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Abstract: A bridge deterioration approach is to predict the condition ratings and the deterioration 5 

pattern of bridge elements for determining optimal maintenance strategies and estimating future 6 

funding requirements. To effectively predict long-term bridge performance, an advanced integrated 7 

deterioration approach has been developed which incorporates a time-based model, a state-based 8 

model with the Elman Neural Network (ENN) and a Backward Prediction Model (BPM). The 9 

proposed method involves the categorisation of the selected inspection records by bridge 10 

components, material types, traffic volume and the construction era. The main advantage of such 11 

categorisation is to group similar components together, thereby identifying the common 12 

deterioration patterns. A selection process embedded in the proposed method offers the ability to 13 

automatically select the most appropriate model for predicting future bridge condition ratings. To 14 

demonstrate the advantage of the proposed method in predicting long-term bridge performances, 15 

case studies are performed using the New York State inspection records available from the U.S. 16 

National Bridge Inventory (NBI) database. To compare the performance of the proposed method 17 

against the standard Markovian-based deterioration procedure in predicting future bridge condition 18 

ratings, a total of 40 bridges with 464 bridge substructure inspection records are selected and used 19 
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as input. The predicted outcomes are validated by a cross-validation process, which demonstrates 20 

that the proposed method is more accurate than the standard Markovian-based procedure. 21 

CE Database subject headings: Bridge; Deterioration; Performance, Prediction. 22 

Author keywords: Integrated Deterioration Method; Time-Based Model; State-Based Model; 23 

Backward Prediction Model (BPM); Elman Neural Network (ENN).  24 

 25 

Introduction 26 

To effectively manage a large infrastructure asset, Maintenance, Repair and Rehabilitation (MR&R) 27 

work must be timed to actively satisfy the safe condition of structures and to maximise the financial 28 

benefits to bridge owners. The planning of MR&R activities for bridges is based on measured and 29 

predicted condition ratings. Currently, most bridge owners only rely on bridge inspection results 30 

with instant follow-up measures taken to decide the maintenance strategies (Lee et al. 2005). This 31 

can be effective for managing small number of bridge networks, but it is neither efficient nor 32 

economical for managing large bridge networks (Lee et al. 2005). A computer-based Bridge 33 

Management System (BMS) is normally used to help determine the best possible MR&R strategy 34 

for a large bridge network with a given budget. The BMS is based on the results of a deterioration 35 

model to provide various important future estimations for the planning of MR&R activities (Lee et 36 

al. 2008).  37 

In the past two decades, many bridge deterioration models, including deterministic, probabilistic 38 

and Artificial Intelligence (AI) techniques, have been developed in an attempt to achieve reliable 39 

long-term performance predictions (Veshosky et al. 1994; Jiang 1990; and Sobanjo 1997). Despite 40 

these research achievements in the development of deterioration models, some fundamental 41 

problems still remain. The most critical one is that bridge inspection records are inadequate for the 42 

BMS input. For example, to be reliable deterministic and probabilistic models usually require some 43 

minimum amounts of bridge condition rating data together with a well-distributed deterioration 44 

pattern over the life to date of the bridge (Bu et al. 2012). The AI-based techniques require a large 45 



bridge information input, including condition ratings and non-bridge factors (e.g. traffic volume, 46 

climate change and exposure class). However, the BMS-compatible routine condition inspection 47 

records are usually insufficient for several reasons: (1) commercial BMS software has been used for 48 

less than 20 years, and even those bridge agencies that implemented BMSs from an early stage have 49 

only 7 to 9 inspection records available for developing long-term performance models; (2) bridge 50 

condition ratings usually do not change much over short periods; (3) previously conducted 51 

inspections are incompatible with what is required as input by many typical BMSs; and (4) frequent 52 

maintenance on bridge elements causes variations in the distribution of inspection records (Lee et al. 53 

2008; and Bu et al. 2013a). These limitations are especially responsible for the inaccurate prediction 54 

of the long-term performances of bridge elements.  55 

To achieve reliable long-term performance of bridge elements based on limited BMS condition 56 

ratings (Level-2 or element-level inspection records), an integrated method has been developed by 57 

incorporating the two commonly used approaches viz the state- and time-based models, and the 58 

