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Prediction of Leakage from an Axial Piston 
Pump Slipper with Circular Dimples Using Deep 
Neural Networks
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Abstract 

Oil leakage between the slipper and swash plate of an axial piston pump has a significant effect on the efficiency of 
the pump. Therefore, it is extremely important that any leakage can be predicted. This study investigates the leakage, 
oil film thickness, and pocket pressure values of a slipper with circular dimples under different working conditions. 
The results reveal that flat slippers suffer less leakage than those with textured surfaces. Also, a deep learning-based 
framework is proposed for modeling the slipper behavior. This framework is a long short-term memory-based deep 
neural network, which has been extremely successful in predicting time series. The model is compared with four 
conventional machine learning methods. In addition, statistical analyses and comparisons confirm the superiority of 
the proposed model.
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1 Introduction
Axial piston pumps are frequently used in hydraulic 

applications which require high pressures. In the axial 

piston pump shown in Figure 1, one of the most impor-

tant locations for metal–metal contact is between the 

slipper and the swash plate.

�is friction couple is lubricated hydrodynamically/

hydrostatically depending on the piston geometry and 

the slipper pocket ratio, and the forces on the piston 

are balanced on this surface. �e texture of the surface, 

however, directly affects the performance of the tribo-

logical surfaces which function through lubrication. Nev-

ertheless, obtaining the optimum surface texture design 

depends heavily on the geometry and the working con-

ditions of the surfaces. Additionally, oil can be retained 

on these surfaces, and the resulting contamination can be 

maintained in the pits on the surface, thus extending the 

life of the mechanical parts [1].

A multitude of studies on the surface of hydrodynamic 

and hydrostatic bearings have been conducted over the 

past 30 years, including analytical, experimental, numeri-

cal, and artificial intelligence investigations. For example, 

Koç et al. [2, 3] proposed that the slipper should have a 

small convex surface to enable successful performance, 

whereas Bergada et  al. [4, 5] conducted an analytical 

study to understand the lifting property and leakage of 

a slipper containing a number of grooves. �ese grooves 

on the slipper change the pressure distribution, leak-

age, and lifting force acting on the slipper. Etsion et  al. 

[6] considered a textured surface for the parallel thrust 

bearing, and observed that the friction coefficient was 

lower in partially textured bearings. Sharma et  al. [7] 

performed numerical simulations for fully and partially 

textured thrust pad bearings with different lubricants, 

and reported that micro-surface textures cause slight 

changes in load-bearing capacity, but made a significant 

difference in frictional power dissipation. Ye et  al. [8] 

numerically examined the load-carrying capacity under 

different operating conditions to investigate the effect 

of elasto-hydrodynamic lubrication caused by the pres-

sure distribution of a textured slipper. �ey observed that 
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the maximum stiffness coefficient and optimum oil film 

thickness could be determined by operating parameters. 

Also, as loading pressure and rotational speed increases, 

the collective dimple effect of a textured slipper increase 

and creates a thicker oil film thickness. As a result, it 

would result in a higher leakage rate.

