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peroxisome proliferation). Our findings provide evidence 

that identifying organ toxicity can be achieved in a robust, 

reliable, human-relevant system, representing a non-animal 

alternative for systemic toxicology.
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Introduction

Toxicology is undergoing a paradigm shift, from predomi-

nantly observational science (based on animal testing), to 

predominantly predictive science focusing on target-specific, 

mechanism-based, biological observations, contingent upon 

in vitro data and in silico predictions, often referred to as 

toxicology for the twenty-first century (Hartung 2009). The 

development and application of modern tools can provide 

deeper insights into the molecular mechanisms underlying 

toxicity in a high throughput manner (Attene-Ramos et al. 

2015; Liu et al. 2015). Such developments are being driven 

by the need to improve the safety evaluation of chemicals in 

a more efficient, human-relevant context (Judson et al. 2014) 

to meet changing regulations and promote the use of non-

animal models to predict toxicity (Ramirez et al. 2013b).

Generally, toxicity studies require large numbers of ani-

mals, take several months to years to complete, are usually 

very costly, and can only test low numbers of compounds in 

a given time period. Current animal testing is primarily per-

formed in rats and mice, and although these rodents exhibit 

many of the same responses to chemicals as humans, there 

are qualitative and particularly quantitative differences. Most 

toxicology studies, particularly those used to fulfil regula-

tory requirements rely on apical endpoints, such as signs of 

clinical toxicity, hematology, urinalysis as well as clinical and 

Abstract Liver toxicity is a leading systemic toxicity of 

drugs and chemicals demanding more human-relevant, high 

throughput, cost effective in vitro solutions. In addition to 

contributing to animal welfare, in vitro techniques facilitate 

exploring and understanding the molecular mechanisms 

underlying toxicity. New ‘omics technologies can provide 

comprehensive information on the toxicological mode of 

action of compounds, as well as quantitative information 

about the multi-parametric metabolic response of cellular 

systems in normal and patho-physiological conditions. Here, 

we combined mass-spectroscopy metabolomics with an 

in vitro liver toxicity model. Metabolite profiles of HepG2 

cells treated with 35 test substances resulted in 1114 cell 

supernatants and 3556 intracellular samples analyzed by 

metabolomics. Control samples showed relative standard 

deviations of about 10–15%, while the technical replicates 

were at 5–10%. Importantly, this procedure revealed con-

centration–response effects and patterns of metabolome 

changes that are consistent for different liver toxicity mecha-

nisms (liver enzyme induction/inhibition, liver toxicity and 
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histopathological evaluations. Despite these numerous evalu-

ations, their main target is to determine a dose with no effect 

(no observed effect level: NOEL), rather than to understand 

the mechanisms responsible for inducing toxicity. The latter, 

however, is an essential component to address questions about 

the human relevance of these animal tests. The answer to such 

questions is conventionally circumvented by introducing safety 

factors (usually ranging between 100 and 1000-fold below 

the observed effect level). The appropriateness of these safety 

factors is hardly ever addressed. New approaches to toxicity 

testing offer the chance to open this “black box” of unknown 

liabilities, and provide a valuable foundation for more targeted 

risk assessment. Experience from clinical trials suggests that 

20–40% of drugs fail because of toxic side-effects not pre-

dicted (Arrowsmith 2012), about half of this being liver tox-

icities, and only about 43% of these predictable in retrospect 

from the rodent studies (Olson et al. 2000), which are the only 

information typically generated for industrial chemicals.

Metabolomics can provide a readout of a biological 

system’s biochemical and physiological status (Choucha 

Snouber et al. 2013; Van den Hof et al. 2014; Vermeersch 

et al. 2015). In comparison to other omics technologies, it is 

thought to best represent a phenotype and hence “classical 

toxicology” (Bouhifd et al. 2013). Metabolome analyses of 

body fluids such as urine or blood plasma have been shown 

to provide new insights into toxicity (Kamp et al. 2012a; 

Mattes et al. 2014; Reily and Tymiak 2015) as well as pre-

dicting the toxicity of compounds at an early stage of devel-

opment (van Ravenzwaay et al. 2012a). Such technologies 

are not only highly useful to gain more information from ani-

mal studies but also help to reduce animal testing by refining 

the methods. However, the above-mentioned investigations 

necessarily still rely on animal studies and have a limited 

potential to investigate the cellular, mechanistic origin of 

toxicity in humans.

Therefore, we decided to apply metabolomics in an 

in vitro human cell system, to address whether organ toxicity 

could be identified in a robust and reproducible way. Here, 

we report on a concept we have developed using a highly 

reproducible HepG2 liver cell-based system validated with 

35 test substances (Table 1, Supplementary Table 1) over 

a period of more than 3 years using both supernatant and 

intracellular metabolome analysis of natural low-molecu-

lar-weight endogenous constituents of cells (Ramirez et al. 

2012, 2013a).

Materials and methods

Cell culture

HepG2 (human hepatocyte carcinoma, acquired from ATCC, 

clone HB8065, maximum passage number 20) cells were 

maintained and grown on Dulbecco’s MEM media supple-

mented with 1 v/v% of penicillin/streptomycin, L-glutamine 

(200 mM, 1 v/v%), non-essential amino acids (100x, 1 v/v%) 

and 10% FBS (Biochrom, Germany). For experiments, 

0.45 × 106 cells were grown on multi-well plates or  lumox® 

dishes 35 (35 mm, Sarstedt, Germany) and incubated under 

5%  CO2 at 37 °C for 24 h (Bordag et al. 2016b). After incu-

bation, culture media were exchanged and chemical treat-

ment was applied for 48 h. Cells and their supernatants were 

then harvested, frozen and stored at − 80 °C under inert gas 

atmosphere until analysis. Cell viability was measured by 

WST-1, cells were seeded in dishes and treated as well as the 

cells used for metabolome analysis. After exposure time, cell 

culture media was removed and 500 µL of the WST-1 work-

ing reagent per dish were added and dishes were incubated 

at 37 °C. After 1 h, 100 µL of supernatant were transferred 

to a 96-well plate in duplicates. Absorbance was measured 

at 450 nm with a reference wavelength of 600–700 nm.