Backward Prediction Model (BPM) (Lee et al. 2008). The proposed method improves the prediction 59 

accuracy compared to the stand-alone state- or time-based model (Bu et al. 2013a,b). In this 60 

investigation, case studies are conducted using the National Bridge Inventory (NBI) dataset to 61 

demonstrate the advantages of the proposed method in predicting long-term bridge performance.  62 

A total of 40 bridges with 464 inspection records on substructures are selected from the New 63 

York State network. Among these records, 315 are used as input to predict the bridge condition 64 

ratings using both the proposed method and the standard Markovian-based procedure. The 65 

predictions are cross-validated with the actual condition ratings – i.e. the remaining 149 inspection 66 

records. For long-term prediction, both methods are also compared which further confirms the 67 

superiority and merits of the proposed integrated method.  68 

69 



Calibration of the NBI dataset  70 

The most widely used inspection process for a BMS operation is the element-level bridge inspection 71 

(Lee 2007). The proposed integrated method is based on element-level inspection records, by which 72 

the long-term performance of each bridge element can be predicted. These element-level inspection 73 

records are presented as Overall Condition Ratings (OCRs) using a percentage scale. On the other 74 

hand, the Condition Ratings (CRs) obtained from the NBI dataset are scaled from 0 to 9, which is a 75 

commonly used numerical condition rating for bridge components by the FHWA (1995). Table 1 76 

summarises the FHWA bridge condition ratings. To be compatible with the proposed method, the 77 

NBI data is necessary to be calibrated into the percentage scale. Figure 1 illustrates the scale of the 78 

NBI data and the corresponding percentage scale for the proposed method.  79 

 80 

Integrated deterioration method 81 

An advanced integrated deterioration approach has been developed to effectively predict long-term 82 

bridge performance. It incorporates a time-based model, a state-based model with the Elman Neural 83 

Network (ENN) and a Backward Prediction Model (BPM). The proposed approach contains a 84 

categorisation process and a selection process. It also incorporates the Backward Prediction Model 85 

(BPM), and the commonly used state- and time-based models. The categorisation process is used to 86 

group similar components together, thereby identifying the common deterioration patterns. The 87 

selected bridge network is categorised by component types, material types, traffic volume and the 88 

construction era. In general, the NBI dataset covers three major types of bridge structural 89 

components: deck, superstructure and substructure. According to the (FHWA 1995), the material 90 

types can be classified as concrete, steel, prestressed concrete, timber, masonry, aluminium and 91 

others. The Average Daily Traffic (ADT) volume can generally be classified based on the roadway 92 

classification (Peshkin and Hoerner 2005). Table 2 presents the roadway classification and the 93 

corresponding ADT.  94 



Note that the construction era is also considered in the categorisation process. This is to 95 

encompass the fact that the quality of construction materials and construction processes have 96 

continuously improved over the past several decades (Bu et al. 2013a). To obtain more reliable 97 

prediction outcomes, the construction era classification is considered herein and is grouped into a 98 

period of 20 years viz, group 1 (1991-2010) and group 2 (1971-1990).  99 

After the categorisation process, the selection process offers the ability to identify the status of 100 

the given inspection records and then automatically selects the most appropriate deterioration model 101 

(state- or time-based with or without BPM) to be used. It should be noted that the BPM is used 102 

when the input data are insufficient. Detailed implementation of the BPM can be found elsewhere 103 

(Bu et al. 2013a). The time-based model requires sequential changes in the condition ratings over a 104 

long observation period to define state transition events and the corresponding transition times. The 105 

state-based model, on the other hand, has fewer restraints. Note also that, in this study, the selection 106 

process ensures that the inspection records only satisfy the requirements of the state-based model.  107 

Time-based models employ a probability density function of time, i.e. the duration required for 108 

each bridge component to deteriorate from an initial condition state to its next lower state. The 109 

Kaplan and Meier (K-M) method is used to estimate the non-parametric reliability function with 110 

respect to the cumulative transition probabilities and the corresponding transition times and events 111 

(DeStefano and Grivas 1998). According to DeStefano and Grivas (1998), the equations for 112 

calculating the reliability of a bridge component and estimating the cumulative transition 113 

probabilities take the form: 114 

 115 
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 116 

where )(ˆ
xtR = the estimated reliability of a bridge component at time tx (years); rx = the reversed rank 117 

order of all time values observed within the sample interval; TP(tx) = the cumulative transition 118 



probabilities for all x = 1, 2, 3,….yth sample observations in ascending order of time; and R0 = 1 at t 119 

