(rn(k))]
(1+ log 4

2(n−1)
)
)
.

Example 1 (i) (Exponential distribution): Taking Ḡ(x) = e−x, 0 < x < ∞, in (3), X has

Exponential distribution, and using (10) and (11) the target predictor (CMP) of Rs(k) on the basis of

Rn(k) = rn(k) are

R0
M,s(k) =

(
1 +

Med(W )
2n

)
Rn(k) and R0

U,s(k) =
(

1 +
Med(W )
2n− 2

)
Rn(k).

For the predicting next record, s = n+ 1, we get

R0
M,n+1(k) = (1 +

log 4
2n

)Rn(k) and R0
U,n+1(k) = (1 +

log 4
2(n− 1)

)Rn(k).

(ii) (Pareto distribution): Taking Ḡ(x) = η
x , x > η > 0, with known η, in (3), X has Pareto

distribution, and using (10) and (11) the target predictor (CMP) of Rs(k) on the basis of Rn(k) = rn(k)

are

R0
M,s(k) = η

(
Rn(k)

η

)−(1+
Med(W )

2n
)

, and R0
U,s(k) = η

(
Rn(k)

η

)−(1+
Med(W )
2(n−1)

)

.
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For the predicting next record, s = n+ 1, we get

R0
M,n+1(k) = η

(
Rn(k)

η

)−(1+ log 4
2n

)

and R0
U,n+1(k) = η

(
Rn(k)

η

)−(1+ log 4
2(n−1)

)

.

For k = 1 the results of Raqab et al. (2007) are obtained as an special case.

3.2 Maximum likelihood prediction

Assume that we observed r(k) = (r1(k), ..., rn(k)) from a population with unknown parameter θ. We

intend to predict Rs(k), s > n based on r(k). The predictive likelihood function of Y = Rs(k), and θ is

given by (see Basak and Balakrishnan, 2003)

L(r(k), rs(k), θ) = f(r(k)|θ)h(rs(k)|r(k), θ)

= f(r(k)|θ)fs|n(rs(k)|rn(k), θ),

where the second equality is obtained by Markovian property of k-records. If there exists R0
L,s(k) =

R̂mles(k) and θ̂L = θ̂mle such that

L(r(k), R
0
L,s(k), θ̂L) = sup

rs(k),θ

L(r(k), rs(k), θ),

then θ̂L and R0
L,s(k) are the predictive maximum likelihood estimator (PMLE) for θ and the maximum

likelihood predictor (MLP) of Rs(k), respectively. Now suppose that k-records are obtained from our

proposed model (3) with α(θ) = θ, then using (5) and (7) the predictive log-likelihood function is

given by

l(r(k), rs(k), θ) ∝ (s− n− 1) log

(
log

(
Ḡ(rs(k))
Ḡ(rn(k))

))
+ log g(rs(k)) + (kθ − 1) log Ḡ(rs(k)) + s log θ.

Substituting θ by θ̂mle in l(r(k), rs(k), θ) the MLP of Rs(k) can be obtained from the following equation:

g(R0
L,s(k))

Ḡ(R0
L,s(k))

{
1 +

s

log Ḡ(R0
L,s(k))

− s− n− 1
log Ḡ(R0

L,s(k))− log Ḡ(rn(k))

}
=
g′(R0

L,s(k))

g(R0
L,s(k))

, (12)

Example 2 (continued) (i)(Exponential distribution:) For the case of exponential distribution

the equation (12) reduces to:

1 +
s

R0
L,s(k)

− s− n− 1
rn(k) −R0

L,s(k)

= 1.

Hence the MLP of Rs(k) is

R0
L,s(k) =

s

n+ 1
Rn(k).

(ii) (Pareto distribution): Taking Ḡ(x) = η
x , x > η > 0, with known η, in (3) with α(θ) = θ, the

maximum likelihood predictor of Rs(k) is given as a solution of the following equation in R0
L,s(k):

s− n− 1
log rn(k) − logR0

L,s(k)

− s

log η − logR0
L,s(k)

= 3.

