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Abstract The prediction of the location of transition is important for low
Reynolds number airfoil flows. The laminar/turbulent properties of the flow field
have an important influence on skin friction and separation and therefore on lift
and drag characteristics. In the present study the more general ¢™ model, orig-
inally proposed by Smith [18] and van Ingen [21], is compared to the Michel
criterion [12]. The e method is based on linear stability analysis employing the
Orr-Sommerfeld equation to determine the growth of spatially developing waves.
In order not to compute growth rates for each velocity profile, a database, with
integral boundary layer parameters as input, has been established. The problem
of determining boundary layer properties using a Navier-Stokes solver, is solved
using a two-equation integral formulation, which is solved using a direct/inverse
Newton-Raphson method. The test cases under investigation are incompressible
transitional flow over a flat plate and around airfoils at low and moderate Reynolds
numbers, at fixed angles of attack, varying from attached flow through light stall.
At high Reynolds numbers no large difference is observed between the two transi-
tion models. But for lower Reynolds numbers, the e® method shows better agree-
ment with experiments. Furthermore it has shown to be more stable. It is therefore
preferable to the empirical transition model.
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1 Introduction

Computation of flows past airfoils is a challenging problem due to the various
complex phenomena connected with the occurrence of separation bubbles and the
onset of turbulence. In many engineering applications involving a fully turbulent
flow with only weak streamwise pressure gradients and small curvature effects,
turbulent quantities can be predicted well using conventional turbulence models.
In the case of low Reynolds number airfoil flows (Re <as 10°), proper modeling
of the transition point location is crucial for predicting leading edge separation.
The transition prediction algorithm must be reliable since the transition point
location may affect the termination of a transitional separation bubble and hence
determine bubble size and associated losses. This again has a strong influence on
the airfoil characteristics, with drag being the most affected.

Investigating leading edge separation, the upstream influence is important. Bound-
ary layer theory is based on the assumption that the shear layer grows slowly in
the general flow direction. As a consequence the upstream transport of momentum
and streamwise gradients of viscous and turbulent stresses is not accounted for.
These stresses are generally negligible for high Reynolds number flows, but for low
Reynolds number flows the upstream influence has to be accounted for. For sep-
arated flows, where the shear layer is neither thin nor slender, the Navier-Stokes
equations should be used.

A popular transition prediction model is the empirical criterion by Michel [12].
As shown by e.g. Ekaterinaris et al. [8] and Mehta et al. [10], this model gives
fairly good results for many airfoil flows. In the present study the more general
e” method, proposed originally by Smith [18] and van Ingen [21], is compared to
the Michel criterion. The e” method is based on linear stability analysis using
the Orr-Sommerfeld equation to determine the growth of spatially developing
waves. There have been several attempts to apply simplified versions of the e”
method in combination with viscous-inviscid interaction procedures (e.g. Drela
and Giles [7] and Cebeci [4]}). To avoid computing growth rates for each velocity
profile, a database with integral boundary layer parameters as input has been
established. To the authors’ knowledge, no successful attempt has been made
until now to use the e” method in combination with a Navier-Stokes (N-S) solver.
This has been achieved in the present work.

2 Methods

2.1 Flow Solver

The results obtained in the present work are computed using EllipSys2D, a general
purpose Navier-Stokes solver in 2-D based on the Reynolds-averaged incompress-
ible flow equations in primitive variables (u, v, p). The code has been developed
by Michelsen and Sgrensen [13, 14, 19]. The system of equations is solved with the
SIMPLE method for steady-state calculations. Solution of the transport equations
is obtained using a second-order upwind scheme.

The steady-state calculations are accelerated by the use of local time stepping
and a three-level grid sequence.

The turbulence model employed is the two-equation k—w Shear Stress Transport
(SST) turbulence model by Menter [11], who obtained good predictions for flows
with adverse pressure gradients. The k — w SST turbulence model is therefore
appropriate for airfoil flows.

Risg-R—987(EN) 5




2.2 Transition Prediction Models

In the present study, two different transition prediction models are used. These
are the empirical one-step model of Michel [12] and the semi-empirical e® model
based on linear stability in the form of a database [20]. The Michel criterion is a
simple model based on experimental data and correlates local values of momentum
thickness with position of the transition point. It simply states that the transition
onset location takes place where

Reg = 2.9Re2* (1)

where Re, is the Reynolds number based on the distance measured from the
stagnation point.