Treatment substances

The substances used for the experiments reported here have 

been selected because of their known in vivo effects. In 

particular, they have been chosen to proof whether HepG2-

based in vitro metabolomics can serve as a tool for the detec-

tion of different liver toxicities. Therefore, these compounds 

were selected based on the knowledge about their liver 

effects including the underlying modes of action. The fol-

lowing test substances were selected for treatment of HepG2 

cells in different experiments (Table 1).

Range finder experiments

Prior to metabolome experiments, range finder experiments 

for all tested substances were performed to select a con-

centration range at which the protein concentration was not 

reduced below 80% compared to controls, and preferably in 

the range of 90% at the highest concentration. For treatment 

with each test substance, increasing concentrations were set 

up (in triplicates). After 48 h, protein content was measured 

using bicinchoninic acid (BCA; see below). The concentra-

tion that reduced the total protein content by a maximum 

of 20% was designated as the high dose (HD) for the main 

experiment. In general, one-third of the HD concentration 

was selected as the low dose (LD).

Treatment tests

For treatment, dishes were treated with vehicle control only 

(VC, final concentration of DMSO was 0.5%, 16 replicates 

each time), or with HD test substance (final concentration 

of DMSO was 0.5%, 8 replicates each time) and LD test 

substance (final concentration of DMSO was 0.5%, at least 
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Table 1  Overview of the test substances used for treatment of HepG2 cells for 48 h

Those highlighted in bold represent compounds discussed in the text

Substance CAS-Nr. Chemical class Category MoA (target in)

4-Chloroaniline 106-47-8 Amine Industrial chemical Methemoglobin formation

β-Naphthoflavone 6051-87-2 Benzoflavone Industrial chemical Liver enzyme inducer

Acetaminophen 103-90-2 Drug Pharma Cyclooxygenase inhibitor

Acifluorfen 50594-66-6 Diphenylether Herbicide Inhibition of protoporphyrinogen oxidase 

(PPO)

Aroclor 1254 11097-69-1 Polychlorinated biphenyl Industrial chemical Liver enzyme inducer

Benzylbutyl phthalate 85-68-7 Phthalic acids Industrial chemical Peroxisome proliferation

Bezafibrate 41859-67-0 Fibric acids Hypolipidemic agents Peroxisome proliferation

Carbaryl 63-25-2 Carbamate Insecticide Acetylcholinesterase (AChE) inhibitors

Cyclosporin A 59865-13-3 Peptides, cyclic Immunosuppresive agents Block the transcription of cytokine genes in 

activated T cells

Cycloxidim 101205-02-1 Pyrans Herbicide Fatty acid biosynthesis in grass

Dichlorprop 120-36-5 Phenoxyacetate Herbicide Action like indole acetic acid (synthetic 

auxins)

Dichlorprop-p 15165-67-0 Phenoxyacetate Herbicide Action like indole acetic acid (synthetic 

auxins)

Digitoxin 71-63-6 Digitalis glycosides Anti-arrhythmia agent Heart/Na–K ATPase inhibitor

Dimethenamide 87674-68-8 Chloroacetamide Herbicide Long chain fatty acid inhibitor

Dimethenamide-p 163515-14-8 Chloroacetamide Herbicide Long chain fatty acid inhibitor

Dimethoate 60-51-5 Organophosphate Insecticide Acetylcholinesterase (AChE) inhibitors

Dimethylformamide 68-12-2 Formamide Industrial chemical Not applicable (liver toxicant)

Fipronil 120068-37-3 Phenylpyrazole Insecticide GABA -gated chloride channel blockers

Fluoroglycofen-ethyl 77501-90-7 Diphenylether Herbicide Inhibition of protoporphyrinogen oxidase 

(PPO)

Fluoxetine hydrochloride 56296-78-7 Propyolamine Antidepressant Selective serotonin reuptake inhibitor

Imazamox 114311-32-9 Imidazole Herbicide Inhibition of acetolactate synthase ALS 

(acetohydroxyacid synthase AHAS)

MCPA 94-74-6 Phenoxyacetate Herbicide Action like indole acetic acid (synthetic 

auxins)

Mecoprop 93-65-2 Phenoxyacetate Herbicide Action like indole acetic acid (synthetic 

auxins)

Mecoprop-p 16484-77-8 Phenoxyacetate Herbicide Action like indole acetic acid (synthetic 

auxins)

Metconazole/cis 115850-27-6 Triazole derivative Fungicide Enzyme inhibitor

Metconazole/cis–trans 125116-23-6 Triazole derivative Fungicide Enzyme inhibitor

Nicosulfuron 111991-09-4 Sulfonylurea Herbicide Inhibition of acetolactate synthase ALS 

(acetohydroxyacid synthase AHAS)

Pendimethalin 40487-42-1 Dinitroaniline Herbicide Microtubule assembly inhibition