For k = 1 the results of Raqab et al. (2007) are obtained as a special case.
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4 Bayesian prediction

A Bayesian approach may be adopted in order to derive the necessary predictive distribution; see

Dunsmore (1983). Assuming that the parameter θ is a realization of a random variable with prior pdf

π(θ). We use Gamma(α, β)-distribution as a conjugate prior for the parameter θ with the following

density function,

π(θ;α, β) =
βα

Γ(α)
θα−1e−βθ, θ > 0, (13)

where α and β are positive constant.

It follows from (5) and (13) that the posterior pdf of the parameter θ is given by

π(θ|r1(k), ..., rn(k)) =
(β − k log Ḡ(rn(k)))n+α

Γ(n+ α)
θn+α−1e−θ(β−k log Ḡ(rn(k)), θ > 0, (14)

where Γ(.) is the complete gamma function.

Assume that we have observed the first n upper k-records r(k) = (r1(k), ..., rn(k)) from (3) with α(θ) = θ,

and that, based on such a sample, prediction, either point or interval, is needed for s-th upper k-record,

s > n. Now, let Y = Rs(k) be the s-th upper k-record value, s > n. The Bayes predictive density

function of Y given r(k) is given by (see, Arnold et al. 1998, p. 162)

f(y|r(k)) =
∫

Θ
f(y|r(k), θ)π(θ|r(k))dθ. (15)

Hence, we find the Bayes predictive density function as follows

f(rs(k)|rn(k)) =
∫ ∞

0
f(rs(k)|rn(k), θ)π(θ|rn(k))dθ

=
Γ(s+ α)

Γ(s− n)Γ(n+ α)

(
β + ktn(k)

β + kts(k)

)n+α ks−n(ts(k) − tn(k))s−n−1g(rs(k))
(β + kts(k))s−nḠ(rs(k))

,

where ti(k) = − log Ḡ(ri(k)), i = n, s and rn(k) < rs(k) < d.

Let U = β−k log Ḡ(Rn(k))

β−k logG(Rs(k))
, then it is easy to verify that U given Rn(k) = rn(k) has a Beta(n+ α, s− n)-

distribution which is independent of Rs(k). Thus we can use U to construct a Bayesian prediction

interval for Rs(k). Let bγ be the γth percentile of a Beta(n+α, s−n)-distribution, then the 100(1−γ)%

prediction interval for Rs(k) is given by (L1, L2), where

L1 = Ḡ−1

{
exp

[
1
k

(β −
β − k log Ḡ(rn(k))
b1− γ

2
(n+ α, s− n)

)

]}
, (16)

and

L2 = Ḡ−1

{
exp

[
1
k

(β −
β − k log Ḡ(rn(k))
b γ

2
(n+ α, s− n)

)

]}
(17)
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Remark 1 We get the results of Ahmadi et al. (2005) by taking Ḡ(x) = e−x (Exponential distribu-

tion) in (16), and (17), and the results of Raqab et al. (2007) by choosing Ḡ(x) = η
x , x > η > 0, with

known η (Pareto distribution) and k = 1 in (16), and (17), as special cases, respectively.

Here we consider the Bayesian point prediction of Rs(k) under BLF, Lρ,ω,R0
s(k)

, as in (8). When ω = 0,

we simply use L0 instead of Lρ,0,R0
s(k)

unless we want to emphasize the role of ρ. The following

lemma and proof are quite similar to Lemma 1 in Jafari Jozani, Marchand and Parsian (2006b), and

establishes a connection between Bayesian prediction under BLF (8) for the cases ω > 0 and ω = 0.

Lemma 1 For predicting Rs(k) with target predictor R0
s(k) under balanced loss function Lρ,ω,R0

s(k)
as

in (8) and for a prior π(θ), the Bayes predictor R̂ω,s(k) corresponds to the Bayes solution R∗s(k) with

respect to f∗(rs(k)|rn(k)) under L0; where

f∗(rs(k)|rn(k)) = ωI{r0
s(k)
}(rs(k)) + (1− ω)f(rs(k)|rn(k)),

i.e., f∗(rs(k)|rn(k)) is a mixture of a point mass at r0
s(k) and the conditional distribution Rs(k) given

Rn(k) = rn(k).

