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Abstract

Computational determination of protein-ligand interaction potential is important for many biological applications including
virtual screening for therapeutic drugs. The novel internal consensus scoring strategy is an empirical approach with an
extended set of 9 binding terms combined with a neural network capable of analysis of diverse complexes. Like
conventional consensus methods, internal consensus is capable of maintaining multiple distinct representations of protein-
ligand interactions. In a typical use the method was trained using ligand classification data (binding/no binding) for a single
receptor. The internal consensus analyses successfully distinguished protein-ligand complexes from decoys (r2, 0.895 for
a series of typical proteins). Results are superior to other tested empirical methods. In virtual screening experiments, internal
consensus analyses provide consistent enrichment as determined by ROC-AUC and pROC metrics.
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Introduction

The scoring or classification of small molecule binding to

a receptor or enzyme is an important problem for many areas of

biology including drug development for therapeutics However it

has proven difficult to accurately predict ligand interactions by any

single method [1,2]. Two types of methods are commonly used.

Docking functions are simplified (and less accurate) methods used

in the process of docking molecules. Speed is a primary concern

for docking functions such as the Vina docking function [3].

Scoring functions are intended to be more accurate and used to

study smaller groups of potential complexes [4–6].

Physics-based scoring function approaches record features of

ligand-receptor interactions and sum well-established energetic

terms such as Van der Waals interactions, charge interactions,

hydrogen bonding etc. The AMBER and CHARMm force fields

and the MM-PBSA and MM-GBSA methods are examples of this

approach [7]. By adding a quantum treatment to the analysis of

interactions (as in free energy perturbation, FEP [8]), it is possible

in principal to very accurately predict ligand affinities, but in

practice, such methods are slow, and still are subject to

computational uncertainties. An advantage of physics-based

approaches is that the equation describing binding in one complex

should be the same as the equation describing any other complex.

Binding of a specific protein-ligand pair is analyzed in the context

of broad-based rules.

Another group of approaches for determining protein-ligand

affinity is the knowledge-based group of methods. These extract the

probability of specific atomic interactions occurring in observed (x-

ray crystallographic) complexes and treat these probabilities,

following a Boltzmann approach, as reflecting energy of

interaction [5]. Drugscore is a knowledge based function [5].

Again the basis of binding determination is very broad, reflecting

knowledge derived from atom interactions in many environments.

Empirical potential scoring functions follow the physics-based

model but add additional, terms for molecular interactions and

parameterize the resulting affinity equation. Terms are adjusted by

regression of a linear equation describing interactions to train the

method to produce observed ligand affinities as in X-score [6].

Alternatively the equations can be optimized in other ways as in

Vina score [3]. Empirical methods are typically trained on a set of

protein-receptor complexes or on ligand complexes with a specific

protein. As such, empirical methods are more focused on specific

protein-receptor interactions than physics-based or knowledge-

based methods. Most empirical methods derive from the early

method ChemScore [3]. They have a small number of factors and

are trained by linear regression as described.The internal

consensus analysis approach presented here is an empirical

potential method with conceptual similarities to Vina and X-

score, but with novel features including an extended set of factors

and analysis by neural network that duplicate the functionality of

consensus methods.

One factor that makes scoring ligand affinity difficult is that

various ligand binding sites may present different types of potential

interactions. Also, various ligands may bind a given protein in

different modes, using different portions of the binding site. One

way to adapt to the variety of different types of ligand binding is to

form a consensus amongst methods that might have strengths with

one type of complex or another. Consensus methods for scoring

protein-ligand binding have found widespread use. An example is

the averaging of three hydrophobic terms in X-score [6]. Another

use of the consensus is to improve representation of the diversity
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present in complex data [9,10]. The advantage of consensus

schemes is that the specific weaknesses of individual methods may

be overcome. The disadvantage is that an analysis especially suited

for a class of ligand or receptor may lose that advantage when its

output is mixed with that of other methods. Also, computation

becomes more complicated and less interpretable. Ideally,

a method might allow the power associated with consensus

methods in a easily trainable and flexible form.

Neural networks are an attractive option for creating consensus

[11,12]. Neural networks in particular have the ability to learn

mixtures of distinct patterns [13]. This learning should permit

neural network identification of protein-ligand complexes of

different types, such as complexes dominated by hydrogen bonds

and complexes dominated by hydrophobic interactions. Almost all

existing methods merge these very different patterns into a single

type for scoring [3,6,14]. Ideal physics-based methods can, in

principle, correctly analyze disparate types of complexes without

the need for neural network-type analysis [8]. However these

methods currently are limited by speed considerations.

Virtual screening is the identification of novel ligands that might

bind a binding site, using only computation [15,16]. Virtual

screening represents a challenge for computational methods

because of the impreciseness of current scoring functions. There

are two main types of virtual screening, ligand-based and receptor-

based. Ligand-based methods are based on finding new ligands

similar in key respects to existing ligands. Receptor-based methods

are based on finding molecules that are capable of binding to

a receptor binding site. Receptor-based methods have shown the

potential to find completely novel ligands [17–19]. The success of

receptor-based methods is dependent on the ability to accurately

classify virtual ligands based on whether or not they have the

potential to bind tightly to a binding site. The true affinity of the

computationally selected ligands can then be determined by

laboratory analysis.

Here we present a method for predicting the relative affinity of

ligands bound to protein binding sites. The method is conceptually

an empirical potential approach but is nonlinear, with more input

factors than the typical empirical method. The extra terms are

included to mimic the larger number of factors that are typically

observed in consensus methods. The inclusion of a neural network

also allows the analysis to robustly work with groups of protein-

ligand complexes of diverse characteristics. This feature, robust-

ness with diverse types of binding site, is also typical of consensus

methods. Internal consensus analysis works well on many proteins

and in a variety of types of protein-ligand interaction studies. Its

features could easily be incorporated into other scoring applica-

tions.

Results and Discussion

Overview of the internal consensus method
The method has two or three basic steps plus some

elaborations. Step 1) involves assaying a protein-ligand complex

using 9 factors that include features such as contacts and

hydrogen bonds. The structure of the complex and additional

information about atom types and charge are used to determine

these 9 values. Step 2) involves using the 9 factors to input to

a neural network, which in turn outputs a score value. The score

values can be used for analysis, e.g. to calculate an AUC value, or

directly as a prediction of whether a complex is stable or not. Step

3) is training and is only needed for new types of complexes. Step

3) uses data from Step 1) for a curated set of complexes to

determine coefficients that optimize the function of the neural

network.

