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ABSTRACT
Motivation: Recently novel classes of functional RNAs, most
prominently the miRNAs have been discovered, strongly sug-
gesting that further types of functional RNAs are still hidden
in the recently completed genomic DNA sequences. Only few
techniques are known, however, to survey genomes for such
RNA genes. When sufficiently similar sequences are not avail-
able for comparative approaches the only known remedy is to
search directly for structural features.
Results: We present here efficient algorithms for computing
locally stable RNA structures at genome-wide scales. Both the
minimum energy structure and the complete matrix of base
pairing probabilities can be computed in O(N × L2) time and
O(N + L2) memory in terms of the length N of the genome
and the size L of the largest secondary structure motifs of
interest. In practice, the 100 Mb of the complete genome of
Caenorhabditis elegans can be folded within about half a day
on a modern PC with a search depth of L = 100. This is
sufficient example for a survey for miRNAs.
Availability: The software described in this contribution will be
available for download at http://www.tbi.univie.ac.at/˜ivo/RNA/
as part of the Vienna RNA Package.
Contact: ivo@tbi.univie.ac.at

INTRODUCTION
Structural genomics, the systematic determination of all
macro-molecular structures represented in a genome, is at
present focused almost exclusively on proteins. Although
it is common place to speak of ‘genes and their encoded
protein products’, thousands of human genes (The Genome
Sequencing Consortium, 2001) produce transcripts that exert
their function without ever producing proteins. The list
of functional non-coding RNAs (ncRNAs) includes well-
known key players in the biochemistry of the cell, such
as tRNAs, rRNAs, tmRNA and the RNA components
of RNAseP and signal recognition particles, as well as
recently discovered functional RNAs, such as the miRNAs

∗To whom correspondence should be addressed.

(Lagos-Quintanaet al., 2001; Lauet al., 2001; Lee and
Ambros, 2001) that regulate gene expression by regulat-
ing mRNA expression. Many of these RNAs have char-
acteristic secondary structures that are highly conserved in
evolution.

Another level of RNA function is presented by func-
tional motifs within protein-coding RNAs. A few of the
best-understood examples of structurally conserved RNA
motifs are found in viral RNAs, such as the TAR and RRE
structures in HIV and the IRES regions in Picornaviridae
and many Flaviviridae. A textbook example of a functional
RNA secondary structure is theRho-independent termina-
tion in Escherichia coli. The newly synthesized mRNA forms
a hairpin in the 3′-UTR that interacts with the RNA poly-
merase causing a change in conformation and the subsequent
dissociation of the Enzyme–DNA–RNA complex.

It is not hard to argue therefore thatRNomics, i.e. the
understanding of functional RNAs (both ncRNA genes and
functional motifs in protein-coding RNAs) and their inter-
actions at a genomic level, is of utmost practical and theor-
etical importance in modern life sciences: the comprehensive
understanding of the biology of a cell obviously requires the
knowledge of identity ofall encoded RNAs, the molecules
with which they interact, and the molecular structures of these
complexes (Doudna, 2000).

This ambitious goal requires first of all the development
of versatile and reliable computational methods that can
detect and classify functional RNAs, preferably within a
single genome. A necessary prerequisite is the computation
of locally stable secondary structures. This can be achieved
by folding sub-sequences of lengthL in a window sliding
along the genomic sequence nucleotide by nucleotide. In
practice, however, the sequence windows have to be shif-
ted by a substantial fraction ofL in order to keep the CPU
requirements manageable. As a consequence, a large number
of relevant local structures are ignored. In this contribution
we report a computationally efficient method for surveying
all thermodynamically favorable local RNA structures at a
genome-wide scale.
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A MODIFIED FOLDING ALGORITHM
The RNA-folding problem is complicated considerably by the
details of the modern energy model (Mathewset al., 1999),
which is based upon interactions of adjacent base pairs and
loop contributions. Dynamic programming solutions were
described by Zuker and Stiegler (1981) and McCaskill (1990).
Efficient implementations are available e.g. in theVienna
RNA Package (Hofackeret al., 1994; Hofacker, 2003) and
mfold (Zuker, 1989).