Although analytical and numerical solutions enhance 

our understanding of the physical phenomena occur-

ring between the slipper and swash plate, they are 

based on certain assumptions. When the inertial 

effects of solids and fluids, thermal factors, and vibra-

tion are considered, mathematical solutions become 

more difficult. In such cases, machine learning methods 

(MLMs) offer the ability to model non-linear systems 

without any assumptions. �e use of a neural net-

work (NN) for axial piston pumps was first realized by 

Kakaub et al. [9]. In their study, the data obtained from 

an experimental setup was used to reduce the power 

loss under high pressures. �ey demonstrated that an 

NN trained using Levenberg–Marquardt optimiza-

tion was able to predict the steady-state and dynamic 

behavior of the pump accurately. In another study, an 

NN was employed to predict the pressure distribu-

tion and load-bearing capacity [10]. �e results dem-

onstrated that NNs are more effective than theoretical 

models for determining the pressure distribution and 

load-bearing capacity. Canbulut et al. [11] reported an 

experimental study of the load bearing capacity, leak-

age, friction moment, and pump power properties of 

the slipper under different working conditions, and 

developed an NN to predict the results. �is NN exhib-

ited superior performance at predicting the static and 

dynamic parameters of the bearing system. In another 

study by Canbulut et al. [12], the effects of the surface 

roughness of the slippers on lubrication were studied 

experimentally. �ey also observed that surface rough-

ness has important effects on leakage. In addition, they 

designed the behavior of this slipper using an NN, and 

argued that their model could be used in real-time 

applications. Another study investigated the power 

dissipation of conical and flat-surfaced slippers and 

observed that the slippers with flat surfaces performed 

better. Moreover, the power dissipation was modeled 

using an NN, which was found to adapt very well to 

experimental data [13]. Canbulut et al. [14] also studied 

the frictional power loss of the slipper theoretically and 

experimentally. �ey observed that the study param-

eters and surface geometry contribute to the frictional 

power loss, and formed an NN model for frictional 

power loss with high predictive capabilities. Ozmen 

et  al. [15] modeled the pressure distribution and leak-

age of a flat slipper working hydrostatic/hydrodynami-

cally using Multi-Gene Genetic Programming (MGGP) 

and NN, MLMs. �e results showed that both MLMs 

had high predictive performance in terms of pressure 

distributions and leakage for a flat slipper. However, 

analytical equations showed lower performance than 

MLMs because of neglected of flow inertia and sys-

tem noise. Following an experimental analysis of the 

hydrodynamic and general efficiency variations of gear 

pumps, vane pumps, and axial pumps, an NN predic-

tion model was developed to act as a predictor in the 

applications of such systems [16].

�e objective of this study is to experimentally research 

the leakage, oil film thickness, and pocket pressure of 

different slipper surface geometries under various work-

ing conditions. Although many NNs have been used to 

predict the complex relationship between the slipper 

and swash plate, they typically require a high number 

of external parameters to be entered, their performance 

is directly dependent on the optimization method, and 

they are extremely susceptible to noisy data. To over-

come these disadvantages, we investigate the application 

of a long short-term memory (LSTM)-based deep neu-

ral network (DNN), which offers superior performance 

in predicting time series. Compared with conventional 

MLMs, DNNs can achieve superior classification and 

modeling performance [17]. To the best of our knowl-

edge, DNNs have not yet been used for this purpose. �e 

results derived in this study have been compared with 

those from conventional MLMs such as linear regression 

(LR), decision tree (DT), support vector machine (SVM), 

and NN. �e proposed model is statistically proven to be 

superior to all of these methods.

�is article is structured as follows. In Section  2, the 

working principle, experimental setup, and experimen-

tal method of axial piston pumps are briefly summa-

rized. Next, in Section  3, the DNN prediction model is 

Figure 1 Axial piston pump configuration
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explained. Section  4 presents and discusses the experi-

mental results, and Section 5 gives our conclusions and 

ideas for future work.

2  Theorical Background and Experimental Setup
In the axial piston pump shown in Figure  1, when the 

cylindrical block turns, the piston moves back and forth 

through the swash plate, enabling oil to be pumped under 

high pressures. Some of the oil is used to balance the 

forces on the piston and to prevent metal–metal contact 

between the slipper and swash plate by means of the ball 

joint and the orifice. �is friction couple directly impacts 

the pump performance [18]. Assuming that the bearing 

pocket is sufficiently large for the oil film thickness on 

slipper land, the pressure distribution for flat slippers can 

be theoretically derived from the Reynolds lubrication 

equation in cylindrical coordinates:

when the slipper pocket pressure, geometric dimensions, 

dynamic viscosity of oil, and fixed oil thickness are con-

sidered, the theoretical leakage can be derived as [11]:

A multitude of experimental setups has been prepared 

to study the different parameters between the slipper and 

swash plate, as they have a direct effect on pump per-

formance [18]. In the present study, the experimental 

setup in Figure 2a is used to investigate the slipper leak-

age, pocket pressure, and oil film thickness under various 

working conditions.