The second model is based on linear stability theory and is referred to as the
e™ model by Smith [18] and van Ingen [21]. The version used here is that of Stock
and Degenhart [20], based on a simplified interpolation method.

Linear stability theory suggests that the unperturbed steady and parallel mean
flow is superimposed with a time-dependent sinusoidal perturbation - the Tollmien-
Schlichting waves. This results in the well known Orr-Sommerfeld equation, which
is a 4th order linear eigenvalue problem in ¢, where ¢ is the amplitude of the per-
turbation. This equation determines whether spatially developing waves will be
stable or unstable due to the amplification factor a;, which is the imaginary part
of the spatial wave number. In this way the point of instability can be determined.
The e™ model predicts turbulence when the amplitude of the most unstable fre-
quency exceeds the initial unstable amplitude by a factor e®. The n factor is
empirically determined from several experimental data, and can vary from one
flow situation to another. It is usually set at a value around 8-10. In the present
work it is set at 9. For further details about the ¢” model see [3], [18], and [21].

Stock and Degenhart suggest building up a database within which instabil-
ity data can be evaluated. The approach is based on the idea that a discrete
set of results to the Orr-Sommerfeld equation is representative for all possible
laminar velocity profiles and for all relevant disturbance frequencies. As input
the Orr-Sommerfeld equation the Falkner-Skan velocity profiles and their second
derivatives are used. The instability data are stored in a database from which the
relevant information can be extracted by interpolation.

In figure 1 the process of determining the n factor is depicted.

In the top graph of figure 1 the neutral curve obtained from the Orr-Sommerfeld
equation is shown, (a; = 0). F is the reduced frequency, Res. is the Reynolds
number based on displacement thickness, and «; is the amplification factor of the
perturbations in spatial stability theory. Sweeping through the neutral curve for
different values of F', F;, The N factor can be determined for each frequency using

Rege
N(Fl, Reao)i = - / a,-dRego, (2)

Re‘;.

resulting in a number of N curves as the one depicted in the lower graph of
figure 1. The envelope of all N curves results in a 7,4, curve, which can be used
to determine the point of transition i.e. where the n,,,; curve reaches the value
of 9.

Having computed a velocity field using the N-S solver, it is possible to deter-
mine laminar boundary layer integral parameters such as displacement thickness,
§*, momentum thickness, €, and kinetic energy thickness, §3. These values are used
as input to the database and the stability characteristics are evaluated by interpo-
lation. The database is originally implemented by Petersen [16] using Falkner-Skan
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max

F x Re,.

;<0
{Unstable)

Ri =0
a: >0
{Scable)

Figure 1. Diagrammatic sketch of the neutral curve, the amplification factor a;,
and the integrated N factor for a boundary layer with a constant value of shape
factor H. From [20]

velocity profiles and is extended by Olesen [15] to include separated velocity pro-
files, based on the theory of Dini et al. [6], who uses velocity profiles described by
hyperbolic tangent functions.

2.3 Transition Region

The extension of the transition region is obtained by an empirical model, suggested
by Chen and Thyson [5], which is a conceptually simple model that scales the eddy
viscosity by a intermittency function varying from zero in the laminar region and
progressively increases in the transitional region until it reaches unity in the fully
turbulent region. The intermittency function, ¥, is given by

- u? ~1.34 ? dz
Yer(2£) =1 — exp [(—ﬁ(}'—m:) Regpn 7 (x — .'ctr)/x id (3)

tr
The modeling constant, G, was originally suggested to be 1200 for high Reynolds
number flows. This has been modified by Cebeci, [4], for low Reynolds number
flows, in order to take into account separation.

Gy, = 213[log(Re,,,) — 4.732]/3 4)

The range where this modification is valid is Re, = 2.4 x 10° to 2 x 10°.

Risg-R-987(EN) 7




2.4 Integral Boundary Layer Formulation

The input parameters for the database are the laminar boundary layer param-
eters, 4*,0, and &3 together with the free-stream velocity u. and the Reynolds
number based on chord length, Re.. This results in some difficulties. Firstly, the
determination of boundary layer parameters using the N-S solver is not accurate,
since the boundary layer thickness is not well defined. Secondly, the turbulence
starting from the transition point influences the integral parameters upstream.
This results in boundary layer parameters differing from their fully laminar value
resulting in erroneous interpolation in the database. An alternative procedure is
thus required for calculating these parameters.