Maximum circular matching
While in practice all computations are performed using the full
loop based energy model, the logic of the folding problem and
its solution is much easier to explain in terms of a simplified
model, the so-called Maximum Circular Matching Problem
(MCMP) that considers only base pairing strength. We there-
fore use this simplified version to explain the modifications to
the folding algorithm that are necessary to find locally optimal
structures. The implementation in theRNALfold program of
course uses the full energy model.

Given a sequencex we define the matrix� with entries
�ij = 1 whenxi andxj can form a base pair and�ij = 0
otherwise. In the MCMP, we arrange the sequencex along
a circle and ask for the maximum matchingM such that
(1) {i, j} ∈ M implies�ij = 1 and such that (2) two chords
do not cross. Thisno-crossing condition is equivalent to the
‘no-pseudoknots’ condition in nucleic acid folding. In fact,
MCMP can be interpreted as the problem of finding the sec-
ondary structure that maximizes the number of base pairs. In
order to stay closer to the folding algorithm we defineEij , the
energy of the most stable structure on the subsequence from
i to j (inclusive) as the negative of the maximal number of
base pairs that can be formed on this subsequence.

The MCMP is then solved by the dynamic programming
recursion (Nussinovet al., 1978)

Eij = min


Ei,j−1, min

k=i...j−m

�kj =1

Ei,k−1 + Ek+1,j−1 + ε(k, j)



(1)

with the initial conditionsEi,i+d = 0 for 0 ≤ d ≤ m,
wherem denotes the minimum unpaired segment in a hairpin
loop, usuallym = 3. Hereε(i, j) is the energy contribu-
tion for forming the base pair(i, j), in the simplest case
ε(i, j) = −1 if and only if�ij = 1. The secondary structure
graph can be retrieved by straightforward backtracking from
the(Eij ) array.

Forward recursion
Restricting the maximum span of a base pair toL < n poses
no problem. For the optimal energy subject to this restriction,

Fig. 1. The conventional dynamic programming algorithm for the
MCMP fill a triangular matrix with entriesEij , progressing from
entries close to the diagonal outwards. In the restricted version only
entries within a distanced ≤ L of the diagonal are needed (gray
area above and trapezoid below). If backtracking is not delayed until
the very end of the computation, only the small gray triangle with
O(L2) entries has to be kept in memory (see Text).

we have

EL
ij = min


Ei,j−1, min

k=j−L...j−m

�kj =1

EL
i,k−1 + EL

k+1,j−1 + ε(k, j)



(2)

Definefk = EL
k,n to be the minimal energy on the tail of the

sequence starting at positionk. It is clear that

fk = min


fk+1, min

d=m+1...L
�k,k+d=1

EL
k+1,k+d−1 + ε(k,k + d) + fk+d+1




(3)

since the structures beginning with base pairs at positionk

can be decomposed into the optimal structure with a base pair
from k to k +d and the tail beyond this pair. The spand of the
pair is of course constrained byd ≤ L. The optimal folding
energy isEopt = f1. It follows from Equation (3) thatf1 can
be computed if allfk andEL

k+1,k+d−1 are known. Since the
computation offk only requiresfl with l > k and the part of
the (Eij )-array in the triangle betweenEk,k+L and the diag-
onal we need to store onlyO(L2) entries of the(Eij )-array
and the(fk)-array (Fig. 1).

We shall see below that the backtracking step can be par-
titioned such that no further information has to be stored.
The forward step of the algorithm therefore requiresO(nL2)

operations andO(n + L2) memory (Fig. 2).
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Fig. 2. Performance ofRNALfold. Upper panel: search depthsL

are 50, 70, 100, 200, 300, 500, 1000 and 2000, from bottom to
top. The dashed line ist = 10−5 n s. Data are computed using the
full loop based energy model and the-noLP option, i.e. exclud-
ing isolated base pairs. Timings are for a LINUX PC with 2.2 GHz
pentium4 processor. Lower panel: Folding times for test genomes:
Ebola virusn = 18 890, open circles; Sulfolobus virusn = 35 450,
open squares; Halovirus HF2n = 77 670, open diamonds; Variola
major n = 186 103, open triangles;Ectocarpus siliculosus virus
n = 335 593, open inverted triangles;Mycoplasma genitalium G37
n = 580 074, closed inverted triangles;Ureaplasma urealyticum
n = 751 739, closed triangles;Aeropyrum pernix K1 n = 1 669 695,
closed diamonds;Bacillus subtilis n = 4 214 814, closed squares;
Streptomyces coelicolor n = 8 667 507, closed circles. The dashed
line is t = 10−4 L2 s.