= 0.  120 

State-based models predict long-term bridge performance using transition probabilities obtained 121 

from the difference between the two condition states at a given discrete time interval (Bu et al. 122 

2013a). Also as part of the proposed integrated method, the Elman Neural Network (ENN) 123 

technique is used in place of the standard regression process to generate the performance curves of 124 

the bridge components based on the given NBI dataset (Bu et al. 2013b). This is followed by the 125 

calculation of the transition probabilities using a non-linear programming objective function 126 

developed by Jiang and Sinha (1989): 127 

 128 
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where N = the number of years in one age group; U = the number of unknown probabilities; A(t) = 129 

the condition ratings at time t and generated by the ENN; and E(t) = the condition ratings at time t 130 

and estimated by the Markov chain method. 131 

By the Markov chain method, the estimated condition rating is generated by:  132 

 133 
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 134 

where Q(0) is the initial state vector; P
t 
is the transition probability matrix P to the power of t; and 135 

R’ is the transpose of a vector of condition ratings, R = [9, 8, 7, 6, 5,4, 3].  136 

The transition probability matrix P is defined as 137 

 138 
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 139 

where q(i) = 1-p(i), p(i) corresponds to pi,i and q(i) corresponds to pi,i+1. In Equation (5), p(1) 140 

represents the probability of bridge condition ratings remaining at CR9, and q(1) denotes the 141 

probability of the bridge condition rating dropping to CR8, the next lower condition rating, and so 142 

on. It should be noted that the lowest condition rating for repair work is CR3 among the 9-0 NBI 143 

condition rating scale (Jiang 1990). Hence, the corresponding probability, p(7), is assumed to be 144 

one. Figure 2 presents the process of the proposed integrated method in terms of categorisation, 145 

model selection and long-term prediction.  146 

 147 

Case studies 148 

The sample inspection records obtained from the National Bridge Inventory (NBI) database are 149 

used by the proposed integrated method to predict future condition ratings, and the predicted 150 

outcomes can then be employed to validate the prediction accuracy of the proposed method by the 151 

cross-validation process. In this study, a total of 464 inspection records are selected from 40 bridges 152 

within the construction era of 1971-2010 from the New York State network. These records are for 153 

bridge substructures of prestressed concrete construction and no MR&R improvement works (i.e. 154 

“do-nothing”) are considered in the long-term performance prediction.  155 

A total of 315 records are selected from the above inspection data as input for both the proposed 156 

method and standard Markovian-based deterioration procedure. The remaining 149 records are used 157 

to compare with the predicted condition ratings due to both methods, through which the accuracy of 158 

the prediction is cross- validated.  159 



Prediction using the proposed integrated method 160 

The selected sample data are divided into the four different classification groups as part of the 161 

proposed integrated method. According to the roadway classification and construction era, the 162 

sample data are grouped as collector road bridge network of construction eras from 1971 to 1990 163 

and from 1991 to 2010, and freeway bridge network of the same corresponding construction eras. 164 

The selection process ensures that these sample data only satisfy the requirements of the state-based 165 

model. As a result, four different long-term bridge performance curves are generated by the 166 

proposed ENN-based method. To demonstrate that the bridge deterioration rate is significantly 167 

affected by traffic volume and construction era, a comparative study is conducted with respect to 168 

bridges with an early construction era versus a later one and a high traffic volume versus a low one. 169 

Figure 3 shows the long-term bridge performance curves for collector road and freeway bridge 170 

networks with construction eras of (1971-1990) and (1991-2010). As evident in the figure, with the 171 

same type of roadway (collector road or freeway bridge network), the bridge substructure for the 172 

construction era of 1971-1990 deteriorates faster than those of 1991-2010 (Figure 3(a) and (b)). On 173 

the other hand, for the same construction eras (1971-1990 or 1991-2010), freeway bridges (i.e. 174 

those that sustain high traffic volumes) deteriorate faster than collector road bridges (with low 175 

traffic volumes) (Figure 3(c) and (d)).  176 

The state-based model depends on the ability of the transition probabilities to predict long-term 177 

bridge performance. The transition probabilities are generated by the non-linear objective function 178 

as presented in Equation (3). Figures 4(a)-(d) present the sample inspection records and the 179 

comparisons between the ENN and the Markov chain method in generating the average condition 180 

ratings A(t) and the estimated condition ratings E(t), respectively, for collector road bridge network 181 