Figure 2b shows the disassembly of the main test unit. 

�e hydraulic loading cylinder is designed in such a way 

as to load three slippers equally. �e swash plate, made 

of steel, has an axial bearing and its surface has been 

sanded. �e swash plate is driven by a 5 kW servo motor 

with a working range of 0–2300 r/min. �e swash plate 

has a mean surface roughness of 1.33 μm. �e slipper in 

Figure 3 is made of brass, and its dimensions are listed in 

Table 1. 

�e average oil film thickness and average runout were 

measured on one of the slippers using Mitutoyo’s Abso-

lute Digimatic Indicator with Output Comparator, which 

has a sensitivity of 1 µm (Figure 3). On the other slipper, 

the pressures were measured by KellerPA-21-SR 0–6 

MPa piezoresistive pressure sensors placed on the meas-

uring holes, with one in the slipper pocket and the others 

located 1.5 mm inward from the outer radius at an angle 

(1)P = Pr

ln

(

r

ro

)

ln

(

ri
ro

) ,

(2)Q =

Pr · π · h3

6 · η · ln

(

ro
ri

) .

of 120° and a hole diameter of 0.6 mm. In addition, the 

supply pressure was measured with a pressure sensor. 

�e temperatures of the oil on the slipper and in the tank 

were measured with a thermocouple. To measure the 

leakage, a flow meter was mounted on the oil inlet sec-

tion, and the same leakage values were recorded with a 

measuring cylinder. A fixture was prepared for the slip-

per, and circular dimples were formed on the surface of 

the slipper using a face-milling machining production 

method. In these experiments, the surface of the same 

slipper was milled and used again. �us, any differences 

resulting from manufacturing have been eliminated. Data 

from the experimental setup were collected a 20-channel 

data logger adjusted to give one datum per second (AHL-

BORN, Figure 2a).

For the experiments, circular dimples (Type 1: 1 mm 

in diameter and depth; Type 2: 1 mm in diameter and 

Figure 2 a Experimental setup and b schematic disassembly of the 
main test unit
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2  mm in depth) were engraved in the slipper and the 

results were compared with those from a flat slipper. 

�e circular dimples were formed close to the slipper 

pocket, so that their effect could be better observed 

[19]. In the experiments, the temperature of the Shell 

Tellus 68 hydraulic fluid was kept constant at 25  °C 

(η = 0, 12278 N·s/m2) by means of an air-cooled system. 

In addition, each experiment was repeated three times. 

�e free up and down movement of the slipper when 

pressure oil is administered to the system arranges oil 

film thickness. Experiments were performed under sup-

ply pressures of 4, 5, and 6 MPa and at turning speeds 

of 250, 500, 750, 1000, and 1250 r/min. �e mean of 

these data (45 data) were used for experimental com-

parisons, and the full 7215 data points recorded by the 

data logger were used to form the prediction models, 

thus satisfying the high dimensionality required by 

DNNs [17]. Note that the second row of circular dim-

ples made in the slippers lifted the slippers excessively, 

so that the supply pressure could not exceed 5.5 MPa. 

For this reason, the location and dimensions of the cir-

cular dimples in the slipper have been restricted with 

the parameters mentioned above.

3  Deep Neural Network Model
Deep learning is very useful in many machine learn-

ing tasks, including speech, image, and signal analysis 

as well as numerous classification problems [17, 20–23]. 

�ere are a number of DNN architectures, including 

convolutional neural networks, stacked autoencoders, 

and Boltzmann machines. However, there have been 

limited attempts to use DNNs for regression problems. 

In this paper, we present a framework for the prediction 

of leakage, pocket pressure, and oil film thickness from 

the experimental values obtained from the experimental 

setup described in Section 2.

�e analytical equations for the interaction between 

the slippers/swashplate are obtained under the specific 

assumptions of the Reynolds lubrication equations in 

cylindrical coordinates. However, in reality, solid and 

flow inertia, vibration, noise, and friction between parts 

all have an effect on the flow. For this reason, we pro-

pose a new technique for the prediction of these param-

eter values using MLMs instead of analytical approaches. 