The procedure chosen in the present study is a two equation integral model
based on dissipation closure. The two equations are the von Karman integral
relation given by:

dé ¢ du, _ Cy

Erer = (5)

where 6 is the momentum thickness, H is the shape factor, u. is the velocity at the
boundary layer edge, € is the streamwise coordinate, and C; is the skin friction

coefficient. The second equation is a combination of equation 5 and the kinetic
energy thickness equation, (see [17]), and is given by:

dH* 0 due
=t (1= H)—- 7

where H* is the kinetic energy shape parameter and Cp is the dissipation coeffi-
cient. For laminar flow, the two ordinary first order differential equations can be
solved with the following closure relationships for #*, Cy, and Cp respectively.

: =20p - B, ©)

B =1515+0.076450 H<4
H* =1515+0.0402" H>4 (7)
c (7.4— H)?
Reg = = ~0.067 + 0.01077rF—5-, H<74 ®)
Reg 25? = 0.207 + 0.00205(4 — H)55, H<4
2C _4)2
Reg Hf’ = 0.207 = 0.003 risrc=a775- H>4 )

This model has successfully been used by Drela and Giles and for further details
is referred to [7].

To solve the two equations, 5 and 6, a third relation is necessary. Using the
Bernoulli equation along a streamline to determine u. and assuming no pres-
sure variation across the boundary layer (pwan = Pedge), the two equations can
be solved directly by a Newton-Raphson method. When approaching separation,
the direct procedure becomes ill-conditioned because a single edge velocity cor-
responds to two different skin friction factors. By computing Cy using the N-S
solver, H can be computed using the closure relation 8, and the two equations can
be solved inversely with # and wu. as variables. Close to stagnation point, where
the skin friction varies dramatically and a small variation in skin friction factor
causes a large variation in edge velocity, the inverse procedure fails to converge.

8 Risg-R-987(EN)




2.5 Solution Algorithm

As mentioned above the integral boundary layer equations are solved using a
Newton-Raphson method for nonlinear systems of equations, due to the strong
coupling. If the system of equations is given by

F(x)=0 (10)

where F denotes the vector of functions and x denote the vector of independent
variables, the solution of equation 10 is given by

Xnew = Xold + 0% (11)

dx are the corrections to the old solution obtained from the following matrix
equation

Jéx = —F. (12)
Here J is the Jacobian matrix given by

_dF;
J,'j = 5:{;; (13)

Direct solution procedure

If free stream velocity, u., is determined by the N-S solver, the two remaining
parameters, H and & can be computed solving equations 5 and 6 directly. This
results in the following discretized equations.

0 — 01 ( Hz'+Hi-1) O; +0i1 Ue, —Ue,, Cf
= 2l fay : — — —=i_1 =0
S & — Ein1 2 Ue; + Ue;_, & — 61’—1 2 l 2
0; +0;_y dH* H; — H; x ( Hi+Hi—1) O + 01 U, — Ue;_4
= + H ’i—l 1 - :
f2 2 dH & —&1 = 2 Ue, + Ue,_y, & —&i1
« O _
-2Cpli_y +H li-§—2‘|i—.§ =0 (14)
H*, %, and 2Cp are given by relationships 7, 8, and 9 respectively.
The chain rule is used for
dH* dH*dH
d¢ ~ dH d¢’ (15)
where
dH* 16
)
dH* 16
)
For the direct solution procedure the matrix equation 12 is given by
d df d dj §8i-1
W% Fl'l-_l 3‘% EI‘% SHi1 _ _ S (17)
df> df> daf2 dfz 56: - f2
d6;_; dH,_, d8; dH; 6}.;

Since the parameters at the previous boundary layer station is already computed
resulting in 86;_; and dH;—; = 0, equation 17 is reduced to the following very
simple system of equations.

