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Abstract: The final microstructure and resulting mechanical properties in the
linepipe steels are predominantly determined by austenite decomposition during
cooling after thermomechanical and welding processes. The paper presents some
results of the research connected with the development of a new approach based
on the artificial neural network to predicting the martensite fraction of the phase
constituents occurring in five microalloyed steels after continuous cooling. The in-
dependent variables in the model are chemical compositions, niobium condition,
austenitizing temperature, initial austenite grain size and cooling rate over the
temperature range of the occurrence of phase transformations. For the purpose of
constructing these models, 104 different experimental data were gathered from the
literature. According to the input parameters in feedforward backpropagation algo-
rithm, the constructed networks were trained, validated and tested. In this model,
the training and testing results in the artificial neural network have shown a strong
potential for prediction of effects of chemical compositions and heat treatments on
phase transformation of microalloyed steels.
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1. Introduction

At very high undercoolings, where bainite ceases to form, austenite transforms to
martensite. Martensite has a body-centered tetragonal (BCT) crystal structure and
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is formed by a displacive mechanism which involves the cooperative movement of
individual atoms. Lath martensite is the commonly occurring form in low carbon
steels. As the carbon content of steel increases above 0.2 wt%, plate (twinned)
martensite tends to form. As martensitic transformation takes place at the speed of
sound, the details of transformation kinetics are difficult to study. The martensite
start temperature, Ms, can be determined by using the proposed empirical formulas
which are based on the steel chemistry. However, one should note that Ms is known
to be a function of prior austenite grain size.

The heat-affected zone is metallurgically classified into different regions, i.e.
coarse-grained HAZ (CGHAZ), fine-grained HAZ (FGHAZ), intercritical HAZ
(ICHAZ) and subcritical HAZ (SCHAZ) [1]. A typical variation of peak tem-
perature in the HAZ for a single pass weld in conjunction with Fe-C equilibrium
phase diagram is illustrated in Fig. 1.

Fig. 1 Single pass weld microstructures corresponded to the peak temperatures in
conjunction with Fe-C equilibrium phase diagram [1].

In brief, a full austenitization occurs in the CGHAZ followed by substantial
austenite grain growth. Microalloying precipitates, which pin the austenite grain
boundaries, may dissolve or coarsen in this region, allowing further grain growth
of austenite. For instance, the coarsening of titanium nitride (TiN) precipitates
[1] while the dissolution of niobium carbonitride (Nb(CN)) precipitates [2] have
been observed at these high temperatures. Overall, due to the presence of large
austenite grains in CGHAZ the formation of bainite and martensite upon cooling
is favored, which deteriorates the toughness. These observations can explain why
the focus of most research has been on this portion of the HAZ [1,2].

Although complete formation of austenite occurs in FGHAZ, grain growth is
limited in this area due to the lower temperatures. The corresponding microstruc-
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ture typically comprises fine polygonal ferrite, which is usually associated with the
high toughness [3]. Carbon-enriched austenite is partially formed in the ICHAZ.
Therefore, martensite-austenite constituents, so called M/A constituents, which
can initiate brittle fracture, are sometimes observed in this region [4].

Finally, due to the fact that the peak temperature is below the Ac3 in the
SCHAZ, no transformation takes place in this region but a significant degree of
tempering may occur [1]. In multipass welding of linepipes, additional microstruc-
tural changes may be observed, which can be due to the subsequent reheating of
the lower beads. For instance, tempering of M/A islands have been reported in
the CGHAZ of multipass welds [5]. From mechanical properties point of view, it
is noteworthy to mention that the lower toughness of the intercritically reheated
CGHAZ has been the subject of several investigations, see for example [6].

Artificial neural networks (ANNs) are a family of massively parallel architec-
tures that solve difficult problems via the cooperation of highly interconnected but
simple computing elements (or artificial neurons). Basically, the processing ele-
ments of a neural network are analogous to the neurons in the brain which consist
of many simple computational elements arranged in several layers [7]. ANNs have
been applied for prediction different properties of different type of steels in the
previous works [8-10].