�e proposed framework is based on LSTM, which is an 

improved version of the recurrent neural network (RNN).

3.1  Recurrent Neural Network

RNNs are DNNs consisting of several basic layers. Both 

past and current information are utilized by a RNN [24] 

during the training stage, unlike traditional Feed-For-

ward Neural Networks (FFNNs). RNNs have three layers, 

namely, input, hidden, and output layers. One of the most 

Figure 3 a Slipper used in the current study and b geometric 
definitions

Table 1 Dimensions of  slipper and  swash plate used 

in experiments

Units of lengths are mm

Units of angle are degrees

*0 shows �at slipper

Symbol Parameter Value

ri Inner radius 15

ro Outer radius 30

R Rotation radius 45

Rs Swash plate radius 86

d Diameter of the capillary tube 0.6

lc Length of the capillary tube 20

hd Length of the circular dimple 0-1-2*

ld Diameter of the circular dimple 1

r Radius of the circular dimple center 16.5

Ds Piston diameter 30

α Angle between two circular dimple center 10
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important issues encountered in the training of RNNs is 

the gradient vanishing problem, in which the gradient of 

the network becomes close to zero during the back-prop-

agation algorithm.

3.2  LSTM Neural Network

LSTM is an improved RNN that overcomes the gradi-

ent vanishing problem suffered by RNNs [25]. However, 

this improvement increases the complexity of the net-

work. Although the structure of LSTM is similar to that 

of RNNs, new control parameters including input, out-

put, and forget gates are added to the LSTM network to 

control the flow of information between the input time 

series. �e cell structure of the LSTM is shown in Fig-

ure 4, where x〈T〉 is the D-dimensional input vector, h〈T〉 

is the output of the LSTM cell, and c〈T〉 defines the cell 

state.

�e LSTM cell can take one of two cell states. �e first 

is the hidden state, also known as the output state. �e 

second is the cell state denoted by c. In the hidden state, 

the output value of the network is obtained from the 

input series using the cell state, which controls the infor-

mation flow from past series. �ere are four important 

parts inside the LSTM cell: the input gate (i), forget gate 

(f ), cell candidate (g), and output gate (o). �ese gates are 

similar to those found in a regular FFNN [25, 26].

1. �e input gate, which is used to update the cell state, 

is defined as follows: 

where i〈T〉 is the output of the input gate, and Wi, Ri, bi 

are the input weights, recurrent weights, and the bias of 

the input gate, respectively.

2. �e forget gate determines the level of the cell state 

reset, and is given as follows: 

(3)i
�T� = fg

(

Wix
�T� + Rih

�T−1� + bi

)

,

where f 〈T〉 is the output of Wf, Rf, bf the forget gate, and 

are the input weights, recurrent weights, and the bias of 

the forget gate, respectively.

3. �e cell candidate adds information to the cell state, 

and is defined as follows:

 

where g〈T〉 is the output of the cell candidate, and Wg, Rg, 

bg are the input weights, recurrent weights, and bias of 

the cell candidate unit, respectively.

4. �e output gate controls the amount of cell state 

information added to the hidden state:

 

where o〈T〉 is the output of the output gate, and Wo, Ro, 

bo are the input weights, recurrent weights, and bias of 

the output gate, respectively. fg and fc denote the sigmoid 

function and hyperbolic tangent function, respectively.

Along with the four equations given above, the follow-

ing two equations are used to generate the output of the 

LSTM cell:

where ⊙ denotes element-wise multiplication.