Backtracking
The array(fk) contains the energies of locally optimal com-
ponents thatbegin at positionk. Since there are no energy
contributions in the ‘out-side loop’, i.e. of the joints connect-
ing structural components, we know that a locally optimal
component begins at positionk if and only if fk < fk+1.
The pairing partner can now be obtained by backtracking
within theEL array. This backtracking step works on the sub-
sequencex[k · · · k + L] as in the standard MCMP (Nussinov
et al., 1978). As a result we obtain a list of locally optimal
componentsC(k) together with their position in the full
sequence and the energy of the optimal ‘tail structure’ on
x[k · · · N ]. Frequently, a componentC(l) consists simply of

a smaller (previously detected) locally optimal component
C(k) enclosed by one additional base pair. The size of the
output can be reduced considerably if we store only the locally
optimal components that are also maximal w.r.t. inclusion.

If desired, the optimal structure of the complete sequence
can be reconstructed from this list of componentsC(k) starting
now at the 5′ end.

Performance
The lfold algorithm has been implemented inC as vari-
ant of thefold routine of theVienna RNA package. To
assess the performance we applied the algorithm to several
viral and bacterial genome, as well as the complete genome
of Caenorhabditis elegans. Figure 1 shows thelfold per-
formance as a function of sequence lengthn and maximum
pair spanL. Typical bacterial genomes can be handled with
moderate computer requirements even when using a span of
L = 1000. Extrapolating from the data shown even the human
genomen ≈ 3 · 109 should be doable withL = 100 and a
week’s computer time.

As another test case we have predicted secondary struc-
tures with L = 100 for all six chromosomesC.elegans,
total size about 100 Mb. The span size was chosen so that
it should be possible to search the predicted structures for
small temporal RNAs (stRNA), the precursors of miRNAs.
C.elegans chromosomes consist of 14–21 million bases and
folding took between 1.5 and 2.5 h. The resulting list of locally
optimal components contained between 700 000 and 1 million
structures per chromosome. The results of the rather tedious
analysis of these data will be reported elsewhere.

BASE PAIRING PROBABILITIES
At physiological temperatures an RNA molecule may exhibit
an ensemble of structures with similar, near optimal, energy.
Therefore, as well as because of the unavoidable inaccuracies
of predicted structures, it is often insufficient to describe an
RNA molecule by a single optimal secondary structure. An
elegant way to describe the ensemble of plausible structures
is given by McCaskill’s (1990) partition function algorithm,
which allows to compute the probabilities of all possible base
pairs in thermodynamic equilibrium. Again restricting the
span of base pairs yields anO(n × L2) algorithm, as shown
below.

Let Zij be the partition function of the substructures from
i to j , and denote byZB

ij the partition function of the sub-
structures fromi to j that have a base pair fromi to j . We
have

Zij = Zi+1,j +
j∑

k=i+m

ZB
ikZk+1,j

= Zi+1,j +
j∑

k=i+m

Zi+1,k−1Zk+1,j e
−ε(i,k) (4)
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Fig. 3. A (randomly picked) example of a base pairing probability matrix obtained from solving the partition function version of the MCMP
with ε = −3 andL = 40 for a sequence from the aster yellows phytoplasma (AY191296). The dot plot depicts each possible base pair by
a square with an area proportional to the pairing probability. Helical regions therefore appear as vertical ‘lines’, structural alternatives as fuzzy
clouds of points.