Factors for use in forming an internal consensus to
predict protein-ligand binding
Much scoring of protein-ligand binding complexes by consensus

methods has been ad hoc and based on combining the output of

existing applications [20]. As a matter of observation, the

approach has led to improved scoring [20] but the mechanism

of improvement has been unclear. The most obvious possibility is

that the increased number of factors and parameters associated

with combining disparate methods leads to a more complex model

for ligand binding and hence an improvement in data fitting. It

seemed that a similar result could be achieved by deliberately

starting with a more complex model [6,9] or by factoring in the

diversity of the data [10]. The present model includes both

approaches. First, more than one factor was scored for each of the

major contributions to energy of ligand binding. These factors

were chosen to be different, but to correspond with major lines of

thinking about binding interactions [1].

For three categories of interaction, different factors for inclusion

in scoring protein-ligand interactions were selected. For contact

interactions, Van der Waals energies, one factor was constructed

to resemble a classic Lennard-Jones function. The other was

designed to reward more distant interactions with a conformational

ensemble model of protein-ligand complexes in mind (for example

[21]). For hydrogen bonds, one factor defined hydrogen bond

energy solely on distance, whereas the other considered bond

angle as well. A negatively weighted factor was based on potential

hydrogen bond donors or acceptors that lacked an apparent

partner (‘frustrated’ hydrogen bonds). A fourth factor included

potential distant hydrogen bonds. These could be formed via an

intervening water molecule, or reflect imprecision of the protein-

ligand complex coordinates, considering again a conformational

ensemble. For hydrophobic interactions, one factor considered

interactions of the ligand with hydrophobic amino acid residues of

the receptor, while the other factor considered interactions on the

atomic level. Like some of the other factors these two factors allow

weighting for accurate models or less precise docking. For

coulombic charge interactions only a single factor was used. We

wanted to include the possibility that the dielectric constant in

binding sites could vary, but recognized that simple weighting of

the single factor could achieve this goal.

These factors allow a very flexible scoring of protein-ligand

interactions, akin to that achieved with consensus methods that

rigidly combine different scoring applications. Figure 1 shows

a pair of factors based on Van der Waals (VDW) interactions and

the way that weighted combinations can create a custom family of

scoring functions. Of note, the 9 parameters used for the internal

consensus analysis presented here encompass only the known

physical factors of ligand binding. The VDW, hydrogen bond, and

hydrophobic terms are very similar to those of other scoring

functions including X-score etc. [6]. Some scoring methods neglect

charge interactions [3], however for some proteins, such as trypsin

they contribute significantly to ligand binding scoring (see below).

Correlation of factors and effective number of
parameters
Since some of our factors were chosen deliberately to reflect

similar underlying aspects of energetics of protein-ligand interac-

tions, it was of interest to determine correlation amongst the

factors. The 9 factor values for the 39 proteins of the DUD

database were analyzed. Overall there is significant correlation for

many of the factors (Table 1). Some of the conceptually related

factors are correlated (VDW factors, H-bond factors with and

without angles), but, interestingly, not all.

Ligand Binding Prediction
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The 9 factors (and the neural network architecture described

below) lead to a potentially high number (50) of parameters for the

internal consensus model. This, in turn, could weaken analyses or

lead to overfitting. Typical consensus methods also have a high

number of parameters, though distributed in the component

methods used to form the consensus. Correlation of the factors

used to form an internal consensus could simplify the internal

consensus model. The number of effective parameters in practice

[22] was calculated using the expression:

P~N:EO if EOwETð Þ

Where P is the effective number of parameters; N is the number of

training sets; EO is the observed error in scoring; and ET is the

error rate achieved during training. The effective number of

parameters on various data sets was 14.7+/22.5. Thus the

internal consensus model in practice has significantly fewer than

the maximum number of parameters, reducing, somewhat, the

amount of data required to make predictions. For this study, the

amount of training data was sufficient to permit 90%–99%

accuracy of the method. Accuracy is defined here based on ROC

AUC measures of complex prediction accuracy described further

below.

Neural network for representation of multiple models for
ligand binding
Neural networks have special advantages in classification of

complex data. In particular they can learn to recognize correct

targets embedded in data with various types of patterns. Much

effort has been spent in the attempt to create a universal scoring

method applicable to all proteins. Others have suggested that

superior pragmatic results can be achieved using machine-learning

methods that recognize the special features of a group of proteins

[10]. Neural networks are well-adapted to the latter approach.

The neural network used in the internal consensus analysis has 9

input nodes each taking one factor (plus one bias input node), 5

hidden nodes (plus one bias hidden node) and 1 output node

corresponding to the prediction. The network has full connectivity

between input and hidden layer nodes and hidden layer and

output nodes. It is trained using backpropagation [13]. The 5

hidden nodes can each specialize in a type of protein-ligand

interaction found in the training set. In practice 3–5 hidden nodes

have significant weight after training with the data sets of this work

suggesting that no single regression might fully capture the binding

patterns present.

Good ligands all show high affinity for their binding sites, but

the mechanisms for achieving that high affinity vary. Neural

networks and consensus methods reflect two different approaches

to permit machine learning to represent multiple patterns for

ligand binding. Those specific patterns might include ligands that

achieve high affinity mostly through hydrogen bonding and charge

interactions and ligands that achieve high affinity mostly through

hydrophobic interactions. Neural network architecture, used in

internal consensus, is ideal for holding these multiple representa-

tions in a single model. Consensus models achieve similar results

indirectly by combining methods that are strong in analysis of one

type of complex or another.

Many methods exist to produce a numerical score for ligand-

receptor complexes. Often this score is interpreted as related in

some way to DG of ligand binding [3,6,14]. The internal

consensus neural network instead produces a nonlinear binding

score not directly comparable to free energy. Also, in this work, the

analysis has been trained using discrete data in which binding was

scored as non-binding vs. binding, rather than using continuous

ligand affinity data. There are several good reasons to take this

approach. Some binding data is corrupted and unreliable because

Table 1. Factor-factor scoring correlation for a mixture of proteins.