3.3  Proposed DNN Framework

DNN has several user-supplied control parameters, 

including, batch size, number of iterations, hidden size, 

the number of layer, etc. However, there is no theoretical 

way to choose these parameters to be tuned heuristically 

[23]. As an example, we have observed the performance 

of the proposed network with respect to first and sec-

ond hidden sizes. Figure  5 shows that the accuracy of 

the pocket pressure according to the different number 

of neurons in the first and second hidden layers. So the 

proposed framework has five layers: a normalization 

layer, two LSTM layers, a fully connected layer, and a 

regression layer. �e network shown in Figure 6 is called 

the deep-LSTM network. �e input to the network is 

(4)f
�T� = fg (Wf x

�T� + Rf h
�T−1� + bf ),

(5)g�T� = fc

(

Wgx
�T� + Rgh

�T−1� + bg

)

,

(6)o
�T� = fg

(

Wox
�T� + Roh

�T−1� + bo

)

,

(7)c�T� = f �T� ⊙ c�T−1� + i�T� ⊙ g�T�
,

(8)h
�T� = o

�T� ⊙ fc(c
�T�),

Figure 4 LSTM cell
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normalized to have zero mean and a standard deviation 

of 1 using the normalization layer. �us, all features are 

set on the same scale. For simplicity, the LSTM layers can 

be thought of as repetitions of the cell described in the 

previous section [26]. �e input to the first LSTM layer is 

the normalized time series of the input X, whose past and 

current information is employed in this layer to generate 

the first hidden layer vector h1. To generate the output of 

the second LSTM layer, h1 is fed into the second LSTM 

layer as an input time series. 

�e second LSTM layer generates h2 for input to the 

fully connected layer, which is a regular FFNN whose 

output is the predicted output ŷ . �e loss between the 

predicted value ŷ and the real value y is calculated by the 

error function:

where T  is the length of the time series and also the num-

ber of samples.

To determine the network weights, the back propaga-

tion algorithm is applied to the whole network. �e main 

purpose is to decrease the error between the predicted 

and real values. �e dataset in this study has been divided 

into two, with 70% used for training and 30% for testing. 

�e parameters used for the DNN are summarized in 

Table 2.

To demonstrate the efficacy of the proposed method, 

simulations were repeated 30 times. �is was done to 

confirm the effectiveness of the deep-LSTM statistically. 

As shown in Eqs. (10)–(12), the LR, DT, SVM, NN, and 

DNN models use the variable input data obtained from 

the data logger as the output data for the leakage, oil film 

thickness, and pocket pressure, respectively. �e param-

eter values for the SVM, LR, NN, and DT models were 

those suggested in the literature. All the simulation pro-

cesses were realized on computers equipped with an Intel 

(9)e =
1

T

T∑

i=1

(ŷ�T � − y�T �)2

Figure 5 Pocket pressure accuracy according to the number of 
neurons in hidden layers

Figure 6 Proposed LSTM-DNN framework

Table 2 Parameters of the proposed DNN

*Stochastic gradient descent method

Leakage Oil �lm thic. Pocket pres.

Optimization method sgdm* sgdm* sgdm*

Maximum iteration 500 500 500

Momentum 0.9 0.9 0.9

Initial learning rate 0.02 0.04 0.05

Learning rate drop period 120 40 200

Learning rate drop factor 0.5 0.8 0.2

Mini batch size 128 128 128

Hidden size first layer 5 7 5

Hidden size second layer 8 5 8



Page 7 of 11Özmen et al. Chin. J. Mech. Eng.           (2020) 33:28  

6700K 4.0 GHz CPU, 16 GB DDR4 RAM, and GTX 980 

Ti 6 GB Nvidia GeForce DX12.

4  Results and Discussion
As the flow rate between the slipper and swash plate is 

high, it is considered to be laminar. However, the effect 

on the leakage and the oil film thickness is proportional 

to the amplitude of the slipper/swash plate runout [4]. As 

explained in previous sections, owing to the oil pressure 

on the slipper, oil flows from the orifice towards the slip-

per pocket, and this oil results in pressure being applied 

in the slipper pocket. As the swash plate turns, the oil 

in the slipper flows over the slipper land and prevents 

metal–metal contact.