Phenobarbital sodium salt 57-30-7 Barbiturate Sedative Brain/GABA modulator

Pentobarbital sodium salt 57-33-0 Barbiturate Sedative Brain/GABA modulator

Pyridaben 96489-71-3 Pyridazine Pesticide Mitochondrial complex I electron transport 

inhibitors

Tamoxifen 10540-29-1 Stilbenes Antineoplastic Estrogen receptor modulator

Tetracycline 60-54-8 Tetracyclines Pharma Protein synthesis inhibitor

Verapamil hydrochloride 152-11-4 Phenethylamine Anti-arrhythmia agent Heart/Ca2 + channel blocker, CYP3A4 

inhibitor

Vinclozolin 50471-44-8 Oxazoles Fungicide NADH cytochrome c reductase in lipid 

peroxidation

Wy-14643 50892-23-4 Pyrimidines Hypolipidemic agents Peroxisome proliferation
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8 replicates each time). In addition, blank controls were set 

up as dishes without cells but containing media (16 rep-

licates) and technical replicates (pools) were prepared as 

samples containing only cells with VC (0.5% DMSO, 16–20 

replicates per testing of 2 test substances). After treatment, 

supernatant and cells were harvested, strictly ensuring that 

the time for harvesting every sample did not exceed 30 s.

For exosome analysis, cell supernatants (1 mL per sam-

ple only) were transferred to Eppendorf tubes, quickly cen-

trifuged to eliminate potential cell debris, re-transferred to 

fresh Eppendorf tubes, gassed with argon to avoid sample 

oxidation and stored at − 80 °C until measurement. For 

the analysis of intracellular metabolomics, the bottom of 

the dishes was removed with a scalpel and rinsed three 

times in 0.9% NaCl solution (pre-warmed to 37 °C). After 

rinsing, membranes were transferred to pre-cooled 2 mL 

Eppendorf™ tubes (placed in liquid nitrogen). The Eppen-

dorf tubes were then placed in dry ice and quenched with 

600 µL of dichloromethane-ethanol (DCM/EtOH, 9:11, v/v 

at − 80 °C). Every sample was gassed with argon as with 

the supernatants. Samples were stored at − 80 °C until fur-

ther processing. Further details on the preparation of the 

metabolome samples can be found in Bordag et al. (2016a).

Determining protein content

Protein content was determined in a sister culture handled 

and treated exactly as the cultures used for metabolome 

analysis. Three replicates per test substance concentration 

or control were prepared and grown in dishes. After 24 h of 

seeding, cells were treated for 48 h. After treatment, cells 

were lysed with 0.1% triton x-100 (Sigma-Aldrich, Ger-

many). Lysates were pipetted (25 µL) into 96-well plates and 

incubated with 200 µL of BCA solution for 30 min at 37 °C. 

After incubation, plates were measured with a photometer 

and protein content was calculated by normalization with a 

standard curve (Pierce, Thermo Fisher, Germany).

Analytics:  MxP® broad profiling

An extraction method for polar metabolites from cells grown 

on dishes (Balcke et al. 2011) was modified to comprehen-

sively extract lipid and polar metabolites. For this new extrac-

tion protocol 4 mg of ammonium acetate dissolved in 10 µL 

water, 400 µL water, 50 µL toluene and 45 µL methyl tert-

butyl ether were added, containing internal standards for 

 MxP® Broad Profiling as described previously (van Raven-

zwaay et al. 2007). To each sample, 3 mm stainless steel 

beads were added and the samples homogenized with an 

Omni Bead Ruptor 24 3 times for 30 s each (10 s pause in 

between) at 3.5 m/s. The extracts were transferred to Ultra-

free ®—MC Durapore PVDF 5 µm filter units (Millipore 

UFC30SV00) and spun down for 5 min at 12,000 rpm, 12 °C 

in an Eppendorf™ 5417R microcentrifuge. Filter units were 

discarded, 200 µL DCM were added to the filtrates, agitated 

for 5 min at 1400 rpm, 12 °C in an Eppendorf™ Thermomixer 

Comfort and phase separation was achieved by centrifugation 

for 5 min at 12,000 rpm, 12 °C. Subsequently, aliquots of the 

polar and non-polar fractions were further treated and analyzed 

as described for  MxP® Broad Profiling (Jung et al. 2013) with 

GC–MS (6890 GC (Agilent) coupled to a 5973 MS-System 

(Agilent) and LC–MS/MS (1100 HPLC (Agilent) coupled to 

an API4000 MS/MS-System (Applied Biosystems), using for 

LC–MS/MS a technology, which allows MRM in parallel to a 

full scan analysis (Walk and Dostler 2003).

Pooled reference samples derived from aliquots of all con-

trol samples (per matrix) were measured in parallel throughout 

the entire analytical process. Spent medium and intracellular 

data were normalized against the median in the pool reference 

samples to give pool-normalized ratios (performed for each 

sample per metabolite). This compensated for inter- and intra-

instrumental variation.

To correct for differences in cell numbers within and 

between different treatment groups, the data for both spent 

medium and intracellular metabolite levels were also normal-

ized to the within sample median. The median normalization 

produced a new set of values Xmed

ij
 according to the following 

formula:

with X
i
. = (X

i1, X
i2,… , X

im
), representing the values from 

the ith sample.

Here, the index i = 1, 2,…, n denotes the samples and j = 1, 

2,…, m denotes the metabolites, so that Xij represents the pool 

normalized ratio of metabolite j from the sample i.

For intracellular metabolomics analysis, the median of 

each sample was calculated from 117 known and 77 unknown 

metabolites. In the case of supernatant medium data the sam-

ple median was calculated from 70 known and 19 unknown 

metabolites. A metabolite is regarded as known if the chemical 

identity of the metabolite has been determined.