(1991-2010), (1971-1990) and freeway bridge network (1991-2010), (1971-1990). 182 

The available data from the collector road bridge network (1991-2010) are distributed between 183 

ratings of 9 to 7 from years 1 to 16, and a 28-year prediction is generated. For the group collector 184 

road bridge network (1971-1990), the condition ratings change from 9 to 6 with years 9 to 21. A 12-185 



year prediction has been conducted for this group. The condition ratings for the (1991-2010) 186 

freeway bridge network change from 9 to 7 between years 1 to 13, and a 17-year prediction is 187 

presented. The last group covers the (1971-1990) freeway bridge network, and the condition ratings 188 

change from 8 to 5 and the corresponding observed times from years 8 to 20. For this group, an 11-189 

year prediction is generated. The figures show that the ENN generated long-term performance 190 

curves agree well with those estimated by the Markov chain method.  191 

In addition, a Chi-square goodness of fit test (Jiang and Sinha 1989) is also performed in this 192 

study to validate the accuracy of the generated transition probabilities. The formula for the Chi-193 

square distribution is given as: 194 
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 196 

where χ
2 

= a Chi-square distribution with k-1 degrees of freedom (DOF); E(t)i = the value of the 197 

condition rating in year i, predicted by the Markov chain method; A(t)i = value of the condition 198 

rating in year i, predicted by the ENN; and k = the number of prediction years. 199 

The outcomes of the Chi-square test are presented in Table 3 which summarises the DOFs, the 200 

critical χ
2
 values at a significance level of α = 0.05 and the values obtained from the proposed 201 

method. The calculated χ
2
 values from the proposed method are much smaller than those at a 202 

significance level of α = 0.05. This suggests that the differences in long-term performance 203 

predictions due to the ENN process and the Markov chain method are insignificant. 204 

The transition probabilities can easily be obtained from the non-linear objective Equation (3). 205 

The generated transition probabilities for each classification group are presented in Table 4. The 206 

values in each age group represent the probability of the condition rating remaining in each 207 

condition state. For example, for collector road bridge network of the 1991-2010 construction era, 208 

87% of the condition rating will remain at 9, and only 13% will drop to 8, over a one-year period.  209 



The generated transition probabilities from the proposed method can be used to predict the 210 

condition ratings for each individual bridge, and then compared with the actual condition ratings to 211 

validate the prediction accuracy of the proposed method 212 

 213 

Prediction using the standard Markovian-based procedure 214 

The standard Markovian-based procedure estimates the transition probabilities of the bridge 215 

condition by minimising the difference between the average condition ratings from a third-order 216 

polynomial regression function and the estimated condition ratings from the Markov chain method. 217 

The discrete inspection records without categorisation are used to generate the long-term bridge 218 

performance by the third-order polynomial regression. Figure 5 presents the 315 inspection records 219 

(without categorisation), the long-term performance curve generated by the third-order polynomial 220 

regression and the corresponding estimated condition ratings by the Markov chain method. The 221 

figure shows that the generated condition ratings by the regression and Markov chain methods are 222 

very similar for the first 30 years. However, when examining the predicted future condition ratings 223 

between 30 to 50 years, the prediction error dramatically increases. The figure also shows an 224 

unrealistic long-term performance curve. This is because, without repair or rehabilitation, the bridge 225 

condition rating decreases as the bridge age increases (Jiang, 1990).  226 

Furthermore, the outcome of the Chi-square test shows that the calculated χ
2
 value obtained from 227 

the standard Markovian-based procedure is 16.48. Although the calculated value is smaller than that 228 

at a significance level of α = 0.05, it is much larger than the calculated values resulted from the 229 

proposed method, as indicated in Table 3. This suggests that the proposed method can generate 230 

more accurate transition probabilities than the standard Markovian-based procedure. The transition 231 

probabilities for the standard Markovian-based procedure, as summarised in Table 5, are also 232 

generated using the non-linear objective function.  233 

234 



Validation outcomes 235 

To validate the reliability of the predicted condition ratings, a cross-validation is conducted in 236 

which the predicted condition ratings are simply compared with the actual one i.e. the 149 records 237 

from the total 464 inspection data. The same validation process is also employed for the standard 238 