Figure 7 shows the leakage values obtained experimen-

tally under different working conditions for the slipper 

with circular dimples. Experimental studies have gen-

erally shown that leakage increases as the supply pres-

sure rises, and decreases slightly as the turning speed 

increases [4, 5]. With the 1-mm-deep dimples on the 

slipper, all turning speeds and pressures resulted in an 

increase in the leakage. �is is an undesirable occurrence 

in terms of pump efficiency. In the case of the 2-mm-

deep circular dimples, however, the leakage followed a 

similar trend to that for flat slippers. As a result of the 

experimental study, leakage according to the depth/diam-

eter ratio of the surface texture appeared similar to the 

theoretical work [8]. It has been observed that the leakage 

(10)Qr = f
(

Ps,Pr ,P1,P2,P3, n, rro1 , rro2 , rro3 , hd , ld
)

(11)h = f
(

Pr ,Qr ,P1,P2,P3, n, rro1 , rro2 , rro3 , hd , ld
)

(12)Pr = f
(

Ps,Qr ,P1,P2,P3, n, rro1 , rro2 , rro3 , hd , ld
)

increased with surface texture depth. However, the leak-

age decreases after a certain depth of surface texture.

�is phenomenon has been explained in the literature 

through the vorticity created in slippers with grooves, 

and it has been reported that, for a certain groove width 

and groove position, the leakage increases in parallel with 

increases in the groove depth, but then remains constant 

above a certain groove depth [19]. In addition, these 

results show that the flow between the slippers/swash-

plate can be controlled by the surface texture.

Figure  8 shows the average oil film thickness. �e oil 

film thickness is independent of the supply pressure, and 

decreases slightly as the turning speed increases. �eo-

retically, under adequate lubrication conditions, while 

the slipper is working, the oil film forms through the bal-

ance between the downward forces on the piston and the 

upward forces under the slipper. In a slipper with a depth 

of 1 mm, where the leakage is as high in Figure 7, the oil 

film thicknesses are also high under all working condi-

tions. �e increase in oil film thickness, however, will 

diminish the friction power loss [27].

Figure  9 shows the pocket pressure of the slipper. 

Although the pocket pressure of the slipper does not 

change much compared to the turning speed, it does 

increase in parallel with the increase in supply pressure. 

However, the increase in the oil film thickness between 

the slipper and the swash plate acts to lower the pocket 

pressure. �e lowest pocket pressure for the cases stud-

ied was measured in the slipper with a dimple surface 

depth of 1 mm. �is is to be expected, as the leakage and 

oil film thickness are high in this case.

�e experimental studies described above were also 

modeled by means of the MLMs described in Section 3. 

�e models were executed 30 times independently, and 

the mean, maximum, minimum, and standard deviation 

Figure 7 Leakage under different study parameters for different 
dimple depths

Figure 8 Oil film thickness under different study parameters for 
different dimple depths
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values are presented in Tables 3 and 4. A comparison of 

the results and the conformity of the DNN model to 100 

test data are presented in Figure 10. Figure 10a shows the 

root mean square error (RMSE) in the leakage obtained 

from running the models. As seen in the figure and 

tables, the DNN model achieved lower RMSE values than 

LR, DT, SVM, and NN models. Figure 10a also shows that 

the DT and NN models give similar predictions, and that 

the LR model yields the highest RMSE and the lowest  R2 

value in all trials. Although all MLMs generally gave high 

mean  R2 values, the suggested LSTM-based DNN yields 

the best result with the lowest RMSE. Figure 10b shows 

the RMSE values for the oil film thickness. As shown 

in the figure and tables, the NN and DNN models yield 

lower RMSE and higher  R2 values than the other three 

models in all cases, whereas DT gives the highest RMSE 

value. However, with its highest  R2 and lowest RMSE 

values, the DNN model is clearly able to generate bet-

ter predictions than the other models. Figure 10c shows 

the RMSE values for the pocket pressure. �e RMSE 

values are close to one another in this case, although the 

LR model has the highest error value and the lowest  R2 

value. �is study of the mean values has revealed that, 

although the  R2 values of all the models are quite high, 

the DNN model produces the lowest RMSE value for 

each of the three slipper parameters, and thus makes the 

best predictions.  

Although the suggested LSTM-based DNN model 

gives better predictions than the LR, DT, SVM, and NN 

models, this must be supported by statistical analyses. 