To investigate whether the experimental variability 

remained stable over time, we calculated the variance of every 

log-transformed metabolite for both pooled samples (technical 

replicates) and control samples in each work package. These 

variances were back-transformed to the linear scale, yielding a 

relative standard deviation (RSD) using the following formula:

Metabolite profiling and pair-wise comparison

To generate metabolic profiles for the different treatments, 

the heteroscedastic t test (Welch test) was applied to the 

log-transformed metabolite data to compare treated groups 

Xmed

ij
=

Xij

median(Xi.)
,

RSD = 1 − 10−sdlog .
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with their respective controls. The p values, t values and 

ratios of corresponding group medians were collected as 

metabolic profiles and stored in the database  MetaMap®Tox 

(van Ravenzwaay et al. 2012b). The metabolite patterns were 

established applying a 5% significance level. To be able to 

compare the metabolite profiles in HepG2 cells induced by 

the different treatments, the similarity between two treat-

ments was determined by the Pearson correlation between 

their respective t value profiles. All pair-wise correlations 

were calculated.

Statistical analysis

Metabolite values were log10-transformed for the entire 

statistical analysis to better approximate a normal distribu-

tion. For univariate analysis, linear models (statistical soft-

ware R (R Development Core Team 2014)) were set up with 

the factors: substance, dose and work package as well as 

all interactions. All factors were treated as categorical. For 

principal component analysis, the log-transformed metabo-

lite data was centered and scaled to unit variance. Scaling to 

unit variance introduced a common scale for all metabolites 

independent of their absolute variance. Thereby, the result-

ing models obtained robustness, i.e., a single or few high-

variance metabolites could not dominate them.

Results

Metabolite identification and general cytotoxicity effects 

of test substances

We investigated the analytical capacity of the metabolome 

platform using state-of-the-art LC–MS/MS and GC–MS, 

which allowed us to consistently detect, quantify and 

identify 89 supernatant and 194 intracellular HepG2 cell 

metabolites (Fig. 1). Although these cells have limitations 

(i.e., incomplete metabolic competence relative to primary 

hepatocytes), HepG2 cells represent a well-accepted model 

of human liver cells simple enough and controllable under 

in vitro conditions to provide robust data over time.

Prior to selecting HepG2 cells, we investigated several 

other cellular systems, e.g., precision cut liver slices, Hep-

aRG cells and primary liver microtissues. However, in our 

experimental set up, which was the same as described here, 

none of these alternative cellular systems provided repro-

ducible data. The precision cut liver slices had a rather low 

viability, and a profound difference between each slice, mak-

ing reliable and consistent metabolomic analyses impossi-

ble. The HepaRG cells were obtained in an undifferentiated 

state, and even after differentiation in vitro using 1% DMSO, 

analysis of several differentiation markers indicated that the 

process was not fully reproducible, making the system labile 

and unsuitable for metabolomics. When applying metabo-

lomics to fresh liver microtissues, the amount of biological 

material obtained in each microtissue was not sufficient to 

reliably measure metabolites, i.e., many of the metabolites 

were below the limit of detection/quantitation. Pooling of 

microtissues only partly solved this problem and still led to 

metabolite amounts that were not always sufficiently high for 

a reliable quantification. A further increase of microtissues 

to be combined was not considered because the resources 

needed would render this experimental set-up as unpractical. 

To our experience, a minimum number of 2 million cells 

should be used for intracellular metabolome measurements 

to achieve good quantitation and reproducibility of a high 

number of targeted metabolites.

To ensure that observed metabolome changes were not 

related to cell death or general cytotoxicity, we evaluated cell 

viability (water soluble tetrazolium, WST-1), and protein 

content (BCA). Cell viability was equal to, or above 90%. 

Despite careful selection of the high concentration, based 

on the range-finding experiments, at the high concentration 

(HC) of 8 out of 33 test substances reduced protein con-

tent slightly below our threshold of ≥ 80% (Supplementary 

Table 2). Test substances reducing protein content, consid-

ered a sign of cytotoxicity, induced consistent changes in 

certain metabolites, which might serve as internal cellular 

status markers for cell cytotoxicity in the future. However, 

Fig. 1  Metabolites distributed according to their metabolite class. 

Left: 89 metabolites found in the supernatant of HepG2 cells. Right: 

194 metabolites found intracellular in HepG2 cells. The distribution 

and actual numbers of the different identified metabolite classes are 

depicted, where unknown represents metabolites undergoing chemi-

cal class identification
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the altered “cytotoxicity” metabolites did not hinder iden-

tification of metabolite changes related to specific toxicity 

mechanisms (see below).

Standardization and reproducibility

To ensure the use of novel technologies in an industrial con-

text and their acceptance by regulatory bodies, it is essen-

tial to assess quality parameters such as reproducibility and 

reliability. During the project, we generated huge numbers 

of samples and realized early on that every step needed to 

be highly standardized and technically accurate. The major 

breakthrough was the sample harvesting; every sample must 

be quenched and shock frozen within a maximum of 30 s. 

Moreover, avoiding the need for elaborate normalization 

processes to account for differences in cell numbers obtained 

during harvesting, required a new process. Therefore, we 

used Lumox™ dishes with removable breathable membranes 

supporting the growth of cells and rapid preparation and 

extraction of intracellular metabolites, which proved to be 

one essential element for the success of the study.