Markovian-based procedure. The validated outcomes resulting from the proposed method and the 239 

standard Markovian-based procedure demonstrate that the former provides more accurate 240 

predictions.  241 

A comprehensive comparative study indicates that the prediction errors for both the proposed 242 

method and standard Markovian-based procedure are all within 10%. Both methods are considered 243 

satisfactory for short-term predictions. As a typical example, Table 6 presents the validation 244 

outcomes for the collector road bridge network of the 1991-2010 construction era. It covers the 245 

bridge ID, number of input data, validation year, and actual NBI data. Also summarised in the table 246 

are the prediction outcomes due to both methods as well as their respective prediction errors. As 247 

evident, most prediction errors of the proposed method are smaller than those of the standard 248 

Markovian-based procedure. For example, the prediction errors of the proposed method for bridge 249 

ID1xxx570 are 0.579, 0.350 and 0.142 for years 2010, 2011 and 2012, respectively. They are 250 

smaller than the corresponding errors (i.e. 0.640, 0.458 and 0.278) of the standard Markovian-based 251 

procedure.  252 

In addition, Figure 6 compares the average prediction errors of the proposed method and those of 253 

the standard Markovian-based procedure. It is clear that the proposed method is more accurate. This 254 

further demonstrates the advantages of the proposed method in predicting future condition ratings 255 

or the long-term performance of the bridge components.  256 

 257 

Long-term prediction and discussion 258 

Once the predicted condition ratings are validated, long-term bridge performance can be predicted 259 

using the generated transition probabilities (Tables 4(a)-(d)) together with the initial inspection 260 



records of the bridge components. The collector road bridge network of the 1991-2010 construction 261 

era being categorised using the proposed method is selected as an example for predicting the long-262 

term performance of bridge substructures. These generated long-term performance predictions are 263 

compared with those via the standard Markovian-based procedure. Note that this comparison 264 

assumes that in the prediction periods, the bridges have undergone no maintenance, renewal or 265 

rehabilitation works. Figure 7(a)-(j) present the generated long-term predictions for ten bridges 266 

from the New York region recalling that the standard Markovian-based procedure is based on the 267 

third-order regression function. The results show that the predictions by both methods have similar 268 

predictions over the first five to ten years. They then deviate in longer term predictions: the 269 

proposed method can predict the condition ratings reaching the threshold rating of CR3, whereas 270 

the prediction of the standard Markovian-based procedure remains at CR6. For example, the 271 

proposed method predicts that the condition ratings of bridge ID1xxx090 gradually decreases from 272 

CR8 to CR3 during a 28-year prediction period. On the other hand, the standard Markovian-based 273 

procedure predicts that the condition ratings for this bridge only decrease for the first ten years and 274 

then remains constant at a rating of CR6 for the remaining 18 years. The comparison outcomes of 275 

the long-term predictions confirm that the proposed method can provide bridge deterioration 276 

patterns of longer time-range than the standard Markovian-based procedure. 277 

 278 

Conclusion 279 

This study presents a series of case studies to underscore the reliability of the proposed integrated 280 

deterioration approach. A total of 40 bridges (or 464 NBI inspection records) are selected from the 281 

New York State network to conduct a comparative study on bridge deterioration predictions by the 282 

proposed approach and the standard Markovian-based procedure. The accuracy of the short-term 283 

predictions by both methods is confirmed using the cross-validation process. A comparative study 284 

of the proposed approach vis-à-vis the standard Markovian-based procedure demonstrate that the 285 

former is more accurate and reliable. For long-term bridge performance over a period of up to 25 286 



years, the proposed approach is proven to be more superior to the standard Markovian-based 287 

procedure.  288 

The proposed approach is also able to predict long-term bridge performance for most situations 289 

given various data distributions and limited inspection records. Note, however, that the proposed 290 

approch is only applicable for predicting future condition ratings for “do-nothing” bridges. Bridges 291 

that have undergone maintenance are not considered in this study.  This is not unlike many other 292 

similar studies in which the maintenance issue was neglected due to its uncertainty which can 293 

further complicate the deterioration models. Taking into consideration the maintenance issue would 294 

merit further investigations. 295 

296 
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Table 1 FHWA bridge condition ratings (FHWA, 1995) 344 