Proof: Let µn and νn be dominating measures of f(rs(k)|rn(k)) and f∗(rs(k)|rn(k)), respectively. With

the definitions of R∗s(k), R̂ω,s(k) and L0, and with Xs(k) standing for the sample space of Rs(k), we have

R̂ω,s(k) = argminrω,s(k)

∫
Xs(k)

Lρ,ω,R0
s(k)

(rs(k), rω,s(k))f(rs(k)|rn(k))dµn(rs(k))

= argminrω,s(k)

∫
Xs(k)∪{r0

s(k)
}
ρ(rs(k), rω,s(k))f

∗(rs(k)|rn(k))dνn(rs(k))

= argminrω,s(k)

∫
Xs(k)∪{r0

s(k)
}
L0(rs(k), rω,s(k))f

∗(rs(k)|rn(k))dνn(rs(k))

= R∗s(k).

2

4.1 Bayes predictor under BSEL function

Choosing ρ(y, d) = ρ1(y, d) = τ(y)(y − d)2 with τ(·) > 0, the balanced predictive loss function in (8)

becomes

Lρ1,ω,R0
s(k)

(Rs(k), R̂ω,s(k)) = ωτ(R0
s(k))(R

0
s(k) − R̂ω,s(k))

2 + (1− ω)τ(Rs(k))(Rs(k) − R̂ω,s(k))
2.

Under L0 and the prior π, we have R̂0,s(k) = EF [Rs(k)τ(Rs(k))|rn(k)]

EF [τ(Rs(k))|rn(k)]
(subject to the finiteness conditions

EF [Ris(k)τ(Rs(k))|rn(k)] < ∞; i = 0, 1; for all rn(k)). Thus, following Lemma 1, the Bayes point
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prediction of Rs(k) under Lρ1,ω,R0
s(k)

is given by

R̂ω,s(k) =
EF ∗ [Rs(k)τ(Rs(k))|rn(k)]
EF ∗ [τ(Rs(k))|rn(k)]

=

∫
Xs(k)∪{r0

s(k)
} rs(k)τ(rs(k))f∗(rs(k)|rn(k))dνn(rs(k))∫

Xs(k)∪{r0
s(k)
} τ(Rs(k))f∗(rs(k)|rn(k))dνn(rs(k))

=
ωr0

s(k)τ(r0
s(k)) + (1− ω)EF [Rs(k)τ(Rs(k))|rn(k)]

ωτ(r0
s(k)) + (1− ω)EF [τ(Rs(k))|rn(k)]

.

Taking τ(·) = 1 the predictive loss function Lρ1,ω,R0
s(k)

reduces to the balanced predictive SEL function.

In this case the Bayes predictor of Rs(k) simplifies as

R̂ω,s(k) = ωR0
s(k) + (1− ω)E[Rs(k)|Rn(k)] (18)

= ωR0
s(k) + (1− ω)R̂0,s(k).

Remark 2 It may be noted that the Bayes predictor of Rs(k) under balanced predictive SEL function

is a convex linear combination of the target predictor R0
s(k) and the Bayes predictor of Rs(k) under the

usual predictive SEL function. Also, it is observed that when ω = 1, R̂ω,s(k) reduces to the classical

predictor R0
s(k), whereas, for w = 0, R̂ω,s(k) reduces to R̂0,s(k) which is the Bayes predictor for Rs(k)

under SEL function.

When F ∈ C1, we have

R̂0,s(k) = E[Rs(k)|rn(k)]

= EU

[
Ḡ
−1 (

Ḡ(rn(k))
1
U e−

β
k

1−U
U

) ∣∣∣∣rn(k)

]
,

where the random variable U = β−k log Ḡ(Rn(k))

β−k log Ḡ(Rs(k))
given Rn(k) = rn(k) has a Beta(n+α, s−n)- distribution.

Thus we may rewrite (18) as

R̂ω,s(k) = ωR0
s(k) + (1− ω)EU

[
Ḡ
−1 (

Ḡ(rn(k))
1
U e−

β
k

1−U
U

) ∣∣∣∣Rn(k)

]
. (19)

Example 3 (continued) (Exponential distribution:) For the case of exponential distribution the

equation (19) reduces to

R̂ω,s(k) = ωR0
s(k) + (1− ω)

{(
Rn(k) +

β

k

)
E

[
1
U
|Rn(k)

]
− β

k

}

= ωR0
s(k) + (1− ω)

{
s+ α− 1
n+ α− 1

(
Rn(k) +

β

k

)
− β

k

}
.