In order to incorporate the restriction of ranged of a base pair,
we first note thatZB

i,i+d = 0 for d > L. This yields

Zij = Zi+1,j +
L∑

d=m+1

Zi+1,i+d−1Zi+d+1,j e
−ε(i,i+d) (5)

which can be evaluated inO(L) time. Furthermore, we
introduce the abbreviationZ∗

k = Zkn and observe

Z∗
k = Z∗

k+1 +
L∑

d=m+1

ZB
k,k+dZ∗

d+1. (6)

Again, only on the most recent triangular part of the matrixZB

needs to be stored. The partition functionZ = Z1n = Z∗
1 can

therefore be evaluated inO(nL2) time andO(L2) memory.
The probabilityPkl that the basesk andl are pairing in ther-

modynamic equilibrium can be computed from the partition
functionZ̃kl of structuresoutside the sequence interval[k, l]
andZB

kl as the ratio

Pkl = Z̃klZ
B
kl/Z (7)

The exterior partition functions̃Zkl satisfy the recursion

Z̃kl = Z1,k−1Zl+1,n +
∑

i<k;l<j

Z̃ijZi+1,k−1Zl+1,j−1e
−ε(i,j)

(8)

Note that the sum in Equation (8) vanishes ifl ≥ k + L,
which defines the initial values̃Zk,k+L = Z1,k−1Zk+L+1,n.
Recall that we do not consider base pairs spanning more than
L bases, i.e.e−ε(i,j) = 0 for j > i + L. We can reduce the
computational complexity by introducing the auxiliaryL×L

field

ZM
il =

min{i+L,n}∑
j=l+1

Z̃ijZl+1,j−1e
−ε(i,j) (9)

Equation (8) can now be rewritten in the form

Z̃kl = Z̄k−1Z
∗
l+1 +

k−1∑
i=l−L

ZM
il Zi+1,k−1 (10)

whereZ̄j is the partition function of the initial subsequence,
which satisfies the recursion

Z̄j = Z̄j−1 +
L∑

d=m+1

ZB
j ,j−dZ̄j−d−1. (11)

Both ZM
il and Z̃kl can be obtained inO(L) time because

the sums span at mostL index values. Furthermore, we
only need matrix entriesZM

kl and Z̃kl with l − k ≤ L, i.e.
O(n × L) matrix entries. The algorithm therefore requires
O(n×L2) steps andO(L2 +n) storage, where theO(n) con-
tribution is used to store the input and the arraysZ̄ andZ∗,
respectively.

Tools for the analysis of very large base pairing probability
matrices are notyet available. We have therefore refrained
from implementing the complete energy model at this time and
use the partition function version of the MCMP to demonstrate
the feasibility of the approach. Figure 3 gives a small example.
It is clear that this type of data is not amenable to manual
analysis; the design of corresponding data-mining tools hence
is ongoing research.

DISCUSSION
We have presented here an efficient algorithm for surveying
local RNA secondary structures at genome-wide scales. At
least for the minimum-free energy problem, we also describe
a versatile implementation that makes use of the full loop
based RNA energy model.

The use of structural information appears to be necessary.
Various groups have tried to detect functional RNA struc-
tures based on local thermodynamical stability alone (Leet al.,
1988; Huynenet al., 1996). While such procedures are capable
of detecting some particularly stable features, a recent study
of Rivas and Eddy (2000) concludes that ‘although a distinct,
stable secondary structure is undoubtedly important in most
ncRNAs, the stability of most ncRNA secondary structures is
not sufficiently different from the predicted stability of a ran-
dom sequence to be useful as a general genefinding approach’.
Thus, the explicit usage of either experimentally determined
or at least computationally predicted structural information is
indispensable.
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The list of locally optimal components produced bylfold
is therefore a necessary first step for approaches to search for
both known and novel functional RNA structures. This is most
obvious when searching for a class of functional RNAs for
which information on conserved structural features is already
known, such as stRNAs. In these cases one can obtain a struc-
tural model from known instances of the RNA in question,
and simply search the list for the reference structure, pos-
sibly using a local structural alignment algorithm (Höchsmann
et al., 2002).

In principle one can also hope to identify novel func-
tional RNAs based on predicted structures. To this end,
the frequencies of structural motifs are correlated with
their genome context. Such an approach could detect both
potential regulatory features in mRNAs and new functional
RNAs depending on whether one searches near or far away
from protein-coding genes. The computational methods for
such comparisons, however, go beyond the scope of this
contribution.
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