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Propellant slosh is a potential source of disturbance critical to the stability of space vehicles.  

The slosh dynamics are typically represented by a mechanical model of a spring mass damper. 

This mechanical model is then included in the equation of motion of the entire vehicle for 

Guidance, Navigation and Control analysis. Our previous effort has demonstrated the 

soundness of a CFD approach in modeling the detailed fluid dynamics of tank slosh and the 

excellent accuracy in extracting mechanical properties (slosh natural frequency, slosh mass, 

and slosh mass center coordinates).  For a practical partially-filled smooth wall propellant 

tank with a diameter of 1 meter, the damping ratio is as low as 0.0005 (or 0.05%). To 

accurately predict this very low damping value is a challenge for any CFD tool, as one must 

resolve a thin boundary layer near the wall and must minimize numerical damping.  This 

work extends our previous effort to extract this challenging parameter from  first principles: 

slosh damping for smooth wall and for ring baffle.  First the experimental data correlated into 

the industry standard for smooth wall were used as the baseline validation. It is demonstrated 

that with proper grid resolution, CFD can indeed accurately predict low damping values from 

smooth walls for different tank sizes.  The damping due to ring baffles at different depths from 

the free surface and for different sizes of tank was then simulated, and fairly good agreement 

with experimental correlation was observed.   The study demonstrates that CFD technology 

can be applied to the design of future propellant tanks with complex configurations and with 

smooth walls or multiple baffles, where previous experimental data is not available.  

I. Introduction 

Propellant slosh is a potential source of disturbance critical to the stability of space vehicles.  The slosh dynamics 

are typically represented by a mechanical model of a spring mass damper. This mechanical model is then included in 

the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. The typical parameters 

required by the mechanical model include natural frequency of the slosh, slosh mass, slosh mass center location, and 

the critical damping ratio.  During the 1960’s US space program, these parameters were either computed from an 

analytical solution for a simple geometry or by experimental testing of sub-scale configurations. Our previous work 

[1] has demonstrated the soundness of a CFD approach in modeling the detailed fluid dynamics of tank slosh and 

                                                 
1
 Chief Scientist, CMB, 215 Wynn Drive, 5th Floor, and Senior AIAA member 

2
 Aerospace Engineers, EV31, George C. Marshall Space Flight Center, MSFC, AL 35812, AIAA Member 

3
 Aerospace Engineers, Fluid Dynamics Branch-ER42, George C. Marshall Space Flight Center, MSFC, AL 35812, 

AIAA Member 
4
 Team Lead, Fluid Dynamics Branch-ER42, George C. Marshall Space Flight Center, MSFC, AL 35812, AIAA 

Member 



2 

American Institute of Aeronautics and Astronautics 

 

 

has shown excellent accuracy in extracting the mechanical properties for different tank configurations as a functiuon 

of  fill level. The verification and validation studies included a straight cylinder against an analytical solution, and 

sub-scale Centaur LOX and LH2 tanks with and without baffles against experimental results for the slosh frequency, 

slosh mass and mass center. The study shows that CFD technology can provide accurate mechanical parameters for 

any tank configuration and is especially valuable to the future design of propellant tanks, as there is no previous 

experimental data available for the same size and configuration as the current flight designs. 

Since the liquid oscillatory frequency may nearly coincide with either the fundamental elastic body bending 

frequency or the dynamic control frequency of the vehicle at some time during the powered phase of the flight, the 

slosh forces could interact with the structure or control system. This could cause a failure of structural components 

within the vehicle or excessive deviation from its planned flight path [2]. It is therefore necessary to consider means 

to provide adequate damping of the liquid motion and slosh forces and to develop methods for accounting for 

damping in the analyses of vehicle performance. Determination of slosh damping in a given tank configuration is a 

very challenging task. First, an analytical solution does not currently exist for the slosh damping due to high 

nonlinearity of the problem. While slosh frequency can be computed using linear potential theory, the damping 

physics involves the vorticity dissipation which requires full solution of the nonlinear Navier-Stokes equations.  