Taking R0
s(k) = R0

L,s(k) = s
n+1Rn(k) as the MLP of Rs(k), then for s = n+ 1 we get

R̂ω,n+1(k) = ωRn(k) + (1− ω)
{

n+ α

n+ α− 1

(
Rn(k) +

β

k

)
− β

k

}
.

When k = 1 and ω = 0, we find the results of Jaheen (2004) as an special case.
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4.2 Bayes predictor under BAEL function

Following Jafari Jozani, Marchand and Parsian (2006b), taking ρ(y, d) = ρ2(y, d) = |y − d|, we get

balanced absolute error loss (BAEL) function as

Lρ2,ω,R0
s(k)

(Rs(k), R̂ω,s(k)) = ω|R0
s(k) − R̂ω,s(k)|+ (1− ω)|Rs(k) − R̂ω,s(k)|.

Since the Bayes prediction of Rs(k) under Lρ2,0,R0
s(k)

is the median of the Bayes predictive density

function f(rs(k)|rn(k)) =
∫
f(rs(k)|rn(k), θ)π(θ)dθ, following Lemma 1, the Bayes prediction of Rs(k)

under BAEL, Lρ2,ω,R0
s(k)

, is a median of

f∗(rs(k)|rn(k)) = ωI{r0
s(k)
}(rs(k)) + (1− ω)f(rs(k)|rn(k)),

for all rn(k). It is easy to realize that when ω ≥ 1
2 , R̂ω,s(k) = R0

s(k), i.e. the point mass of R0
s(k) has large

enough probability to force the median to be R0
s(k). For ω < 1

2 , the cdf corresponding to f∗(rs(k)|rn(k))

is given by

F ∗(rs(k)|rn(k)) =

 (1− ω)P (Rs(k) ≤ rs(k)|rn(k)), rs(k) < r0
s(k),

ω + (1− ω)P (Rs(k) ≤ rs(k)|rn(k)), rs(k) ≥ r0
s(k).

Taking ζ(rn(k)) = (1 − ω)P (Rs(k) ≤ rs(k)|rn(k)) and F−1
s|n as the inverse cumulative Bayes predictive

density function, straightforward calculations lead to

R̂ω,s(k) =


F−1
s|n ( 1−2ω

2(1−ω)), 0 ≤ ζ(rn(k)) < 1
2 − ω,

R0
s(k),

1
2 − ω < ζ(rn(k)) < 1

2 ,

F−1
s|n ( 1

2(1−ω)), 1
2 ≤ ζ(rn(k)) < 1.

(20)

Note that the above result is general with respect to the choice of the target predictor, the model

and the prior distribution. Also in predicting Rn+1(k), when the target predictor is chosen to be the

maximum likelihood predictor of Rn+1(k), i.e. R0
n+1(k) = Rn(k), it is easy to see that ζ(rn(k)) = 0 and

so R̂ω,n+1(k) = rn(k). Let B(·, n+α, s−n) be the cdf of a Beta(n+α, s−n)-distribution. For F ∈ C1,

we can easily show that

ζ(rn(k)) = 1−B

(
β − log g(rn(k))
β − k log g(r0

s(k))
, n+ α, s− n

)
,

and

F (rs(k)|rn(k)) = 1−B
(
β − log g(rn(k))
β − k log g(rs(k))

, n+ α, s− n
)
.

Choosing B−1(·, n + α, s − n) as the inverse cdf of a Beta(n + α, s − n)-distribution, then (20) leads

us to the following Bayes prediction of Rs(k) under BAEL,

R̂ω,s(k) =


B−1( 1

2(1−ω) , n+ α, s− n), 1
2 + ω ≤ B( β−log g(rn(k))

β−k log g(r0
s(k)

)
, n+ α, s− n) < 1,

R0
s(k),

1
2 ≤ B( β−log g(rn(k))

β−k log g(r0
s(k)

)
, n+ α, s− n) < 1

2 + ω,

B−1( 1−2ω
2(1−ω) , n+ α, s− n), 0 ≤ B( β−log g(rn(k))

β−k log g(r0
s(k)

)
, n+ α, s− n) < 1

2 .