Vdw Vdw2 HB HBang HBlon NHB Hydr1 Hydr2 Coul

Vdw 1.00 0.75 -0.76 -0.54 -0.39 -0.04 0.26 0.54 0.07

Vdw2 0.75 1.00 -0.28 -0.25 -0.05 -0.05 0.29 0.67 0.10

HB -0.76 -0.28 1.00 0.81 0.61 0.10 -0.06 -0.11 -0.01

HBang -0.54 -0.25 0.81 1.00 0.60 0.22 0.14 0.08 -0.06

HBlong -0.39 -0.05 0.61 0.60 1.00 0.35 0.25 0.21 -0.08

NHB -0.04 -0.05 0.10 0.22 0.35 1.00 0.44 0.21 -0.18

Hydr1 0.26 0.29 -0.06 0.14 0.25 0.44 1.00 0.51 -0.10

Hydr2 0.54 0.67 -0.11 0.08 0.21 0.21 0.51 1.00 -0.03

Coul 0.07 0.10 -0.01 -0.06 -0.08 -0.18 -0.10 -0.03 1.00

doi:10.1371/journal.pone.0023215.t001

Figure 1. Combinations of factors. Combining factors in varying
proportions can effectively produce novel factors during training that
are functions of the original factors. VDW1, VDW2 and a hybrid factor
are shown as a function of atom distances. Dashed line, distance
function of factor VDW1; solid line, function of factor VDW2 and dotted
line, a 1:1 mixture (coefficients of VDW1 and VDW2 both set to fraction
0.5). Free energy values are scaled to the range 0–1. Energy values are
presented for an atom pair with each atom assuming a VDW radius of
1.5 Angstroms.
doi:10.1371/journal.pone.0023215.g001
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it was assembled from several sources [23]. Generally binding

affinities from a single source with a single method are highly

reliable in ranking the affinity of ligands for a protein target [23].

But heterogeneous data is less reliable and leads to training errors

for methods dependent on such data. On the other hand the

internal consensus method is trained based on comparison of

known binding molecules (often approved drugs or established

probes with affinities between 10 nM and 10 mM) to decoys

which have a low probability of being binders. Thus the discrete

type of data used to train here might even be more reliable in some

ways than the continuous data more commonly used. Only more

experience will answer that point, but discrete data is more widely

available, permitting more focused training.

Neural network training consists of finding a local error rate

minimum after iterative training cycles [13]. One area of concern

is overfitting, in which the network overlearns irrelevant details at

the expense of generalizable patterns. To test for overfitting the

neural network was trained for varying numbers of cycles then

tested with examples not part of the original training set. Figure 2

shows that the training speed depends on the particular data being

studied. The trypsin and HIV protease data trained slightly more

quickly than the mixed native data set. The mixed native complex

set trained well at 300 cycles and overtrained at higher numbers of

cycles. For the other proteins, the optimal number of cycles was

reached at 300 or fewer cycles, but overtraining was not

prominent. For this work, an optimal number of training cycles

to facilitate accurate determination but avoid overfitting was

determined for each type of experiment. Overfitting was most

often a problem when training on a mixture of proteins with

different features. Overfitting in all cases could be minimized by

reducing the number of training cycles. It is important to note that,

with the experimental arrangement used here, overfitting would

only act to worsen, never to improve the accuracy of the method.

This is because the training dataset and scoring dataset had no

members in common so overfitting would lead to mistraining.

Ability of internal consensus to distinguish native ligands
from decoys
An internal consensus protocol was performed on a series of

native ligand/receptor complexes. In each case native ligands were

matched to 5 DUD decoys that have similar sizes and

characteristics to the high affinity ligands but are predicted to

bind with much lower affinity [24,25]. Decoys were docked using

Vina [3]. Three groups were analyzed: trypsin (73 ligands), HIV

protease (112 ligands) [5] and DUD natives (39 proteins with 1

ligand/protein). Vina was used as a comparison method. Vina has

been shown to successfully predict free energy of binding of ligands

[4]. Vina is related to X-score [6], but has been trained on a larger

sample of receptor-ligand complexes and uses more scoring

factors. Vina uses a model that employs a single set of parameters

for all complexes, whereas the other analyses here are trained on

specific datasets.

Receiver operating characteristic (ROC) curves are a widely

accepted way to determine accuracy of protein-ligand scoring.

ROC analysis (Figure 3) indicated that the internal consensus

approach performed very well on all of these sets of data. Internal

consensus was more accurate than Vina in this test. The use of

a discrete data set can not explain the relatively poor response of

Vina on this assay, especially on the trypsin data (Figure 3b). A

graph following the diagonal represents random classification on

ROC curves. The performance on the ROC curve can be

summarized by the area under the curve (AUC) (Table 2). For

ROC AUC, a value of 0.5 or less indicates performance no better

than random. A score of 1.0 indicates that candidates were ranked

with all of the native complexes above the decoys. Another

measure of classification accuracy is the correlation, r2 (coefficient

of determination), between true classification and the classification

of a method. The r2 value can be interpreted as the fraction of data

variability predicted by the analysis method. An r2 value.0.5

indicates significant evidence of correct prediction above the

random level. With both ROC AUC and r2 analysis, using the

internal consensus strategy produced robust predictions, and was

superior to Vina. The internal consensus approach also compared

very favorably with surveys of other commonly used methods

[2,21].

As a comparison, reduced models were analyzed (Table S1).

The models were: a hybrid method with three factors and neural

network analysis; a hybrid method with 9 factors and linear

regression analysis; an X-Score-like method with 3 factors and

linear regression analysis. The three internal consensus factors

most similar to those of X-score and Vina were used for models

having only three factors. Internal consensus was the best model.

Features specific to the internal consensus model, perhaps

including both the neural network and redundant factor

construction may have contributed to robust performance.