Lumox™ dishes have several advantages over cell trypsi-

nization and scratching, which not only generate stress for 

the cells, but also take longer than 1 min to perform, raising 

the risk of inducing changes in metabolites related to cell 

processing rather than treatment. Another important fea-

ture of our technology was the normalization strategy. This 

can be achieved by comparing the protein content of sister 

cultures, a rather inaccurate approach, or by using statisti-

cal normalization to the median over all metabolites for the 

sample, a strategy with the advantage that the median can be 

determined in the measured sample rather than a sister cul-

ture. While small differences occurred in the control base-

line levels, the relative change from control to treated was 

remarkably stable, as identified in the pair-wise comparison 

of the respective t value profiles (data not shown).

The analysis of experimental variability over time dem-

onstrated the robustness and reproducibility of the metabo-

lomics in vitro method, as evaluated by statistical analysis 

of the metabolite profiles in 1114 cell supernatants and 3556 

intracellular samples from 7 experiments performed within 

3 years (Fig. 2). Comparing the control samples generated 

in different work packages revealed a constant behavior of 

the RSD with small variabilities of about 10–15%, while the 

technical replicates had an RSD of about 5–10%. Reproduc-

ibility was also evaluated under treatment conditions using 

a reference liver toxic substance, bezafibrate, as a posi-

tive control in all experiments. The metabolome profile of 

different bezafibrate experiments clustered together in all 

analyses (supernatant/intracellular, low/high dose), indicat-

ing the high quality and homogeneity of the samples and 

experiments.

Another important aspect for toxicology is identifying 

concentration response effects following chemical treat-

ment. Concentration-dependent responses were analyzed 

in samples treated with bezafibrate by principle component 

analysis (PCA). The metabolome profile of control, or low 

and high dose bezafibrate samples clustered together in both 

supernatant and intracellular samples; however, the samples 

were all well separated from one another, suggesting observ-

able concentration-dependent effects (Fig. 3).

In addition to PCA, we also evaluated the number of 

changed intracellular metabolites after treatment by a 

small set of the analyzed compounds (Fig. 4). The data 

revealed dose-dependency in all cases, with higher num-

bers of changed metabolites recorded after high dose treat-

ments. However, the strength of the dose-dependent effect 

varied from treatment to treatment. For example, fluoro-

glycofenethyl exhibited stronger dose-dependency than 

Fig. 2  Variability of con-

trols generated over 3 years. 

Displayed are the total relative 

standard deviations (RSD) of 

all control samples grouped per 

experiment (study) and cor-

rected from the weak variability 

(depicted in red) and technical 

(depicted in blue) samples and 

grouped chronologically accord-

ing to the time when the experi-

ments were performed. The 

biological variability (purple) 

was estimating by subtracting 

the technical from the total 

variance on the log-scale and 

then transforming to RSD as 

described in the text
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β-naphthoflavone: the former induced 64 metabolite changes 

at the low dose and 123 at the high dose level, while the lat-

ter already induced 150 metabolite changes at the low dose, 

which only increased slightly to 169 at the high dose. It is 

important to note that β-naphthoflavone had much stronger 

effects at considerably lower concentrations (10 and 30 µM) 

than fluroglycofenethyl (40 and 120 µM).

Reproducibility was also evaluated for bezafibrate treat-

ments at high dose by means of pair-wise comparison 

(PWC) using the Pearson correlation ranking. The analysis 

included a maximum of 14 independent experiments where 

bezafibrate served as a positive control of liver effects. Pre-

vious studies from metabolomics in vivo have indicated 

that replicates are considered perfectly reproducible when 

they are top ranking in the PWC over samples or replicates 

from other conditions (Kamp et al. 2012a). For the PWC 

analysis, seven independent experiments were available for 

supernatant, and 14 for intracellular data (both high dose). 

When analyzing the supernatant, bezafibrate-induced pro-

files exhibited a high reproducibility, 6/7 experiments occu-

pying the first 6 positions of the Pearson rank, exhibiting 

a Pearson correlation coefficient (r) ranging from 0.94 to 

0.85, followed by a cluster of 4 low dose bezafibrate experi-

ments and the 7th high dose experiment (r = 0.845, Pearson 

rank 10). For the PWC of bezafibrate high dose data from 

the intracellular samples, all ranked in the top 14 positions 

(r = 0.956, Pearson rank 1 to 0.805, Pearson rank 13), fol-

lowed by bezafibrate low dose and other compounds show-

ing similar toxicity modes of action (data not shown). Since 

all evaluated experiments covered a period of 3 years, this 

indicates excellent reproducibility over time.

Supernatant and intracellular metabolomics of specific 

liver MoAs

Another major breakthrough was that we were able to meas-

ure the metabolites inside the cells. Many metabolomics 

in vitro studies in mammalian systems only measure metabo-

lites in the cell supernatant. Initially, we also did this before 

optimizing our standardized process to be rapid enough to 

reduce intracellular sample variability during harvesting 

(Bordag et al. 2016a). A further essential aspect of our study 

was selecting specific reference test substances to monitor 

specific liver modes of actions (MoAs): one set induced per-

oxisome proliferation and a second induced the expression 

of xenobiotic metabolizing liver enzymes, both important 

modes of action in liver toxicity from in vivo studies. A 

third set of substances that neither induce liver enzymes nor 

peroxisome proliferation served as important controls to test 

the specificity of the system.

The PCA data of supernatant and cell lysates induced by 

reference test substances clearly showed that the degree of 

distinction between the two different MoAs is superior when 

using intracellular metabolomics data (Fig. 5). Moreover, 

the intracellular metabolomics data also better reveal the 

concentration-dependency (LC versus HC). Considering this 

information, we decided to use only intracellular metabo-

lomics data from HC treatment as the most expedient way 

to draw conclusions about specific toxic effects and MoAs.