Condition 

rating 
Description 

9 Excellent condition or new condition: no noteworthy deficiencies 

8 Very good condition: no repair needed 

7 Good condition: some minor problems; minor maintenance needed 

6 Satisfactory condition: some minor deterioration; major maintenance needed 

5 
Fair condition: minor section loss, cracking, spalling, or scouring for minor 

rehabilitation; minor rehabilitation needed 

4 
Poor condition: advanced section loss, deterioration, spalling or scouring; major 

rehabilitation 

3 
Serious condition: section loss, deterioration, spalling or scouring have seriously 

affected primary structural components; immediate rehabilitation needed 

2 
Critical condition: advanced deterioration of primary structural elements for 

urgent rehabilitation; bridge may be closed until corrective action is taken 

1 
Imminent failure condition: major deterioration or section loss present; bridge 

may be closed to traffic but corrective action can put it back into light service 

0 Failed condition: out of service and beyond corrective action 

Note: In the FHWA system, assuming that bridges are usable until the rating is reduced to a value of 3. 345 

346 



Table 2 Roadway classification and corresponding ADT 347 

Roadway classification 
General ADT range associated with different 

roadway classifications (vehicles per day [vpd]) 

Freeway 30,000 and above 

Arterial 12,000 to 40,000 

Collector road 2,000 to 12,000 

Local road ≤ 2,000 

 348 

349 



Table 3 Comparison of the χ
2
 values at a significance level of α = 0.05 350 

Roadway 

classification 
Construction 

eras 
DOF 

χ
2 
critical 

(α=0.05) 
χ

2
 from the 

proposed method 

Freeway 
1991-2010 

30 43.773 0.755 

Collector road 45 61.656 0.756 

Freeway 
1971-1990 

26 38.885 0.334 

Collector road 25 37.652 0.770 

 351 

352 



Table 4 Transition probabilities for four different classification groups 353 

(a) Collector road bridge network of the 1991-2010 construction era 354 

Ages P(1) P(2) P(3) P(4) P(5) P(6) P(7) 

1-6 0.870 1.000 1.000 1.000 1.000 1.000 1.000 

7-11 0.900 0.897 1.000 1.000 1.000 1.000 1.000 

12-16 0.934 0.791 0.776 1.000 1.000 1.000 1.000 

17-21 0.929 0.852 0.594 0.931 1.000 1.000 1.000 

22-26 0.927 0.892 0.701 0.802 0.692 1.000 1.000 

27-31 0.910 0.900 0.703 0.804 0.692 1.000 1.000 

32-36 0.908 0.885 0.846 0.791 0.683 0.711 1.000 

37-41 0.877 0.865 0.843 0.808 0.740 0.665 1.000 

42-46 0.756 0.755 0.752 0.742 0.719 0.672 1.000 

 355 
(b) Collector road bridge network of the 1971-1990 construction era 356 

Ages P(1) P(2) P(3) P(4) P(5) P(6) P(7) 

9-14 0.907 0.658 0.715 1.000 1.000 1.000 1.000 

15-19 0.901 0.731 0.515 1.000 1.000 1.000 1.000 

20-24 0.884 0.794 0.676 0.528 1.000 1.000 1.000 

25-29 0.867 0.841 0.760 0.578 0.605 0.343 1.000 

30-34 0.805 0.787 0.751 0.694 0.604 0.445 1.000 

 357 
(c) Freeway bridge network of the 1991-2010 construction era 358 

Ages P(1) P(2) P(3) P(4) P(5) P(6) P(7) 

1-6 0.835 0.889 0.888 1.000 1.000 1.000 1.000 

7-11 0.888 0.744 0.528 1.000 1.000 1.000 1.000 

12-16 0.882 0.797 0.670 0.524 1.000 1.000 1.000 

17-21 0.888 0.837 0.725 0.605 0.539 0.407 1.000 

22-26 0.854 0.841 0.743 0.623 0.561 0.450 1.000 

27-31 0.722 0.719 0.709 0.686 0.642 0.529 1.000 

 359 
(d) Freeway bridge network of the 1971-1990 construction era 360 

Ages P(1) P(2) P(3) P(4) P(5) P(6) P(7) 