It is somewhat difficult to deconvolve the processes of a neural

network that produce a score in order to understand its

predictions. It is simpler, and still relevant, to determine the

correlation of factors with ligand binding status. This analysis

shows that different input factors contribute to the variance of

complex formation for trypsin and HIV protease ligands vs. decoys

(Table 3). For trypsin, VDW, hydrogen bond and coulombic

factors contributed (r2..65). For HIV protease, VDW, hydrogen

bond and one of the hydrophobic terms (r2.0.64) but not the

coulombic term contributed. Thus, as is evident as well from

examination of the crystal structures, different types of interactions

are key for these two classes of protein-ligand complexes. A

possible strength of the internal consensus approach is the

potential to analyze multiple representations of binding sites

rather than reducing that diversity to an average as in regression

methods. The high accuracy of prediction produced by internal

consensus trained on multiple proteins (DUD database proteins;

Figure 3, Table 2) may reflect the ability of the neural network to

classify input proteins into appropriate categories. In contrast,

simple correlation between the DUD database protein data set

used, taken as a whole, and ligand binding shows binding

correlation only with VDW terms (r2.0.63) and not with any of

the other input factors (r2,0.2) suggesting that training regression

Figure 2. Neural network training speed. The accuracy of internal
consensus predictions is compared to the number of training cycles.
Overtraining is evident in the curve in which accuracy drops after an
increase in training cycles. Squares, trypsin; triangles, HIV-1 protease;
diamonds, DUD database set of proteins.
doi:10.1371/journal.pone.0023215.g002
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models (as shown above) on multiple proteins might yield an

overly simplified model. Others have suggested that empirical

methods often reduce to measurement of VDW terms [26] which

is consistent with our observation. The internal consensus

approach performed well with this data classification task perhaps

by making use of all the data available to it.

Distinguishing near-native complex conformations
Scoring functions can be used to identify binding conforma-

tions, poses, of ligand that are very close to the native structures

identified by x-ray crystallography. Consensus methods have been

useful in identifying well-docked complexes [27]. The complexed

structures identified are useful in identifying protein residues

responsible for high-affinity binding or that are targets for enzyme

inhibition. Root mean square deviation (RMSD) is a measure of

difference in distance and conformation for two molecules. For

bound ligands, a RMSD score of ,2.0 Angstroms, relative to the

native conformation, is generally accepted as indicating that most

important contacts and protein-ligand interactions are retained

[3]. The internal consensus method was trained on HIV-1

protease inhibitor data to distinguish RMSD,2.0 Angstroms

complexes from decoy complexes that do not retain the natural

binding site conformation.

The internal consensus method classified 87.9% of 269

complexes correctly into near-native and decoy groups. The

HIV-1 protease binding site is especially large and complex,

holding higher molecular weight ligands [28]. An HIV-1 pro-

tease/antagonist conformation chosen by internal consensus

classification with an RMSD of 0.71 Angstroms is shown in

Figure 4. As is evident, modeling complexes in this manner might

be useful for aspects of analysis of protein-ligand interaction. In

this approach, information about known protein-ligand interac-

tions of specific families is explicitly captured by the internal

consensus neural network. Deliberately thorough training is

desirable in this particular case, to force the ligand to assume

a conformation as much like that of the training ligands as

possible. This approach is conceptually similar to homology

modeling in which the modeled protein is constrained to the

structure of the target templates [29].

Comparison of an internal consensus strategy to Vina in
virtual screening
A common use for scoring methods is in the virtual screening of

small compound databases to attempt to find lead molecules that

Figure 3. ROC curve analysis. Receiver operator characteristics
(ROC) curves for analysis of internal consensus and Vina classification of
native ligand and decoy complexes. A. Trypsin; B. HIV protease; C. 39
DUD proteins. Solid line, internal consensus; dashed line, Vina. A
diagonal (dotted line) represents a random selection. Curves above the
diagonal represent successful separation of decoys and native ligands.
doi:10.1371/journal.pone.0023215.g003

Table 2. Efficiency of internal consensus analysis and Vina in classification of native ligand and decoy complexes.

Internal consensus1

Protein target ROC-AUC s.d. Correlation s.d.

DUD Database 0.996 0.005 0.895 0.078

Trypsin 1.000 ,0.001 1.000 ,0.001

HIV-1 protease 1.000 ,0.001 0.950 0.071

Vina scoring

DUD Database 0.646 0.022 0.525 0.042

Trypsin 0.052 0.040 0.0022 0.001

HIV-1 protease 0.537 0.005 0.220 0.024

1AUC and r2 correlation are distinct methods for scoring classification accuracy. Both have a range of 0–1 with values less than 0.5 indicating a relative lack of
classification. Values were scored for independent data samples. Standard deviations, s.d., are shown.

2r-values were negative.
doi:10.1371/journal.pone.0023215.t002
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might bind a target protein. This process of drug discovery

requires a method to recognize target-ligand complexes that may

bind tightly. Though it is common to use methods that score

ligands, inevitably the use of virtual screening is to produce a short

list of compounds for further testing. That is, the methods are used

more to rank than to score. Here, the nonlinear function output of

internal consensus analysis is used for ranking.

To simulate virtual screening, documented ligands or decoys

from the DUD database were docked to 39 proteins (about 70

complexes/protein). This approach has been used by a number of

groups to benchmark methods for virtual screening [15,25,30–32].

The ROC AUC values resulting from internal consensus analysis

were compared to those from Vina. As shown in Figure 5, internal

consensus mostly produced good classifications, though a few

targets did not do well. This observation suggests that the method

could be used for virtual screening on most protein types.

Virtual screening methods, crucially, must concentrate binding

ligands into a small selected pool that represents only a tiny

fraction of the original candidates [33]. The small, best, early,

candidate pool that will be considered for further analysis must be

highly enriched, because the later candidates probably will be

discarded. To better analyze the ability of internal consensus

analysis to promote this ‘early recognition’ of ligands, virtual

screening was studied using a larger number of decoys. The

method was presented with ,50 ligands mixed with 1000 decoys.

The pROC metric was used to determine early recognition [34],

Table 4. The null distribution of pROC was used to determine

statistical significance [34]. All of the tested internal consensus

cases exhibited significant early recognition. Vina performed well

on about half of all proteins but was less reproducible. Another

measure highly relevant to virtual screening is ligand enrichment

away from decoys, especially enrichment in a highly selected

fraction of the ligand database. Enrichment as a function of ligand

rank was performed on four protein targets, thymidine kinase, the

estrogen receptor, neuraminidase and SAHH (Figure 6). When

1% of the database was selected, enrichments were 22, 7, 9 and

19-fold respectively using the internal consensus method. Maxi-

mum achievable enrichment (corresponding to recovery of only

valid ligands) was 21 to 25 for this experiment.