First, we analyzed the metabolic profile of all substances 

tested to establish a general pattern of liver toxicity compris-

ing metabolites concordantly regulated in most of the treat-

ments. We identified 38 changed metabolites that showed 

“general or common liver metabolite changes” (Supplemen-

tary Fig. 1). This pattern comprised 25 lipids (including 16 

unknowns), 6 energy related metabolites, 5 amino acids, 1 

amino acid-related metabolite and 1 carbohydrate. Identify-

ing these metabolites was crucial to “clean-up” the MoA 

profiles and to enhance their specificity.

Second, based on the metabolite profiling of at least 

3 reference test substances sharing the same liver toxic 

MoA, we identified patterns of metabolite changes that 

are common for these at least three reference compounds, 

i.e., these metabolites are showing statistically significant 

similar regulation for all reference compounds used. This 

list of statistically significantly changed metabolites was 

further refined by subtracting the list of general toxicity 

metabolites, resulting in a more specific pattern. Now the 

Fig. 3  Dose response effects. 

Principal component analysis 

(PCA) of all control samples 

(red) and all bezafibrate treated 

samples in low dose (LD, 

green) and high dose (HD, blue) 

treatments. a Supernatant and b 

intracellular metabolomics data 

(color figure online)
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resulting pattern was analyzed against the complete data 

set of all tested substances and further refined through 

addition or removal of metabolites in order to increase 

specificity and sensitivity. Specificity and sensitivity are 

given if the resulting pattern can identify further refer-

ence compounds with the same mode of action while at 

the same time excluding other compounds with a differ-

ent mode of action. Applying this procedure to reference 

substances sharing liver enzyme induction or peroxisome 

proliferation MoAs enabled us to identify specific signa-

ture patterns for each MoA.

Fig. 4  Dose response effects on metabolite changes. The number of changed metabolites induced by liver enzyme inducers and peroxisome pro-

liferators at different doses (low dose in blue and high dose in red, specifications on the dose are depicted per test substance) (color figure online)
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Liver enzyme inducers (intracellular metabolome)

Using the metabolome profiles of aroclor, pendimethaline 

and dimethenamide, three typical liver enzyme inducers, we 

established a pattern comprising 9 metabolites: 3 lipid and 

complex lipid metabolites, 4 amino acids and related, 2 tria-

cylglycerols (Fig. 6). With the pattern in place, metabolite 

profiling could identify other compounds with liver enzyme 

inducing properties: fipronil, dimethenamide-p, pyridaben, 

β-naphthoflavone and vinclozoline. Interestingly, profile 

comparison with a peroxisome proliferator, acifluorfen (see 

below), revealed a different pattern. This confirms a biologi-

cal selectiveness related to the MoA of the test substances 

and the effects induced in the cells.

Liver peroxisome proliferators (intracellular 

metabolome)

Three liver peroxisome proliferator (PP) reference sub-

stances were used to establish a PP pattern: acifluorfen, 

fluoroglycofen-ethyl and Wy-14643. The signature pattern 

contained 12 intracellular metabolites, including 4 amino 

acids and related, 6 lipids and complex lipids and 2 from 

other metabolite classes (Fig. 6). This pattern enabled us 

to recognize further PP substances: bezafibrate, dichlor-

prop, dichlorprop-p and mecroprop, indicating the reli-

ability of the signature pattern to identify specific changes 

associated with peroxisome proliferators. Mecroprop-p 

was also correctly identified at a 0.15 p value; this was due 

to the statistical variation of one metabolite. Benzyl butyl 

phthalate was not identified, possibly due to its very low 

solubility as well as the rather low metabolizing capac-

ity of HepG2 cells (taking into account that the phthalate 

monoesters are the active metabolites for phthalate toxic-

ity). These findings represent the proof of concept that it is 

possible to recognize toxicological MoAs in a reliable and 

reproducible manner using metabolomics in vitro applied 

to cellular models.

To extend our metabolome analysis into a more mecha-

nistic analysis of toxicity effects, we focused further on PPs. 

These include pharmaceutical and industrial chemicals that 

increase the number and size of peroxisomes in vivo (Cor-

ton and Lapinskas 2005), and can enhance beta oxidation, 

which plays an important role in lipid metabolism. During 

beta oxidation, peroxisomes oxidize a major proportion of 

very long chain fatty acids using coenzyme A, synthesized 

intracellularly from pantothenic acid, as an initial activa-

tor. Subsequently, bile acid-CoA thioesters are cleaved to 

form unconjugated bile acids and converted to bile salts 

by conjugation to taurine and glycine before secretion into 

the bile (Vessey et al. 1983; Chiang 1998). We focused on 

the biosynthesis of pantothenic acid and taurine, as well as 

changes in metabolites related to lipid metabolism (Fig. 6). 

Both pantothenic acid and taurine were down-regulated, pos-

sibly because the cells would need more pantothenic acid to 

produce acetyl CoA as an activator of beta oxidation, and 

require more taurine to conjugate the bile acid products of 

beta oxidation (Chiang 1998).

Many of the metabolites related to lipid metabolism, 

specifically those involved in the biosynthesis of unsatu-

rated fatty acids, were down-regulated (i.e., eicosadienoic 

acid, eicosapentaenoic acid, elaidic acid), probably due to 

enhanced peroxisomal activity. This applied to the two clas-

sical hypolipidemic agents, Wy-14643 and bezafibrate, but 

was slightly different for acilfluorfen and fluoroglycofen-

ethyl. The latter also induce biochemical and morphologi-

cal changes in liver attributable to peroxisome proliferation 

(HSE 1992), but might not have such a targeted effect on 

lipid metabolism as the hypolipidemic agents especially 

designed to affect lipid metabolism.