7-12 0.000 0.870 0.699 0.540 1.000 1.000 1.000 

13-17 0.000 0.813 0.729 0.546 1.000 1.000 1.000 

18-22 0.000 0.835 0.737 0.592 0.776 0.771 1.000 

23-27 0.000 0.811 0.801 0.712 0.623 0.484 1.000 

28-32 0.000 0.721 0.714 0.693 0.648 0.568 1.000 
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Table 5 Transition probabilities for the standard Markovian-based procedure 363 

Ages P(1) P(2) P(3) P(4) P(5) P(6) P(7) 

1-6 0.808 1.000 1.000 1.000 1.000 1.000 1.000 

7-11 0.872 0.901 0.919 1.000 1.000 1.000 1.000 

12-16 0.911 0.825 0.763 1.000 1.000 1.000 1.000 

17-21 0.916 0.839 0.749 0.927 1.000 1.000 1.000 

22-26 0.913 0.839 0.750 0.947 1.000 1.000 1.000 

27-31 0.890 0.785 0.714 1.000 1.000 1.000 1.000 

32-36 0.917 0.775 0.711 1.000 1.000 1.000 1.000 

37-41 0.962 0.248 0.730 1.000 1.000 1.000 1.000 

42-46 0.986 0.250 0.781 1.000 1.000 1.000 1.000 

47-51 1.000 0.250 0.781 1.000 1.000 1.000 1.000 
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Table 6 Validation outcomes for collector road bridge network of the 1991-2010 construction 366 

era 367 

Bridge 

ID 

No. of input 

data 

Validation 

Year 

Actual NBI 

(grade 0-9) 

Proposed 

Method (PM) 

Standard 

Procedure(SP) 

PM Error 

(%) 

SP Error 

(%) 

1xxx720 10 

2009 9 8.900 8.87 0.100 0.128 

2010 9 8.819 8.77 0.181 0.228 

2011 8 8.730 8.66 0.730 0.664 

2012 8 8.633 8.55 0.633 0.550 

2xxx170 7 

2009 8 7.897 7.901 0.103 0.099 

2010 8 7.805 7.804 0.195 0.196 

2011 8 7.722 7.709 0.278 0.291 

2012 8 7.509 7.523 0.491 0.477 

1xxx350 10 

2009 9 8.900 8.872 0.100 0.128 

2010 9 8.819 8.772 0.181 0.228 

2011 8 8.730 8.664 0.730 0.664 

2012 8 8.633 8.550 0.633 0.550 

1xxx090 9 

2010 7 6.594 6.749 0.665 0.663 

2011 7 6.325 6.543 0.467 0.483 

2012 7 6.139 6.372 0.270 0.304 

1xxx640 12 

2004 8 7.791 7.825 0.209 0.175 

2005 8 7.579 7.64 0.421 0.360 

2006 8 7.375 7.455 0.625 0.545 

1xxx610 15 

2009 7 7.589 7.649 0.589 0.649 

2010 7 7.385 7.468 0.385 0.468 

2011 7 7.189 7.289 0.189 0.289 

2012 7 7.005 7.116 0.005 0.116 

1xxx202 8 

2008 7 6.776 6.763 0.224 0.237 

2009 7 6.603 6.582 0.397 0.418 

2010 7 6.331 6.406 0.669 0.594 

1xxx570 9 

2010 7 7.579 7.640 0.579 0.640 

2011 7 7.350 7.458 0.350 0.458 

2012 7 7.142 7.278 0.142 0.278 

1xxx930 10 

2008 8 7.791 7.825 0.209 0.175 

2009 7 7.579 7.640 0.579 0.640 

2010 7 7.375 7.455 0.375 0.455 

2011 7 7.185 7.279 0.185 0.279 

2012 7 7.013 7.115 0.013 0.115 

1xxx160 10 

2009 8 7.897 7.901 0.103 0.099 

2010 8 7.686 7.720 0.314 0.280 

2011 8 7.478 7.535 0.522 0.465 

2012 8 7.281 7.355 0.719 0.645 
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