Risg-R-987(EN) 9




where

dn
dé;

df
dH;

dfs
db;

and

dh
dH;

G + 0,1 [ dH*
2 dH

df, dfy
(5 %) (8)--(1)
d&i dH?,- dH; f2
_ 1 +<2+H,-+H,-_1) ey =W, 1 dY
& — & 2 Ue; + Ue;_, & —E&im1 dO;
l O; +0;_1 ue, — Ue; g _ d%f'
2Ue; + Uy, &—&iy dH;’
VdH* Hy— Hiy ., ( H,-+H,-_1> e, — Ue,, 1
— i A +H’ i-— 1 _ 1 1
2 dH & &y T k-4 SR R v
dcp . 4%
~ a5, THli-x g

—0.076-16 -2

1 H;—H;_,
(Het=t)3 & — G

G + i1 Ue, — Ue;_, —El +dH* 1 H;+H;4

Ugy + ey, & —Ei1 2 =37 4H 2
_d2Cp  dH"Cy | 4%t

dH; ' dH 2 =3 dH;

This system of equations is a simple 2 x 2 system and is solved using Cramers

rule.

Inverse solution procedure

As the flow approaches separation the integral boundary layer equations are solved
inversely with § and u. as the independent variables. The skin friction, Cy can
be determined using the N-S solver and from relationship 8, the shape factor
H is computed. The discretized equations, 14, are equal to those for the direct
procedure. For the inverse solution procedure the matrix equation 12 is given by

il

dfy
EIQT due, < 50‘ ) = - ( fl ) (19)
%9&; E% due f2
where
df 1 ( Hi+Hi-1> Uey — Uy, 1
L : ,
dé; &—&a 2 Ue; + Ue,_, & — Ei1
df1 ( H; + Hi—l) Oc; + 0e,_, 2e;_,
= 2+ s
due; 2 & —&ic1 (Ue; + ey )?
-dﬁ o Uey T Ue;_y 1 H*I (1_H5+H,'_1 ldH* H;—H; 4 _ d2Cp
db; e, e, & — i1 -3 2 2dH & —&i
and
dfa B; +0;_1 H| 1 H;+Hi4 2ue,_, _ d2Cp
du., & —&_, % 2 (e, + 12, )?  dus,

The derivatives of <L and 2Cp are rather lengthy but straightforward.
2 g g

10
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The solution algorithm is as follows: Starting at the stagnation point and march-
ing in &-direction, the direct Newton-Raphson procedure is applied. Before sepa-
ration (Hsep = 3.9), when the shape factor H reaches a value of 3.0, the inverse
procedure is applied. This procedure determines integral parameters, avoiding the
use of velocity profiles and definition of u.. Furthermore, the values can be deter-
mined using only a few iterations due to the Newton-Raphson procedure.

The laminar closure on C} results in a lower limit of C, which corresponds to
H = 7.4, where the flow is well separated. In the present study it is assumed that
if H reaches 7.4, the flow should be considered as becoming turbulent. This is a
reasonable assumption, supported by the fact that the N-factor in these situations
approaches the empirical value, 9. The computation is stopped when either the n
factor reaches the value of 9 or the shape factor reaches the value of 7.4.

3 Test Cases

In order to validate the transition models, flow over a flat plate is investigated,
since this is a relatively simple transitional flow, and experimental data are avail-
able.

The airfoils tested are chosen because good experimental data are available in-
cluding transitional information. The thin symmetric NACA0012 airfoil, where
curvature effects are relatively small) is chosen. Experimental data are available
from Gregory et al. [9] and Abbott et al. [1]. To also check the models, for more
moderate Reynolds number and where larger curvature effects are present, the
19 % thick laminar Wortmann airfoil FX66-S-196 V1 from Stuttgarter Profilkat-
alog [2}, is chosen.

The computations are carried out assuming steady state conditions in order to
take advantage of the local time stepping procedure.

3.1 Flat Plate

The simplest transitional flow is the flow over a flat plate. Almost no pressure
gradient is present and a large amount of experimental data exist. The critical
Reynolds number, which is defined as where the flow turns from laminar to tur-
bulent is a function of the turbulence intensity. But for the present computation
the turbulence intensity is in practice negligible and the critical Reynolds number
is given by Re., = 2.8 x 10° and the Reynolds number where the flow has become
fully turbulent is Re; = 3.9 x 10° [17].