Fig. 5  Metabolomics of specific liver MoAs. Principal component 

analysis (PCA) of control samples (red squares) and peroxisome 

proliferator-treated samples [green crosses  =  low dose (LD), green 

dots  =  high dose (HD); including acifluorfen, bezafibrate, dichlor-

prop, dichlorprop-p, fluroglycofenethyl, mecoprop, mecoprop-p and 

Wy-14643] as well as liver enzyme inducer-treated samples (blue 

crosses = LD, blue dots = HD; including aroclor, β-naphthoflavone, 

fipronil, pendimethalin). a Supernatant and b intracellular metabo-

lomics data; the latter more efficiently distinguish between different 

MoAs and dose-dependency (color figure online)
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PCA analysis of several classes of compounds

In the above paragraphs, we have described a procedure 

to identify liver MoAs by determining specific patterns of 

metabolite change. This is basically the same method which 

we have been using for the identification of systemic toxic-

ity MoAs in in vivo studies (van Ravenzwaay et al. 2007; 

Kamp et al. 2012b). A different way of identifying proper-

ties of compounds is to do a PCA comparison. An overview 

of a normalized joint PCA analysis is shown in Fig. 7, and 

a detailed three-dimensional navigable graph of this PCA 

is shown as supplementary file, in which the single com-

pounds can be identified. Note that benzylbutylphthalate 

and dimethylphthalate match close to the controls, since 

Fig. 6  Heat map of metabolome changes induced by liver enzyme 

inducers and peroxisome proliferators in HepG2 cells. Yellow indi-

cates statistically significant (p = 0.05) downregulation and magenta 

indicates statistical significant (p  =  0.05) upregulation of the com-

pound classes indicated; gray represent no statistical significant 

change. The metabolite classes are depicted in the vertical colored 

bars to the left of each heat map. a The metabolome changes induced 

by 3 liver enzyme inducers at HD, aroclor, dimethinamide and pen-

dimethaline; the combination of metabolites that allow distinction of 

the liver enzyme inducers’ mode of action (pattern) is listed on the 

top left. For comparison, the metabolome changes induced by a per-

oxisome proliferator, acilfluorfen, are also displayed, clearly demon-

strating a different pattern. b The metabolome changes induced by 

3 peroxisome proliferators at HD, acylfluorfen, fluoroglycofen-ethyl 

and Wy-14643, including the list of metabolites that serve to dis-

tinguish the peroxisome proliferation mode of action (pattern). The 

metabolome pattern of changes induced by the liver enzyme inducer, 

β-naphthoflavone clearly differs from peroxisome proliferators
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metabolic conversion to the monoesters takes not place in 

HepG2 cells, which is necessary for the mode of action.

The results of the overall PCA analysis clearly demon-

strate a good separation between peroxisome proliferators, 

enzyme inducers, enzyme inhibition, compounds which 

cause liver toxicity and compounds which are not primar-

ily liver toxic (in this case nephrotoxicants). The apparent 

continuum of liver enzyme induction and liver toxicity was 

also noted in a very similar way in the in vivo analysis of 

such compounds (van Ravenzwaay et al. 2012b). Thus, 

following the metabolome analysis of a new compound, a 

PCA comparison with that of reference compounds (i.e., 

compounds with a known MoA) may help to quickly iden-

tify the probable MoA of a new compound.

Fig. 7  Overview of a joint PCA analysis. The plot includes liver 

enzyme inducers, liver enzyme inhibitors, liver toxicants, peroxisome 

proliferators, steatogenic compounds, nephrotoxicants and verapamil. 

Benzylbutylphthalate and dimethylphthalate match close to con-

trols, since metabolic conversion to the monoesters takes not place in 

HepG2 cells, which is necessary for the mode of action
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Discussion

In the present study, we used the human hepatoma cell line 

HepG2 for prediction of liver toxicity and mode of action 

using metabolomics in vitro. HepG2 cells are easier to han-

dle than primary human hepatocytes and are superior regard-

ing reproducibility. However, one drawback of this cell line 

is its limited metabolic capacity. This applies particularly 

to phase I enzymes, which are expressed magnitudes lower 

compared to primary human hepatocytes (Wilkening et al. 

2003). Therefore, compounds which require metabolic acti-

vation to exert toxic effects like acetaminophen (CYP2E1, 

Raucy et al. 1989) or nitrobenzodiazepines (CYP3A4, Miz-

uno et al. 2009) may not be detected correctly by this sys-

tem, since these enzymes are only very scarcely expressed 

in HepG2 cells. However, this limitation could be overcome 

by induction of Cytochrome P450 enzymes with TCCD, 

ß-naphthoflavone, phenobarbital of rifampicin (Gerets et al. 

2012; Garcia-Canton et al. 2013) or by using engineered 

HepG2 cells expressing Cytochrome P450 enzymes (Yoshi-

tomi et al. 2001). Another limitation of the HepG2 cell line 

is that various nuclear receptors are expressed at a consid-

erably lower level in these cells (Tolosa et al. 2016). Thus, 

compounds like phenobarbital, which acts via activation of 

CAR and PXR receptors, might not exhibit the complete 

toxicological feature compared to the in vivo situation.