In authors’ previous work [11,12] the effects of chemical composition, austeni-
tizing temperature, Nb in solution, austenitic grain size and cooling rate on Vickers
microhardness and ferrite fraction of microalloy steels were modeled with ANNs.
According to the authors’ literature survey, there is no work investigating the ef-
fects of chemical compositions, austenitizing temperature, Nb in solution, austenite
grain size and cooling rate on martensite fraction of microalloy steels.

The objective of the present work is to describe the austenite to martensite
phase transformation behavior of the five HSLA steels under continuous cooling
conditions in the cooling rates regime of “0.3-198 oC/s” with various initial austen-
ite grain structures and different austenitizing temperatures. All in all, 104 marten-
site fraction data were collected from the literature, trained, tested and validated
by neural network. The obtained results were compared with experimental ones to
evaluate the software power for predicting the effects of mentioned parameters on
martensite fraction of the studied steels.

2. Artificial Neural Networks

An artificial neural network (ANN) is a massively parallel, distributed information
processing structure consisting of processing elements and many interconnections
called connection weights between them. It resembles the brain in two respects;
knowledge is acquired by the network through a learning process and interneuron
connection weights, known as synaptic weights, are used to store the knowledge
[7]. An artificial neuron is composed of five main parts: inputs, weights, sum
function, activation function and outputs. Inputs are information that enters the
neuron from other neurons from external world. Weights are values that express
the outcome of an input set or another process element in the preceding layer on
this process element. Sum function is a function that calculates the effect of inputs
and weights completely on this process element. This function computes the net
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input that approaches to a neuron. The weighted sums of the input components
(net)j are calculated using Eq. (1) as follows [13]:

(net)j =

(
n∑
i=1

wijxi

)
+ b, (1)

where (net)j is the weighted sum of the jth neuron for the input received from
the preceding layer with n neurons, Wij is the weight between the jth neuron in
the previous layer, xi is the output of the ith neuron in the previous layer [13]. b
is a fix value as an internal addition, and

∑
represents sum function. Activation

function is a function that processes the net input obtained from sum function and
determines the neuron output. In general, for multilayer feed-forward models as
the activation function sigmoid activation function is used. The output of the jth
neuron (out)j is computed using Eq. (2) with a sigmoid activation function as
follows [13]:

Oj = f(net)j =
1

1 + e−α(net)j
, (2)

where α is constant used to control the slope of the semi-linear region. The sig-
moid nonlinearity activates in every layer except in the input layer. The sigmoid
activation function represented by Eq. (2) gives outputs in (0, 1). If desired, the
outputs of this function can be adjusted to (-1,1) interval. As the sigmoid processor
represents a continuous function, it is particularly used in nonlinear descriptions.
Because its derivatives can be determined easily with regard to the parameters
within (net)j variable [13].

An ANN is a combination of the processing elements linked to each other with
connection weights. The processing elements called neurons are arranged in layers
and constitute the network architecture. Multilayer network models are classified
as feedforward networks. The basic structure of a multilayer feedforward network
model can be determined as consist of an input layer, one or more hidden layer and
an output layer. The input layer neurons receive input patterns from the external
environment and propagate them on to the first hidden layer neurons. In this layer,
any data processing is not carried out. Input values distributed from each of the
input layer neurons are multiplied by each of the adjustable connection weights
linking the input layer neurons to hidden layer neurons. At each neuron in the
hidden layer, weighted input values are summed and a bias value is added. Then
combined input value is passed through a nonlinear transfer function like sigmoid
or hyperbolic tangent to obtain the output value of the neuron. This output value
is an input for the neurons situated in the following layer. Finally, the output layer
neurons produce the output value of the network model [7].

Determining an appropriate architecture of a neural network for a particular
problem is an important issue, since the network topology directly affects its com-
putational complexity and its generalization capability. Multilayer feedforward
network models with one hidden layer can approximate any complex nonlinear
function provided sufficiently many hidden layer neurons are available. Therefore,
in this study, multilayer feedforward network models containing one hidden layer
were used. Determination of optimum number of the hidden layer neurons is very
important in order to predict accurately a parameter using by ANNs. But there is
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no theory how many hidden layer neuron need to be used for a particular problem.
The best approach to find the optimum number of hidden neurons is to start with
a few numbers of neurons and then slightly increasing the number of neurons. Dur-
ing this process for each hidden neuron number the performances of the network
models are monitored according to chosen performance criteria [7].