The flat plate is modelled as a plate with a finite thickness. The leading edge is
describes as a parabola and the trailing edge is made by collapsing the two last
points into one. The thickness of the plate is 0.002 chord length and the parabola
is extended 10 thicknesses from the leading edge. The grid around the flat plate is
an o-mesh with 288 x 48 gridpoints in streamwise an normal direction respectively.

Figure 2 shows the shape factor, H and the growth of the n factor, np,q, as one
proceeds downstream. The transition takes place where the n factor reaches the
value 9. The resulting transition point corresponds to a critical Reynolds number,
Recr = 1.8 x 10°.

Figure 3 shows the intermittency function determined by equation 4. It is seen
that the flow is considered fully turbulent at = 0.9 corresponding to Re; = 2.7 x
108.

Figure 4 shows the skin friction factor, C; for fully turbulent flow as well as
for transitional flow using both €™ and Michel models. It is observed that using

Risg-R-987(EN) 11




10 T T T T

, Shapefactor ——
i Nmax 777
g | ; Comp. Xy
6 1
» /
o /
& ;
S
4 F 8
\
1 4 /
2+ y .
0 Pl 1 1 El L
0 0.2 04 0.6 0.8 1
x/c

Figure 2. Flow over a flat plate. Shape factor, H, npqe,, and transition point loca-
tion, z;,, Re = 3 x 10°

T T T T T T L T T

14 + : Intermittency func. ——

0.8 r T

0.6 T

04 | -

02 r .

O 1 1 1 i ] 4 ] L

0 01 02 03 04 05 06 07 08 09 1
x/c

Figure 3. Flow over a flat plate. Intermittency function, v. Re., = 1.8 x 108,
Re; = 2.7 x 108

the Michel criterion, transition is predicted slightly upstream corresponding to
Resr = 1.5 x 10% and Re; = 2.5 x 108,

12 Risg-R-987(EN)




0.01 T T T ]
Fully turbulent comp. ——
0.009 Transitional comp., e - i
Transitional comp., Michel -
0.008 | Comp. Xy, €” ~o— ]
Comp. X, Michel -+
0.007 ( omp. X, Miche |
0.006 .
G 0005
0.004
0.003
0.002
0.001
O I 1 V] L
04 0.6 0.8 1

Figure 4. Flow over a flat plate. Comparison between Fully turbulent and transi-
tional flow using both €® and Michel model. Skin friction and, Cy, transition point

location, 2, Re = 3 x 108
3.2 NACAO0012 Airfoil
For each airfoil a grid refinement study is carried out resulting in a 288 x 96 grid

for both airfoils. The grid spacing to the first gridline is y* =~ 2.

i

Shapefactor —

Omax 77

Comp. Xy, upper side
Comp. X, lower side -

i
’

10 .'

12 |

2]
T

Figure 5. Shape factor, H, nyq., and transition point location, .., for both upper
and lower side NACA0012, o = 3°, Re = 3 x 10°

Figure 5 shows the shape factor, H and the growth of the n factor on both upper
and lower side of the airfoil. Compared to the flat plate case, figure 2, the shape
13

Risg~R—987(EN)




factor increases due to the adverse pressure gradient. This causes the n factor
to grow faster on the upper side where pressure gradient is larger. The onset of
transition is where the n factor reaches the value 9.

8 | | | B ?ull; turbullent C(;mp. T
! o Transitional Comp..e“ ------- T
6 Comp. X, upper side o
5t
4

J 3
27 N
Lt -
0
-1k \ |
2 : : . , , . . L

0 0.01 002 003 0.04 0.05 0.06 007 008 0.09 0.1
x/c .

Figure 6. Pressure distribution, Cp, for fully turbulent flow compared with tran-
sitional flow and computed transition point location, x,., NACA0012, o = 12°,
Re =3 x 108

The pressure distribution for & = 3 x 10° shows no difference between fully
turbulent and transitional computation. But, as seen from figure 6 the transition
point has a small effect on the pressure distribution at o = 12°. This is caused by
the leading edge separation bubble, where the pressure gradient approaches zero
in separated regions.

The skin friction shown in figures 7 and 8 shows a clear difference between
fully turbulent and transitional computation. This underlines the importance of
transition point prediction when computing drag characteristics. Looking at the
skin friction for o = 12°, figure 8, it is seen that the linear stability model pre-
dicts transition well into the laminar separation bubble, which corresponds well
with experimental data, where the separation occurs in the laminar region and
reattaches in the turbulent region.