Conclusions
Therapeutic drug development, molecular probe development

and other aspects of biology make use of ligand predictions to

identify important molecules. Many methods have been pro-

posed, but none are entirely successful. Here, a new method that

suggests improvements on these predictions is presented. Similar

to consensus methods that combine several applications, internal

consensus uses a model for ligand binding that can analyze

diverse ligand binding interactions. Both the use of multiple,

overlapping factors and a neural network analysis contribute to

the ability of the internal consensus strategy to robustly deal with

multiple types of ligand complexes. Some other models may be

less complex than the data they are set to analyze. Overall, Vina

showed significant ability to recognize protein-ligand complexes,

but the internal consensus analysis was superior in most tests to

Vina and other non-consensus methods. Internal consensus

analyses can overtrain as they learn their input data, but that

difficulty was formally prevented in this work. Because the

internal consensus approach to scoring complexes is consistent

with training on discrete binding/nonbinding data, the quantity

Table 3. Correlation between factor scores and protein-ligand complex formation.

Factor VDW1 VDW2 HB HBANG HBLONG NHB HYDR1 HYDR2 COUL

DUD1 0.640 0.697 0.108 0.183 0.015 -.028 0.071 0.080 0.178

Trypsin 0.671 0.553 0.713 0.732 0.681 0.782 0.450 -0.395 0.655

HIV prt 0.847 0.784 0.649 0.656 0.742 0.163 -0.215 0.543 0.251

1Protein-ligand databases: DUD ligand/decoy database; Human trypsin complexes; HIV-1 protease inhibitor complexes. Correlation of factor score with ligand binding
(1.0) versus decoy binding (0.0).
doi:10.1371/journal.pone.0023215.t003

Figure 4. Ligand conformation selection. HIV-1 protease crystal
structure 1BV7 with native ligand XV638 (gray) from the Protein Data
Bank is shown with a superimposed modeled XV638 ligand (RMSD, 0.71,
black) whose conformation was selected out of 45 candidate
conformations by internal consensus analysis. Of the 45 conformations,
4 had RMSD values less than 2.0. Most native VDW contacts between
protein and ligand are conserved (56/84 contacts with a 0.8 Angstrom
threshold). Mottling of ligand occurs where the native and modeled
structure are tightly aligned.
doi:10.1371/journal.pone.0023215.g004

Figure 5. Virtual screening. Results of ROC-AUC analysis for 39 DUD
protein virtual screening analyses are shown. AUC values obtained by
the internal consensus method are compared to those from Vina
scoring. Values above 0.5 indicate successful selection of ligands over
decoys. The differences between Vina and the internal consensus
method are significant (two-tailed, paired T-test; p,2.061027).
doi:10.1371/journal.pone.0023215.g005
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of training data available to it may be greater than that available

to some other methods, permitting more focused analyses. The

internal consensus produced by this strategy may capture key

aspects of ligand binding that contribute to free energy of

binding. Though not formally a physics-based method, internal

consensus is physics-based in spirit, attempting to provide to its

neural network factors reflecting known contributions to energy.

At the same time, the approach is more realistic about the

messiness of real data than many methods. Docked ligands are, at

best, near-native in conformation. To be useful for applications

such as virtual screening, methods must be able to analyze

imperfect complexes. The successes of analyses incorporating

internal consensus suggests pragmatic changes in scoring

methodology that might improve accuracy while making only

modest compromises with existing empirical methods.

Methods

Factor selection
Factors were selected with an attempt to reflect physics-based

interactions known to act in protein-receptor complexes. Protein-

receptor or protein-decoy complexes were scored for each of the 9

factors.

Two factors were selected to reflect Van der Waals interaction.

VDW1 was a Lennard-Jones related function of atomic distances:

VDW1 rð Þ~{4 c1
�
r6

� �
z3 c2

�
r8

� �

Where c1 and c1 are constants reflecting the sum of VDW

distances for the atom pair to the sixth or eighth power, and r is

the observed distance between the atom pair. VDW1 was

truncated at 4.5 Angstroms.

VDW2 was selected to reflect more distant interactions perhaps

interactions not present in the structure under consideration, but

present in ensemble structures due to protein flexibility.

VDW2 rð Þ~{ 1= 1z exp {s r{2vdwð Þð Þð Þð Þ

Where s was set to 3, r is distance between an atom pair and vdw

is the sum of the Van der Waals radii for the atom pair. This

function is sigmoidal and reaches half maximal at r = 2vdw.

HBOND takes a value of 1 if a hydrogen bond donor is within

2.5 Angstroms of a hydrogen bond acceptor. Donors and

acceptors are defined by MGLtools atom types [35].

Figure 6. Enrichment curves. The ability of analysis by the internal
consensus approach and Vina to promote ligand enrichment over
decoys in virtual screening is shown. Enrichment is presented as
a function of the fraction of the original database eliminated in the
screen. Protein targets: A. Thymidine kinase; B. Estrogen receptor; C.
Neuraminidase; D. S-adenosyl homocysteine hydrolase. An enrichment
factor of 1.0 corresponds to a random selection of genuine ligands from
decoys. Closed markers, Vina; open markers, internal consensus.
doi:10.1371/journal.pone.0023215.g006

Table 4. Ability of methods to reduce a large sample of
mostly decoy ligands to a small sample of complexes enriched
for genuine binding ligands as determined by pROC metric.

pROC

Protein target
Internal
consensus Vina

Trypsin 0.856* 0.513

Estrogen receptor 0.885* 0.944*

Thymidine kinase 1.493* 0.431

Retinoic acid X receptor 1.696* 2.228*

Src tyrosine kinase 0.755* 0.690

Neuraminidase 0.769* 0.451

S-adenosyl homocysteine hydrolase 1.251* 0.963*

HIV-1 protease 1.028* 0.771*

*Significant. pROC critical value (P,0.05) is 0.70 [34].
doi:10.1371/journal.pone.0023215.t004
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HBANG, the hydrogen bond angle term, assumes a value of 0 if

a hydrogen bond makes an angle (with hydrogen at its vertex) of

less than 90u. Otherwise the value is cos(H)2, where H is the

hydrogen bond angle.