Despite these limitations, we achieved standardization 

and reproducibility as well as the robustness of metabo-

lomics in an in vitro human cell system. We also success-

fully identified, with dose–response and high specificity, 

different modes of action of liver toxicants (liver enzyme 

induction/inhibition, liver toxicity and peroxisome prolif-

eration) by comparing metabolome profiles. For example, 

PPARα agonists (peroxisome proliferators in rats and mice) 

revealed clear changes in metabolites related to beta oxida-

tion of fatty acids, correlating well with the mechanism of 

this class of test substances in the in vivo situation, and con-

firming the reliability of the system. Within this context, it 

should be mentioned that the upregulating effects of PPARα 

agonists on fatty acid oxidation in vivo occur in both rodents 

and primates, the magnitude being greater in rodents. In 

rats and mice, these compounds induce peroxisome pro-

liferation, hepatocellular hypertrophy and liver tumors. In 

contrast, primates are much more resistant to peroxisome 

proliferation and hepatocellular hypertrophy, and peroxi-

some proliferation or increased incidence of liver tumors 

was not observed in humans treated chronically with fibrates 

(Klaunig et al. 2003). One reason why primates are refrac-

tory to liver carcinogenesis may be that apoptosis is down-

regulated and cell proliferation is increased in the rodent, 

but not in the primate liver (Hoivik et al. 2004). Based on 

that, the PPARα response seen in the human HepG2 cell line 

reflects the upregulation of fatty acid oxidation. Based on 

the marked species differences outlined above, the PPARα 

signature in HepG2 cells is unlikely to predict a human risk 

concerning liver cancer.

It should be noted that the purpose of this study was not 

a full validation of HepG2 cell-based metabolomics as a 

tool for liver toxicity, but more to show proof of concept 

that this technology can identify different liver toxicities. 

Therefore, no negative compounds for liver toxicity have 

been included. In order to achieve this goal, the compound 

concentrations tested here were as high as possible, but 

below significantly cytotoxic levels (i.e., viability > 80%) 

without taking into account whether these concentrations do 

reflect relevant in vivo plasma or tissue concentrations. This 

approach poses the risk that these high concentrations could 

saturate metabolism or detoxifying mechanisms. Therefore, 

the observed effects could be different from those at lower, 

possibly more physiological concentrations. Additionally, 

other mechanisms could play a role at lower concentrations.

Garcia-Cañaveras et al. examined changes in the metabo-

lome after incubation of HepG2 cells with compounds caus-

ing no liver toxicity and compounds causing oxidative stress, 

steatosis and phospholiposis (García-Cañaveras et al. 2015, 

2016). Using PCA analysis and PLS-DA (projection to latent 

structures-discriminant analysis), they found a clear separa-

tion of specifically altered metabolites for each compound 

class, which allowed unravelling changes in the respective 

underlying biochemical pathways. In this respect, our data 

confirm these results, but also add data of liver enzyme 

inducers/inhibitors, liver toxicants and peroxisome prolif-

erators to the available database.

The advantages of combining metabolomics with an 

in vitro system are manifold. (1) It reduces the need for ani-

mal studies, (2) the amount of test substance needed is in the 

range of 100–200 mg, allowing for early screening of novel 

compounds, (3) measurement of intracellular metabolites 

provides data which can be plotted on biochemical charts, 

making a biochemical interpretation of the results possi-

ble, (4) connecting observed disturbances in biochemical 

pathways with known modes of action (MoA) will help to 

identify adverse outcome pathways, (5) creating patterns of 

metabolite changes typical for a particular MoA will lead 

to fast identification of the toxicological properties of new 

compounds, and (6) if a database is created which is large 

enough, comparison of the metabolome profile of a com-

pound under investigation with all other compounds in the 

database will also provide important information on its tox-

icity as is already shown for plasma metabolomics in vivo 

(see references of this group). Generally, we have found that 

PCA comparisons are adequate in predicting the toxicologi-

cal MoA of the compounds investigated.

One can envisage expanding MoA identification by 

selecting different reference substances exhibiting other 

toxic effects in the liver, as well as establishing kidney or 
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neuronal cellular systems to enhance the battery of cellu-

lar models that can be combined with metabolomics. For 

example, we have previously demonstrated that rat plasma 

metabolomics can identify the MoA of hepatotoxic or kidney 

toxic compounds (van Ravenzwaay et al. 2012b; Kamp et al. 

2012a; Mattes et al. 2014). A battery of human cellular mod-

els covering different organs, an “organ toxicity-toolbox” for 

testing chemicals over prolonged periods, would transform 

metabolomics in vitro into a powerful tool to accurately 

measure changes in these cells and rapidly predict toxicity. 

Moreover, combining information from different organ-like 

models would contribute to future risk assessment based on 

altering toxicity pathways, as has been proposed for the use 

of transcriptomics (De Abrew et al. 2015). We also have evi-

dence for the feasibility of many other applications, such as 

chemical grouping (Ramirez et al. in preparation), opening 

new possibilities for the application of metabolomics in vitro 

in the regulatory area.

A further area which merits exploration is the quantita-

tive relationship between metabolite changes in this in vitro 

setting and results observed in animal studies. Is there a pos-

sibility to distinguish between true adverse effects and adap-

tive changes at the level of metabolites? Can quantitative 

differences in the sensitivity of humans and rats (as the most 

commonly used animal model) also be seen when comparing 

rat and human cells when applying metabolomics to liver 

cells of both species? Although at this time these answers 

cannot be given, they become testable with the technology 

presented in this paper.

In conclusion, in vitro metabolomics systems can help 

identify organ toxicity, determine the toxicological pro-

file of different test substances, predict the toxicity of new 

compounds, and better elucidate the molecular mechanisms 

underlying their toxicity in highly controllable systems suit-

able for regulatory purposes, and most importantly, without 

animal testing.
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