�erefore, a non-parametric Mann–Whitney U test was 

employed to compare the prediction models at a signifi-

cance level of 0.05. �e statistical results are presented 

in Table  5, where the mean difference and p-value are 

given to show which of the two prediction models is bet-

ter. A p-value of less than 0.05 indicates a statistically sig-

nificant difference. In terms of leakage, oil film thickness, 

and pocket pressure, there is a significant difference in 

favor of the proposed DNN model (p ≤ 0.05). �is shows 

Figure 9 Pocket pressure values under different study parameters 
for different dimple depths

Table 3 Some descriptive statistics for  R2 values

Bold values indicate the best score of the columns

Leakage Oil �lm thickness Pocket pressure

Mean Max Min Std Mean Max Min Std Mean Max Min Std

LR 0.9710 0.9735 0.9684 0.0012 0.9840 0.9861 0.9820 0.0010 0.9379 0.9468 0.9266 0.0047

DT 0.9953 0.9986 0.9892 0.0024 0.9747 0.9881 0.9591 0.0079 0.9557 0.9658 0.9480 0.0045

SVM 0.9926 0.9948 0.9900 0.0014 0.9880 0.9939 0.9785 0.0043 0.9555 0.9668 0.9398 0.0071

NN 0.9952 0.9975 0.9928 0.0011 0.9977 0.9987 0.9955 0.0009 0.9584 0.9684 0.9412 0.0074

DNN 0.9952 0.9981 0.9917 0.0015 0.9991 1.0000 0.9964 0.0010 0.9567 0.9657 0.9412 0.0061

Table 4 Some descriptive statistics for RMSE values

Bold values indicate the best score of the columns

Leakage Oil �lm thickness Pocket pressure

Mean Max Min Std Mean Max Min Std Mean Max Min Std

LR 0.0085 0.0088 0.0082 0.0001 0.2753 0.2895 0.2596 0.0080 1.0135 1.1097 0.9289 0.0413

DT 0.0033 0.0051 0.0019 0.0008 0.3328 0.4352 0.1855 0.0642 0.8593 0.9454 0.7490 0.0472

SVM 0.0043 0.0050 0.0036 0.0004 0.2411 0.3261 0.1772 0.0383 0.8543 1.0101 0.7345 0.0727

NN 0.0034 0.0046 0.0024 0.0006 0.0217 0.0987 0.0016 0.0269 0.8346 0.9712 0.7183 0.0605

DNN 0.0028 0.0032 0.0021 0.0003 0.0037 0.0097 0.0015 0.0026 0.7696 0.7945 0.7130 0.0226
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Figure 10 Comparison of MLMs for a leakage, b oil film thickness, and c pocket pressure



Page 10 of 11Özmen et al. Chin. J. Mech. Eng.           (2020) 33:28 

that the deep-LSTM model is considerably more stable 

than, and superior to, the other models.

5  Conclusions
Preventing metal–metal contact between the slip-

per and swash plate is important in terms of the gen-

eral performance and lifespan of axial piston pumps. 

In this article, a slipper with circular dimples has been 

investigated in terms of the variation in leakage, oil film 

thickness, and pocket pressure under different work-

ing conditions. Dimples with a diameter and depth of 

1 mm produced extra lifting force and elevated leakage 

and oil film thickness, thus reducing the pocket pres-

sure value. As for circular dimples with a diameter of 

1 mm and a depth of 2 mm, they exhibited character-

istics similar to those of flat slippers. Additionally, the 

experimental values were modeled using LSTM-based 

DNN, and the results were compared with those from 

LR, DT, SVM, and NN models. According to the results 

and statistical analyses, the proposed DNN approach 

yielded the best performance among all the prediction 

models studied. �ese results indicate that DNNs can 

be used by designers as a preliminary design tool. Dif-

ferent textures on the slipper provide additional lifting 

force at high pressures, and can behave like an oil res-

ervoir under low pressures. In future studies, powerful 

machine learning algorithms can be used to examine 

the effect of sudden load variations, oil temperature, 

and working duration on slippers with different surface 

textures and geometries.
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