HLONG is a term that allows long hydrogen bonds, e.g. those

formed via an intervening water molecule. The conditions for

permitting an HLONG interaction are the same as those for an

HBOND, but the distance cutoff is HLONG,3.3 Angstroms.

NHB is a term reflecting number of hydrogen bond donors or

acceptors that do not meet the criteria for forming hydrogen bonds

of the HBOND or HLONG type.

HYDR1 is a term intended to correlate with a hydrophobic

environment for the ligand. The value represents the number of

receptor hydrophobic residues that lie within 4.5 Angstroms of the

ligand [6]. Hydrophobic residues are taken as Leu, Ile, Met, Phe,

Val, Tyr or Trp.

HYDR2 represents another hydrophobic term, but one based

on an atomic level. The term reflects a count of the number of

receptor carbon atoms within 4.5 Angstroms of a ligand carbon

atom. Though only an approximation, the value of HYDRO2

may correlate with waters displaced during ligand binding.

COUL is a term for coulombic charge interactions. COUL=

q1q2/r
2 where q1 and q2 are the Gasteiger partial charges of the

two atoms provided by MGLtools [35] and r is the distance

between the atoms. The dielectric constant for COUL in the

ligand binding pocket is not explicitly represented, but is implicit

in the weighting of the term. It has been suggested that Gasteiger

charges are not ideal for predicting protein-receptor interactions

[36] and we have confirmed that AM1-BCC charges are superior

for some proteins (not shown). However, on average Gasteiger

charges seem a reasonable approximation and Gasteiger charges

provided by MGLtools [35] were used for all of our analyses.

Calculation of factor correlations
For calculation of factor correlations (r2), 1000 DUD decoys

[24] were docked to either trypsin or HIV protease. The goal of

the analyses was to determine factors with overlapping features.

Correlations of factors calculated with the internal consensus

methodology were considered significant if over 0.5. Docked

decoy complexes were used for the correlation analyses rather

than native complexes since the native series of complexes

contained drugs designed to bind the enzyme active sites. Such

drugs typically make highly favorable interactions of several

types involving different portions of the molecule. Designed or

selected compounds therefore make contacts with protein that

are not independent or random, undercutting the interpretation

of the correlation analyses. When native complexes were used,

most factors except COUL appeared directly or indirectly

correlated.

Artificial neural network
A feedforward neural network was employed for protein-ligand

complex classification using the 9 factors as inputs. A back-

propagation training method was used to set network parameters.

This method is essentially a steepest descent analysis to find a local

minimum [13]. Using random initial parameters to perturb the

training start only modestly changed the outcomes suggesting that

network solutions were not highly sensitive to initial conditions.

The number of training cycles for a type of analysis was

determined roughly by the accuracy of the neural network

predictions. For classification of native complexes training lengths

were in the 200–300 cycle range. No training was extended to over

10,000 cycles even if the analysis indicated that more training

might improve results. To avoid overfitting all scoring involved

independent data sets. Care was taken to avoid inclusion of

a ligand or decoy used in training set in the scoring set. Care was

also taken to avoid excess training cycles that caused overfitting

and degraded method performance (Figure 2).

Native bound ligand examples
Ligand-receptor complexes were accessed via the Protein Data

Bank or indirectly from the DUD database. Noncanonical files

were corrected manually to permit use. Complexes listed in [5]

were edited to remove complexes with duplicate ligands. The

structural files of Table 5 were used in this study:

Ligand docking to proteins
Ligands were docked with Vina Autodock [3]. Docking was

centered on the mean coordinates of an index crystallographic

ligand and extended with a 25 Angstrom radius. Torsions for

ligands were calculated using MGLtools [35]. For the data here

with nonredundant targets, Vina docked 50% of ligands with an

accuracy of ,2.0 Angstroms RMSD relative to the crystallo-

graphic conformation. This compares to published docking

accuracy of Vina [3] and was adequate for this study. Vina

routinely generated 9 docked poses, but only the highest-scoring

pose was analyzed. On a 4 CPU PC, the average ligand docking

took about 1 minute. All comparisons to Vina in this work were

comparisons to the Vina scoring function only since both the Vina

and the internal consensus analyses used the same Vina ligand

docking conditions and the same Vina-docked protein-ligand

configurations were scored (or rescored).

ROC curves and ROC-AUC for internal consensus and
Vina analyses
ROC curve analysis provided one way to judge accuracy in scoring

protein-ligand complexes. For ROC curves, the true positive and

false positive rates were compared as the threshold for scoring as

positive was varied. ROC AUC is a simple area under the given

Table 5. PDBIDs of protein-ligand complexes used in analysis.

HIV protease

1A9M_B, 1AAQ_B, 1AJV_A, 1B6J_B, 1B6K_A, 1B6L_A, 1B6M_B, 1BDQ_B, 1BV7_A, 1C70_B, 1D4K_A, 1D4L_A, 1D4Y_A, 1DIF_B, 1DMP_B, 1G2K_B, 1G35_B, 1GNM_B,
1HBV_A, 1HIH_B, 1HOS_A, 1HPO_B, 1HPS_B, 1HPX_B, 1HSH_A, 1HVH_B, 1HVI_A, 1HVJ_A, 1HVK_A, 1HVL_B, 1HVR_A, 1HVS_A, 1HXW_B, 1KZK_A, 1MES_B, 1MSM_A,
1MTR_B, 1OHR_A, 1PRO_A, 1QBR_A, 1QBU_B, 1SBG_B, 1SDT_A, 1SH9_B, 1TCX_B, 1W5X_A, 1Z1H_A, 1Z1R_A, 1ZP8_A, 1ZPA_A, 2BPV_B, 2BPY_B, 2F80_B, 2HB3_B,
2I0A_A, 2I0D_A, 3AID_A, 7UPJ_A.