10



4.3 Bayes predictor under balanced LINEX loss function

The choice of ρ(y, d) = ρa(y, d) = ea(y−d) − a(y − d)− 1, a 6= 0, in (8), leads to balanced LINEX loss

function Lρa,ω,R0
s(k)

as follows

ω{ea(R0
s(k)
−R̂ω,s(k)) − a(R0

s(k) − R̂ω,s(k))− 1}+ (1− ω){ea(Rs(k)−R̂ω,s(k)) − a(Rs(k) − R̂ω,s(k))− 1}.

The choice of such an asymmetric ρa is especially appropriate when over-prediction and under-

prediction of the same magnitude have different economic consequences. For more details on LINEX

loss see the review paper of Parsian and Kirmani (2002). The unique Bayes prediction of Rs(k) under

Lρa,0,R0
s(k)

with respect to the prior distribution π(θ) is given by R̂0,s(k) = − 1
a logEF [e−aRs(k) |rn(k)].

Following Lemma 1, the unique Bayes predictor of Rs(k) under Lρa,ω,R0
s(k)

is given as follows

R̂s(k) = −1
a

logEF ∗ [e−aRs(k) |Rn(k)]

= −1
a

log(ωe−aR
0
s(k) + (1− ω)EF [e−aRs(k) |Rn(k)])

= −1
a

log(ωe−aR
0
s(k) + (1− ω)e−aR̂0,s(k))

and for F ∈ C1 reduces to

R̂ω,s(k) = −1
a

log
(
ωe
−aR0

s(k) + (1− ω)E
[
exp{Ḡ

−1 (
Ḡ(Rn(k))

1
U e−

β
k

1−U
U

)
}
∣∣∣∣Rn(k)

])
, (21)

where U |rn(k) ∼ Beta(n+ α, s− n).

Example 4 (continued) (Exponential distribution:) For the case of exponential distribution,

since

e−aR̂0,s(k) = E

[
e
−a
(
rn(k)
U

+β
k

1−U
U

)∣∣∣∣rn(k)

]

=
e−

aβ
k

B(n+ α, s− n)
Ψs(a, α, β, k, rn(k)),

where

B(n+ α, s− n) =
Γ(n+ α)Γ(s− n)

Γ(s+ α)
,

and

Ψs(a, α, β, k, rn(k)) =
∫ 1

0
exp

(
−a(rn(k) +

β

k
)
1
u

)
un+α−1(1− u)s−n−1du,

the Bayes prediction of Rs(k) obtained from F ∈ C1 under balanced LINEX loss function is given by

R̂ω,s(k) = −1
a

log

(
ωe
−ar0

s(k) +
(1− ω)e−

aβ
k

B(n+ α, s− n)
Ψs(a, α, β, k, rn(k))

)
.

For k = 1 and ω = 0 the results of Ahmadi et al. (2005) are obtained as an special case.

11



5 Conclusion

• The balanced type loss function, Lρ,ω,R0
s(k)

as in (8), is a mixture of two loss functions, ρ(R̂ω,s(k), R
0
s(k))

and ρ(R̂ω,s(k), Rs(k)). Therefore it may be more appropriate than either of them in predicting the fu-

ture records. This loss, which depends on the observed value of R0
s(k), reflects a desire of closeness of

R̂ω,s(k) both to Rs(k) and R0
s(k). In this paper, under non-Bayesian and Bayesian frameworks, we have

studied the prediction of future k-records based on observed records which come from a general class

of continuous distributions. The Bayes predictors of the s-th future k-record are obtained under BLF.

We presented the results for the balanced type version of some well-known loss functions namely SEL,

L1 and LINEX loss.

• Taking a sequence of iid random variables X1, X2, · · · , from the class C2 of continuous distribution

function F (x; θ) with

F (x; θ) = [G(x)]θ, −∞ ≤ c < x < d ≤ ∞, θ > 0

where G(x) is an arbitrary continuous distribution function free of unknown parameter and G(c) = 0,

G(d) = 1. It is easy to show that the results of this paper are also hold true for lower k-record data

from C2 with some modifications. The above family of distributions is well known in the lifetime

experiments as proportional reverse hazard models (see Lawless, 2003) and also a subclass of one

parameter exponential family.
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