Previous investigations and knowledge of damping characteristics were all carried out by extensive experimental 

studies. Previously, four extensive experimental investigations have been carried out on viscous damping in a 

circular cylinder [3-6], and the damping values have been correlated to a functional form of: 

 
ReC=γ

 
(1)

 

where Re is a dimensionless parameter  analogous to an inverse Reynolds number [7]:              

 
3

Re
gR

ν
=

 
(2)

 

 

and C is a constant, γ is the damping ratio, or the critical damping ratio of the amplitude of the free surface 

oscillation, R is the tank radius, g is the gravitational acceleration, and ν is the kinematic viscosity of the liquid.   

Mikishev and Dorozhkin [6] proposed the following correlation from their tests [7]: 
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Where h is the liquid depth.  For large depth of h/R > 1.0, the above equation may be approximated by: 

 Re79.0=γ  (4) 

A similarly extensive but independent study by Stephens et al. [5] found a slightly different correlation: 
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When the liquid depth is large, equation (5) reduces to: 

 Re83.0=γ  (6) 
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The above correlations have become the industry standard methodology to compute slosh damping value.  For 

example, NASA Engineering and Safety Center (NESC) performed a comparison of the Orion Service Module slosh 

damping values with the Ares-1 launch vehicle slosh damping values and legacy slosh damping values from the 

Space Shuttle Program and the Apollo Saturn launch vehicle [8]. The empirically computed 1-g minimum slosh 

mode damping value from the above correlation for the Orion nitrogen tetroxide (NTO) oxidizer tank was found to 

be 0.0003 or 0.03%. Likewise the empirically computed 1-g minimum slosh mode damping value for the Orion 

monomethyl hydrazine (MMH) fuel tank was found to be 0.0006 or 0.06%. The NESC assessment team verified 

these empirical 1-g calculations of damping values.  

It should be noticed that the above correlations  are  only for right cylinders and applicability to curved bottom 

tanks is questionable. With advancement of CFD technology, it is possible to predict slosh damping directly from 

first principles. As one may realize the critical damping ratio for practical partially-filled propellant tank is as low as 

0.03% to 0.06%, this gives rise to a great challenge for any numerical prediction using a CFD tool, as the numerical 

damping used to stabilize the solution could be higher than the viscous damping.  Another challenge is the 

requirement to resolve thin boundary layers near the walls. 

The objective of this effort is to improve our understanding of the physics behind slosh damping and to validate 

CFD extracted damping against experimental data using the same parameters. The study will take a fundamentally 

sound approach first with validations against experiments for the smooth wall cylindrical tank. High-order numerical 

schemes will be applied using a technique developed to estimate and reduce/remove the numerical damping from 

the solution.  With the validated CFD model, we will then study the damping in the presence of a flat ring baffle 

which is  a commonly used as  means of slosh suppression.  

II. Computational Modeling Tool 

The computational software used to study the tank vertical sloshing phenomenon is the commercially available 

CFD-ACE+ program, which was originally developed by CFD Research Corporation (CFDRC), and is currently 

owned and distributed by ESI [8]. CFD-ACE+ is a multi-physics and multi-disciplinary simulation tool, and is 

especially suited for liquid slosh modeling.  

CFD-ACE+ solves the Navier-Stokes equations in a Lagrangian-Eulerian frame. The continuity and momentum 

equation can be generally written as: 

 ( )( ) 0dsvvd
dt

d

s
g =  ⋅−ρ+∀ρ

∀

 (7) 
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where φ are the Cartesian velocity components, v is the absolute fluid velocity, q the diffusive flux and Sφ are 

the volume sources. ∀ is the computational cell volume, S are bounding cell surfaces, and vg is the grid velocity.  If 

the grid is moving with time for the fluid-structure interaction problem, a space conservation law (SCL) is enforced 

during the grid deformation, 

  =∀
∀

dsvd
dt

d
g  (9) 

Related to the present liquid free surface problem, CFD-ACE+ contains a Volume of Fluid (VOF) module which 

is designed for applications involving two immiscible fluids.  In the current application, the first fluid is LH2, LOX, 

or water, and the second fluid is gaseous H2, O2, He or water vapor, respectively. In the VOF module, a single set 

of momentum and continuity equations is solved, but different property sets are defined for each fluid.  The volume 

fraction of one phase (in this case the liquid phase) is tracked throughout the solution to determine which fluid 

occupies each computational cell at any given time.  In cells containing both fluids, a special routine is used to 

locate the shape, location and normal of the interface.  When surface tension force is significant, its effect is applied 

in a conservative form.  For time dependent simulations such as the present tank under oscillatory force, a special 

second order algorithm is used to update the volume fraction in a cell from one time step to the next.  A second 

order geometric reconstruction scheme for the interface representation is employed to track the interface.  This 

unique reconstruction algorithm is currently available only for structured quadrilateral and hexahedral grids.  It is 

due to this algorithm that the present CFD solution is capable of capturing and maintaining a sharp interface 
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Figure 8. Schematic of ring baffle and damping in a cylindrical tank 