Human trypsin

1C1R_A, 1C5P_A, 1C5Q_A, 1C5S_A, 1C5T_A, 1CE5_A, 1F0T_A, 1F0U_A, 1G3B_A, 1G3C_A, 1GHZ_A, 1GI1_A, 1GI4_A, 1GI6_A, 1GJ6_A, 1K1I_A, 1K1L_A, 1K1N_A, 1KIM_A,
1O2H_A, 1O2J_A, 1O2N_A, 1O2O_A, 1O2S_A, 1O2W_A, 1O2Z_A, 1O30_A, 1O33_A, 1O36_A, 1O38_A, 1O3D_A, 1O3F_A, 1O3H_A, 1O3J_A, 1PPC_A, 1PPH_A, 1QB1_A,
1QB6_A, 1QB9_A, 1QBN_A, 1QBO_A, 1TNG_A, 1TNH_A, 1TNJ_A, 1TNK_A, 1TNL_A, 1V2K_A, 1V2N_A, 1V2O_A, 2BZA_A, 2FX6_A.

doi:10.1371/journal.pone.0023215.t005
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ROC curve. The AUC value 0.5 results from a method that does not

select better than a random level. Another approach to measuring

prediction accuracy is the correlation coefficient, r2 (preferred for this

work over r which can be derived from it). Observed data for protein-

ligand complexes was coded as 1 (binding, true ligand) or

0 (nonbinding, decoy). Typically, the neural network was trained

using data from a single protein. Prediction values were taken as the

neural network output node value (for internal consensus) or as

predicted 2DG (for Vina). In all cases the sign of the data was such

that r would be positive if the method correctly predicted binding.

Samples with approximately 60–150 native complexes and 300–750

docked decoys were created and split into training and scoring files.

The training subset was used to train the internal consensus neural

network. The second non-redundant sample was scored. To

determine variance the process was repeated but with different

training and scoring sets. In all cases the training and scoring sets did

not contain any ligands or decoys in common. Training was either

focused on a single target protein [18,27] or more broadly over the

DUD database [25].

Linear regression model for scoring
To test the functioning of the internal consensus method,

elements were combined in different ways. One hybrid model used

the 9 input factors and a linear regression least squares training

approach. A second model was designed to partially mimic the

linear regression model X-score which uses three input factors.

Three internal consensus input factors (VDW, HB, and HY-

DRO1) substituted for X-score VDW, H-bond and hydrophobic-

ity terms. A third model used these three internal consensus factors

with a neural network analysis. In each case, coefficients were

estimated on one set of data. A second, non-redundant, set of data

was scored using the same model that generated the coefficients.

Virtual Screening Enrichment
Assessing virtual screening requires assessment of ligand

selection. The metric pROC weights the early part of the selection

curve as is desirable for screening purposes [34]. It is calculated as

pROC~ 1=nð Þ
Xn

i~1
log10 1=Hið Þ

Where n is the number of true positives in the entire sample andH
is the proportion of negatives scoring better than true positive i. If
H is 0, then H is reset to 1/(positives+negatives) to avoid

calculation problems. For pROC calculations with internal

consensus analysis, the neural network output node value was

used as a method score.

Enrichment is a key concept in use of scoring methods in virtual

screening. Enrichment was calculated at several points at which

varying amounts of the database had been discarded because it was

below the score threshold. For each point the fraction of the database

discarded was determined. Then enrichment was calculated:

Enrichment~ tp= tpzfpð Þð Þ= P= PzNð Þð Þ

Where tp is the number of true positives in the sample remaining, fp

are false positives in the sample, P is the number of positives in the

original database and N is the number of negatives in the original

database. Enrichment is the proportion of positives in the small

selected sample divided by the original proportion of positives. The

internal consensus analyses provide a non-linear output but that is not

a concern, since enrichment is basically a ranking problem [37].

Estimation of ligand binding RMSD
A group of HIV-1 protease/inhibitor complexes were analyzed

by using Vina to generate a library of ligand binding poses.

Complexes were analyzed using RMSD, used here as a measure of

docked ligand deviation from the crystal structure ligand

conformation. Docked complexes were separated into two groups:

a well-docked group had an RMSD of ,2.0; a decoy group had

an RMSD of .3.0. The two groups (555 complexes total) were

used to train the internal consensus method to distinguish

complexes based on RMSD. A non-overlapping group of 269

complexes derived from HIV-1 protease bound to 32 different

ligands was then scored for correct classification. To generate

a series of single ligand conformations as a potential source for

analysis and visualization, the ligand of PDB file 1bv7 was

extracted and repeatedly docked to give 45 bound poses. Each

docking generated 9 new conformations since each Vina run

started its process at a configuration determined by a random seed

value. Each pose was evaluated by the internal consensus method.

The highest-scoring pose was documented.

Virtual screen using DUD database of receptors and
decoys
Virtual screening used the DUD database. Decoys in the

database were examined especially to confirm that they were

matched in features and size to ligands. DUD database decoys

were similar in mean size but had somewhat less size dispersion

than ligands. In general, the DUD decoys were well-matched to

their ligands. Virtual screening of complexes involved screening

groups of 70 or .1000 (mixes of decoys and ligands). The small

groups permitted screening of more proteins. The large groups

were more realistic virtual screen conditions with few true ligands

and many decoys. Internal consensus analysis allows both ligand

ranking and scoring. By changing the internal threshold for

scoring, only higher ranked molecules are scored as positive.

Supporting Information

Table S1 Efficacy of hybrid methods in classifying
native and decoy protein-ligand complexes.

(DOCX)

Acknowledgments

The generous assistance of the Long Island University Biocomputing

Facility is acknowledged.

Author Contributions

Conceived and designed the experiments: LM. Performed the experiments:

LM. Analyzed the data: LM. Contributed reagents/materials/analysis

tools: LM. Wrote the paper: LM.

References

1. Mobley DL, Dill KA (2009) Binding of small-molecule ligands to proteins: ‘‘what

you see’’ is not always ‘‘what you get’’. Structure 17: 489–498.

2. Li X, Li Y, Cheng T, Liu Z, Wang R (2010) Evaluation of the performance of

four molecular docking programs on a diverse set of protein-ligand complexes.

J Comput Chem 31: 2109–2125.

3. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of

docking with a new scoring function, efficient optimization, and multithreading.

J Comput Chem 31: 455–461.

4. Chang MW, Ayeni C, Breuer S, Torbett BE (2010) Virtual screening for HIV

protease inhibitors: a comparison of AutoDock 4 and Vina. PLoS One 5: e11955.

Ligand Binding Prediction

PLoS ONE | www.plosone.org 9 August 2011 | Volume 6 | Issue 8 | e23215



5. Cheng T, Liu Z, Wang R (2010) A knowledge-guided strategy for improving the

accuracy of scoring functions in binding affinity prediction. BMC Bioinformatics
11: 193.