A typical neural network consisted of input, sum function, log-sigmoid activa-
tion function and output [13]. This typical neural network is reinforced with an ad-
vanced training algorithm named as Levenberg-Marquardt backpropagation. The
input values to a neuron are obtained by multiplying the output of the connected
neuron by the synaptic strength of the connection between them. In this paper,
Levenberg-Marquardt backpropagation (LMBP) algorithm is utilized as training
algorithm instead of commonly used standard BP method for its robustness in the
computing process [14].

3. Data Collection

In the present investigation, the artificial neural network has been trained, tested
and validated for prediction martensite fraction of HSLA steels. For this purpose,
the experimental data of five HSLA steels with different chemical compositions
have been used [15-19]. The chemical compositions of these steels are summarized
in Tab. I. The input variables of the ANN modeling are the weight percent of
alloying elements, austenitizing temperature, Nb in solution, austenite grain size
and cooling rate. These parameters along with their ranges have been summarized
in Tab. II.

Employing appropriate thermal cycles, continuous cooling transformation (CCT)
tests were conducted to examine the effect of chemical compositions, niobium con-
dition, austenitizing temperature, austenite grain size and cooling rate on austenite
decomposition behavior of the steels. The resulting microstructures, which usually
consist of ferrite, bainite and martensite-austenite (MA) constituents, were exam-
ined using optical microscopy. They were revealed using appropriate etchants and
the corresponding phase volume fractions were subsequently measured in accor-
dance with ASTM standards. To consider the significant effect of the niobium
solid solution level on the transformation of austenite, two thermal histories were
developed. For the first case, Nb was dissolved in solid solution prior to austenite
decomposition. In contrast, the second scenario involved the formation of Nb(C,N)
precipitates prior to austenite decomposition, i.e. leaving a low level of Nb in solid
solution.

4. Artificial Neural Networks Parameters
and Structure

ANN model in this research has sixteen neurons in the input layer and one neu-
rons in the output layer as demonstrated in Fig. 2. The values for input layers
were carbon weight percent (C), manganese weight percent (Mn), niobium weight
percent (Nb), molybdenum weight percent (Mo), titanium weight percent (Ti),
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nitrogen weight percent (N), copper weight percent (Cu), phosphorous weight per-
cent (P), sulfur weight percent (S), silicon weight percent (Si), aluminum weight
percent (Al), vanadium weight percent (V), Nb in solution (Nbs), austenitizing
temperature (AT), the initial austenite grain size (Dγ) and the cooling rate (CR).

Fig. 2 The system used in the ANN model.

The value for output layer was martensite fraction (Mf). The range of the
input and output parameters has been illustrated in Tab. II. Two hidden layer with
ten and eight neurons were used in the architecture of multilayer neural network
because of its minimum absolute percentage error values for training and testing
sets. The neurons of neighboring layers are completely interconnected by weights.
Finally, the output layer neurons produce the network prediction as a result.
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In this study, the backpropagation training algorithm has been utilized in feed-
forward two hidden layers. Backpropagation algorithm, as one of the most well-
known training algorithms for the multilayer perceptron, is a gradient descent tech-
nique to minimize the error for a particular training pattern in which it adjusts
the weights by a small amount at a time [20]. The non-linear sigmoid activa-
tion function was used in the hidden layer and the neuron outputs at the output
layer. Momentum rate and learning rate values were determined and the model
was trained through iterations. The trained model was only tested with the input
values and the predicted results were close to experiment results. The values of
parameters used in neural network model are given in Tab. III.

Parameters ANN
Number of input layer units 16
Number of hidden layer 2
Number of first hidden layer units 10
Number of second hidden layer units 8
Number of output layer units 1
Momentum rate 0.87
Learning rate 0.75
Error after learning 0.000055
Learning cycle 30.000

Tab. III The values of parameters used in neural network model.

A total of 104 data of continuous cooling tests in different conditions were col-
lected, trained, validated and tested by means of ANNs. Among 104 experimental
sets, 74 sets were randomly chosen as a training set for the ANN modeling, 15
data for validating the results and the remaining 15 sets were used as testing the
generalization capacity of the proposed models.