 

The most widely used damping equation at present is the one obtained by Miles [17] which is based on 

experiments of Keulegan and Carpenter [18].  The equation is written as : 

 � = 2.83e-4.60d/R �(3/2) Rη , � � AB/AT = 2(w/R) - (w/R)
2 (11) 

Here, d, w, AB, and � respectively denote the baffle depth, width, area, blockage ratio,  while �, R, and AT 

denote the slosh wave amplitude, local tank radius, and tank cross-sectional area. O'Neill suggested that the wall 

side force amplitude (F) is easier to measure experimentally than � , and is linearly related the slosh wave amplitude 

in dimensionless form. Thus the following Miles-O'Neill equation is a convenient modification [14].   

 F ≡ F/(�gR3) � 1.71(�/R) -> � = 2.16e-4.60d/R �(3/2) F  (12) 

Here, F  , �, and g are the dimensionless side force, the liquid density, and acceleration of gravity. Since F is 

also easier to measure than � in CFD simulations as well, the above Miles-O'Neill form will be used to compare 

CFD results. 

 

Computational Model  

Two experimental sets were selected for comparison: the investigation of Silveira, Stephens, and Leonard [13] 

due to their measurement of slosh frequency shift, and that of O'Neill [14] due to his measurement of damping vs. 

dimensionless side force. Both sets include studies of slosh wave decay in cylindrical tanks and are outlined in [15]. 

A grid with a single baffle located at dimensionless height (h-d)/R = 1.25 was initially used to develop the 

simulation. Subsequently, two grids were created with a single baffle located at (h-d)/R = 2.0, where d is the 

distance between baffle and the quiescent free surface, and h is the free surface height (see Figure 10).  This 

increased baffle height limits effects due to the tank bottom and is more consistent with experiments. The first grid 

has a baffle width ratio, w/R = 0.125 (� = 0.234, see equation (11)) while the second grid has w/R = 0.240 (� = 

0.422). 

Our previous grid refinement study found that at least four cells are needed along both the thickness and width of 

the baffle. To this end, a baffle thickness ratio of t/R = 1.5% was employed. While this is more than an order-of-

magnitude thicker than that usually used in practice (t/R ~ 0.1%), the baffle thickness is generally not considered a 

critical parameter [16] and {t/R, t/w} << 1. The hyperbolic tangent edge feature of the CFD-GEOM program was 

used to blend the grid spacing defined by the baffle thickness up to that defined by the top and bottom faces of the 

cylinder. These considerations led to grids of approximately 60K cells. 

Since ideal transverse slosh occurs only along a single axis (x), half-cylindrical domains were selected in order to 

reduce the required computation time. The boundary conditions employed are no-slip along the tank walls and baffle 

edges, and symmetry along the xz plane. The w/R = 0.125 grid is illustrated in Figure 9, while Figures 10 and 11 

illustrate fluid motion in a typical simulation. The initial free surface with zero velocity is shown in Figure 10, 
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obtained for the linear analysis, where the amplitude of the slosh wave is small.  CFD solution can go beyond the 

linear stability regime, and predict what will happen after surface breakup.  CFD simulation also has no limitation 

on the gravitational acceleration, and can be applied to a realistic flight model. 

Application of the CFD modeling tool has great potential in the design of propellant tank with multiple baffles. 

In general, the practice to estimate the total damping for multiple baffles is by a linear superposition of the estimated 

damping contribution from each individual baffle. This approach is considered adequate so long as the baffle 

separation distances exceeds their widths (S > W). However, experimental data involving multiple baffles are 

limited. CFD simulation could be used to determine the validity and applicability of such rules. Finally, CFD 

simulation could also be used to help develop a relation between slosh frequency and baffle parameters. Using 

baffles to shift frequency could be an alternative to tank compartmentalization. 
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