6. Wang R, Lai L, Wang S (2002) Further development and validation of empirical

scoring functions for structure-based binding affinity prediction. J Comput Aided
Mol Des 16: 11–26.

7. Thompson DC, Humblet C, Joseph-McCarthy D (2008) Investigation of MM-
PBSA rescoring of docking poses. J Chem Inf Model 48: 1081–1091.

8. Guimaraes CR, Kopecky DJ, Mihalic J, Shen S, Jeffries S, et al. (2009)

Thermodynamic analysis of mRNA cap binding by the human initiation factor
eIF4E via free energy perturbations. J Am Chem Soc 131: 18139–18146.

9. Li H, Zhang H, Zheng M, Luo J, Kang L, et al. (2009) An effective docking
strategy for virtual screening based on multi-objective optimization algorithm.

BMC Bioinformatics 10: 58.
10. Fukunishi H, Teramoto R, Takada T, Shimada J (2008) Bootstrap-based

consensus scoring method for protein-ligand docking. J Chem Inf Model 48:

988–996.
11. Durrant JD, McCammon JA (2010) NNScore: a neural-network-based scoring

function for the characterization of protein-ligand complexes. J Chem Inf Model
50: 1865–1871.

12. Chae MH, Krull F, Lorenzen S, Knapp EW (2010) Predicting protein complex

geometries with a neural network. Proteins 78: 1026–1039. 10.1002/prot.22626.
13. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by

back-propagating error. Nature 323: 533–536.
14. Gohlke H, Hendlich M, Klebe G (2000) Knowledge-based scoring function to

predict protein-ligand interactions. J Mol Biol 295: 337–356.
15. Brylinski M, Skolnick J (2010) Comprehensive structural and functional

characterization of the human kinome by protein structure modeling and

ligand virtual screening. J Chem Inf Model 50: 1839–1854.
16. Irwin JJ, Shoichet BK, Mysinger MM, Huang N, Colizzi F, et al. (2009)

Automated docking screens: a feasibility study. J Med Chem 52: 5712–5720.
17. Katritch V, Jaakola VP, Lane JR, Lin J, Ijzerman AP, et al. (2010) Structure-

based discovery of novel chemotypes for adenosine A(2A) receptor antagonists.

J Med Chem 53: 1799–1809.
18. Lee K, Jeong KW, Lee Y, Song JY, Kim MS, et al. (2010) Pharmacophore

modeling and virtual screening studies for new VEGFR-2 kinase inhibitors.
Eur J Med Chem 45: 5420–5427.

19. Lu SH, Wu JW, Liu HL, Zhao JH, Liu KT, et al. (2011) The discovery of
potential acetylcholinesterase inhibitors: a combination of pharmacophore

modeling, virtual screening, and molecular docking studies. J Biomed Sci 18: 8.

20. Liang S, Meroueh SO, Wang G, Qiu C, Zhou Y (2009) Consensus scoring for
enriching near-native structures from protein-protein docking decoys. Proteins

75: 397–403.

21. Li Y, Liu Z, Wang R (2010) Test MM-PB/SA on true conformational ensembles

of protein-ligand complexes. J Chem Inf Model 50: 1682–1692.
22. Baum EB, Haussler D (1989) What size net gives valid generalization? Neural

Computation 1: 151–160.

23. Wang R, Fang X, Lu Y, Wang S (2004) The PDBbind database: collection of
binding affinities for protein-ligand complexes with known three-dimensional

structures. J Med Chem 47: 2977–2980.
24. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular

docking. J Med Chem 49: 6789–6801.

25. Irwin JJ (2008) Community benchmarks for virtual screening. J Comput Aided
Mol Des 22: 193–199.

26. Simon Z, Vigh-Smeller M, Peragovics A, Csukly G, Zahoranszky-Kohalmi G,
et al. (2010) Relating the shape of protein binding sites to binding affinity

profiles: is there an association? BMC Struct Biol 10: 32.
27. Kim JH, Lim JW, Lee SW, Kim K, No KT (2011) Ligand supported homology

modeling and docking evaluation of CCR2: docked pose selection by consensus

scoring. J Mol Model.
28. Ko GM, Reddy AS, Kumar S, Bailey BA, Garg R (2010) Computational

analysis of HIV-1 protease protein binding pockets. J Chem Inf Model 50:
1759–1771.

29. Eswar N, Eramian D, Webb B, Shen MY, Sali A (2008) Protein structure

modeling with MODELLER. Methods Mol Biol 426: 145–159.
30. Cross S, Baroni M, Carosati E, Benedetti P, Clementi S (2010) FLAP: GRID

molecular interaction fields in virtual screening. validation using the DUD data
set. J Chem Inf Model 50: 1442–1450.

31. Goodarzi M, Freitas MP, Ghasemi N (2010) QSAR studies of bioactivities of 1-
(azacyclyl)-3-arylsulfonyl-1H-pyrrolo[2,3-b]pyridines as 5-HT6 receptor ligands

using physicochemical descriptors and MLR and ANN-modeling. Eur J Med

Chem 45: 3911–3915.
32. von KM, Freyss J, Sander T (2009) Comparison of ligand- and structure-based

virtual screening on the DUD data set. J Chem Inf Model 49: 209–231.
33. Kahraman A, Morris RJ, Laskowski RA, Thornton JM (2007) Shape variation

in protein binding pockets and their ligands. J Mol Biol 368: 283–301.

34. Zhao W, Hevener KE, White SW, Lee RE, Boyett JM (2009) A statistical
framework to evaluate virtual screening. BMC Bioinformatics 10: 225.

35. Sanner MF (1999) Python: a programming language for software integration
and development. J Mol Graph Model 17: 57–61.

36. Tsai KC, Wang SH, Hsiao NW, Li M, Wang B (2008) The effect of different
electrostatic potentials on docking accuracy: a case study using DOCK5.4.

Bioorg Med Chem Lett 18: 3509–3512.

37. Wei D, Zheng H, Su N, Deng M, Lai L (2010) Binding energy landscape
analysis helps to discriminate true hits from high-scoring decoys in virtual

screening. J Chem Inf Model 50: 1855–1864.

Ligand Binding Prediction

PLoS ONE | www.plosone.org 10 August 2011 | Volume 6 | Issue 8 | e23215