Figures 9 and 10 shows the lift and drag curves respectively, computed with fully
turbulent flow and using the two different transition prediction models compared
with experimental data. The lift curve shows hardly any difference between the
fully turbulent and the transitional computations, whereas the drag curves shows
much better predictions using transitional computations. This again underlines
the effect of transition point prediction, when considering drag characteristics.
There is no significant difference between the two transition models.

Table 1 shows the computed transition point locations using both the Michel
criterion and the ¢® model compared with experimental data.

14 Riss-R-987(EN)




0-012 T T 1 ] 1 T T T T

Fully turbulent comp. ——
0.01 Transitional comp. e® - -

Comp. Xy, upper side o
0.008 Comp. X, lower side ~+— |
0.006 fi |
§ 0004 Y T e -
0.002 | S Joo=y ~

0 H .
-0.002 y
_0.004 1 L] i 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1
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Figure 7. Skin friction, Cy, for fully turbulent flow compared with transitional flow
and computed transition point location, x¢y, NACA0012, @ = 3°, Re =3 x 10° ,

0.08 T T T T T T T T T

Fully turbulent comp. ——
Transitional comp., e - |
Comp. X¢p> Upper side -o---

0.06

0.04
0.02 F
Sy
@)
0
0.02 ;
0.04 | 1

_0-06 — ] ] H 1 'l A I B L
0 0.01 002 003 0.04 0.05 0.06 007 008 0.09 0.1
x/c

Figure 8. Skin friction, Cy, for fully turbulent flow compared with transitional flow
and computed transition point location, x;., NACA0012, o = 12°, Re = 3 x 10°
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. Fully turbulent comp. ——
Transitional comp. e™ -~
2r Transitional comp. Michel - 4
Exp.data, [9] <
Exp.data 1] +
1.5 | N B |
&)
*
l— -
.
e
e
05 ¢ ]
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0 2 4 6 8§ 10 12 14 16 18
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Figure 9. Lift curve for fully turbulent flow compared with transitional flow and
experimental data, [9], NACA0012, Re =3 x 10°

0.06 -

Fully turbulent comp. ——
Transitional comp., €” -
0.05 ¥ Transitional comp., Michel - y
Exp.data[9] -~

0.04 | |
& 0.03 i
0.02 i
0.01 |
0 : . : ! L - . ,
0 2 4 6 8 10 12 14 16 18
o

Figure 10. Drag curve for fully turbulent flow compared with transitional flow and
experimental data, [9] NACA0012, Re = 3 x 10°
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Table 1. Transition point locations for the NACA0012 airfoil, Re = 3 x 10°

[¢4 Ltruy Ttriow
exp em Michel | exp en Michel

0} 0.45 0.44 043 1045 0.44 0.43
3] 020 0.19 0.21 | 0.66 0.68 0.72
5 | 0.085 0.060 0.13 }0.79 0.84 0.88
8 10.024 0.025 0.070 | 092 0.99 1.00
10 | 0.013 0.014 0.040 | 1.00 1.00 1.00
12 - 0.012 0.014 [ 1.00 1.00 1.00
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3.3 FX66-5-196 V1 Airfoil

The previous test case are computed at a relatively high Reynolds number, where
no large difference is observed between the to transition models. At more mod-
erate Reynolds numbers where transitional effects are more pronounced a larger
difference would be expected.

The lift and drag curves of the 19 % thick FX 66-5-196 V1 airfoil are shown in
figures 11 and 12.

T T " T i T T T

2t Fully turbulent comp. ——

Transitional comp. e® -~

Transitional comp. Michel -
Exp. data, [2] -

Figure 11. Lift curve for fully turbulent flow compared with transitional flow and
experimental data, [2], FX 66-5-196 V1, Re = 1.5 x 10°

The fully turbulent computation is surely not acceptable; using the transition
prediction models gives better results. Both transition models predict the maxi-
mum lift well, but at light stall the €™ model is superior. At high angles of attack
the transition point on the suction side approaches the leading edge, i.e. the lift ap-
proaches the fully turbulent value. The relatively poor prediction of lift at oo = 14°
is a consequence of a transition point moving up- and downstream very close to
the leading edge. This results in a varying lift with an average value lower than
if the transition point was stable. At o = 16° the flow is fully turbulent on the
suction side.