The performance of an ANN model mainly depends on the network architecture
and parameter settings. One of the most difficult tasks in ANN studies is to find this
optimal network architecture, which is based on the determination of numbers of
optimal layers and neurons in the hidden layers by a trial and error approach. The
assignment of initial weights and other related parameters may also influence the
performance of the ANN to a great extent. However, there is no well defined rule or
procedure to have an optimal network architecture and parameter settings where
the trial and error method still remains valid. This process is very timeconsuming
[21].

In this study, the Matlab ANN toolbox is used for ANN applications. To
overcome optimization difficulty, a program has been developed in Matlab which
handles the trial and error process automatically [21]. The program tries various
numbers of layers and neurons in the hidden layers both for the first and second
hidden layers when the highest RMSE (Root Mean Squared Error) of the testing
set, as the training of the testing set is achieved [21].
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5. Results and Discussion

In this study, the error arose during the training, validating and testing in ANN
model can be expressed as absolute fraction of variance (R2) which was calculated
by Eq. (3) [22]:

R2 = 1−
(
Σi(ti − oi)

2

Σi(oi)2

)
, (3)

where t is the target value and o is the output value.

All of the results obtained from experimental studies and predicted by using
the training, validation and testing results of ANN model are given in Figs. 3a, 3b
and 3c, respectively. The linear least square fit line, its equation and the R2 values
have been shown in these figures for the training, validation and testing data. Also,
inputs values and experimental results with validation and testing obtained from
ANN model were given in Tabs. IV and V, respectively. As it is visible in Fig.
3, the values obtained from the training, validation and testing in ANN model
are very close to the experimental results. The result of testing phase in Fig. 3
shows that the ANN models are capable of generalizing between input and output
variables with reasonably good predictions.

Traditional regression analysis was made with MINITAB R⃝. The regression
equation is:

Mf = 281 - 4512 C - 21.9 Mn - 1227 Nb - 129 Mo - 5.43 Nbs + 0.104 AT +
0.0835 Dγ+ 0.129 CR

The R2 value is 0.461.

The performance of the ANN model is shown in Fig. 3. The best value of R2

is 0.98927 for testing set. The minimum values of R2 are 0.9856 for training set.
All of R2 values show that the proposed ANN models are suitable and can predict
the martensite fraction values very close to the experimental values. Statistical
parameters of training, validation and testing sets of the ANN models are presented
in Tab. VI.

6. Conclusions

An artificial neural-network model was developed to model and predict the marten-
site fraction of low carbon microalloyed steels. Experiments and models were con-
ducted on linepipe steels to investigate the effect of chemical compositions, cooling
rate, austenitizing temperature, austenite grain size and niobium level on decom-
position behavior of austenite to martensite. In addition to the well-established
dependence of transformation products on austenite grain size and cooling rate,
current study shows a remarkable effect of Nb state on austenite decomposition to
martensite.

The ANN approach appears to be a very powerful tool in materials engineer-
ing. The results presented show that the prediction of the microstructures of the
considered steel is in good agreement with the experimental data. The ANN was
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(a)

(b)

(c)

Fig. 3 The correlation of the measured and predicted martensite fraction values of
HSLA steels in a) training, b) validation and c) testing phase for ANN models.
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trained, tested and validated on the data obtained from the literature. The ac-
curacy of values evaluated by the ANN model is much higher than that obtained
from calculations using the classical, experimental models. This means that the
well-trained network under laboratory conditions is able to predict the correct val-
ues of the output parameters of the industrial process. ANN models will be valid
within the ranges of variables.

RMSE SSE MSE MAPE(%) P-value
train 1.41 146.32 1.98 41.7 0.6788
validate 0.98 14.34 0.96 91.6 0.8379
test 1.78 47.32 3.15 72.7 0.9973

Tab. VI Statistical parameters of the proposed ANN models.

Root Mean Squared Error

RMSE =
[∑

(X−Y )2

n

]1/2
Mean Absolute Percentage Error

MAPE =

∣∣X−Y
Y

∣∣× 100

n

Mean Squared Error

MSE =

∑
(X − Y )2

n

Sum Squared Error

SSE =
∑

(X − Y )2

where n = total number of pairs X and Y values. X is the
target value and Y is the output value.
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