From the pressure distribution in figure 13, for « = 8°, it is seen that the
transition point affects C, globally and not locally as seen for the NACA0012
airfoil. The reason for this is that the Wortmann airfoil is a laminar airfoil, where
transition takes place further downstream. As seen on figures 13 and 14, the
transition on the suction side takes place at z;, = 0.45 which causes a large part
of the flow around the airfoil being laminar, and therefor a large deviation from
fully turbulent flow is obtained. The skin friction distribution in figure 14 shows a
small separation where transition takes place. The large effect of transition causes
the fully turbulent flow to under predict lift, figure 11 and over predict drag,
figure 12.

The computed transition points are shown in table 2. At lower angles of attack
no large difference is observed on the upper side. But as the angle of attack
increases the e” model gives slightly better results. On the lower side the Michel
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Figure 12. Drag curve for fully turbulent flow compared with transitional flow and
experimental data, [2], FX 66-5-196 V1, Re = 1.5 x 10°
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Figure 18. Pressure distribution, Cp, for fully turbulent flow compared with transi-
tional flow and computed transition point location, z;,, FX 66-5-196 V1, o = 8°,
Re=15x 108

model shows an unstable behaviour, whereas the e” model is more stable and gives
better predictions.
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Figure 14. Skin friction, Cy for fully turbulent flow compared with transitional
flow and computed transition point location, xi,, FX 66-5-196 V1, « = 8°, Re =
1.5 x 108

Table 2. Transition point locations for the FX 66-S-196 V1 airfoil, Re = 1.5 x 10°
«@ Ltrup Tiriow

exp e" Michel | exp en Michel

0 | 053 048 0.50 | 0.50 0.45 0.50

4 | 050 0.48 048 | 0.54 051 0.69+0.17

8

9

0.46 0.45 041 | 060 056 0.82*0.18

0.45 0.39 0.39 |[0.62 0.59 0.90
10 |1 0.27 0.32 0.35 1066 061 1.00
11 - 0.27 0.30 - 0.70 1.00
121 - 0.20 0.25 - 0.75 1.00

4 Conclusion

In the present study a simplified version of the e” transition model was cou-
pled with a Navier-Stokes solver applied in low Reynolds number airfoil flows.
A two-equation integral laminar boundary layer formulation was solved using a
direct/inverse formulation in order to determine integral boundary layer parame-
ters. The inverse procedure was chosen first of all to get integral parameters well
into the separated region, but also to overcome the difficulty of defining the veloc-
ity at the edge of the boundary layer, u.. Comparisons with the simple empirical
Michel criterion and with experimentally determined transition point locations
have been made for flow over a flat plate and for flow around airfoils. For flat
plate flow good agreement with literature was achieved. The ¢ model based on
linear stability theory has the strength of taking streamwise pressure gradients
into account, which occurs in airfoil flows. The results discussed in the present
study indicate that proper transition point prediction is crucial, especially when
considering the drag characteristics. The computations of the NACAQ012 airfoil
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at high Reynolds number show a minor effect on the lift prediction while the
drag characteristics are more influenced. The computations of the FX 66-S-196
V1 airfoil at moderate Reynolds number clearly show the importance of transi-
tion prediction for both lift and drag characteristics. At low angles of attack no
large difference were observed between the two transition models, but for higher
angles of attack the simplified version of the e” model showed better agreement
with experimental data. The Reynolds numbers under investigation is relatively
high in order to see a large influence on transition. A future investigation will be
addressed to airfoils at lower Reynolds numbers where larger transitional effects
are present. The computational time using the simplified version of the e™ model
is not larger than using the Michel criterion. This model is therefore superior to
the empirical model and therefore preferable.
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The prediction of the location of transition is important for low Reynolds number
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using a two-equation integral formulation, which are solved using a direct/inverse
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transitional flow over a flat plate and around airfoils at low and moderate Reynolds
numbers, at fixed angles of attack, varying from attached flow through light stall.
At high Reynolds numbers no large difference is observed between the two transi-
tion models. But for lower Reynolds numbers, the €™ method shows better agree-
ment with experiments. Furthermore it has shown to be more stable. It is therefore
preferable to the empirical transition model.
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