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Abstract The soft soil that has not enough in situ bearing

capacity needs proper stabilization before any construction

can be done on this soil. Cement stabilization has been

found to be an effective method to improve the soil prop-

erties by many researchers. The strength development in a

cement stabilized mix depends on a number of factors such

as the soil properties, the water–cement ratio and the per-

centage of cement in the mix. In the present study an

attempt is made to develop prediction model to determine

the maximum dry density (MDD) and the unconfined

compressive strength (UCS) of cement stabilized soil with

the use of two recently developed artificial intelligence

(AI) techniques; functional networks (FN) and multivariate

adaptive regression splines (MARS). Database previously

available in the literature was used to develop the predic-

tion models. Based on different statistical performance

criteria, it was found that the FN and MARS techniques,

are better at prediction of MDD and UCS as compared to

previously used AI techniques, artificial neural network

and support vector machine. The prediction model pre-

sented here is more comprehensive and can be used by

professional engineers.

Keywords Stabilized earth � Cement stabilization �
Prediction model � Artificial intelligence � Functional
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Introduction

Population surge in the recent decades has led to rapid

industrialization and urbanization, which has increased the

demand for massive infrastructures. However, since the

land with adequate bearing capacity is limited, hence, the

shift is graduating towards land with soft soil, even though

they are not suitable for building infrastructure. These type

of soil are characterized by high plasticity, higher fraction

of fines and high void ratio, with low strength and high

compressibility [1]. There is a requirement of land recla-

mation to have increased strength and density, reduced

compressibility and permeability to solve stability, settle-

ment, ground water, and other environmental-related

problems to build infrastructure in these areas.

In situ stabilization of soil using chemical and physical

means are the most widely used methods for the land

reclamation. Chemical stabilization, particularly cement

stabilization is more prefered method for in situ stabiliza-

tion of soft soil, due to its quick gain of strength and

economy. Many researchers have shed light on the mech-

anism of strength improvement in soft soil using cement

stabilization techniques. The effects of water content,

cement content, curing time, and compaction energy on the

engineering characteristics of cement-stabilized soils have

been emphasized [1–13].

The present practice is to perform laboratory tests on

soft clays admixed with cementing agents to determine the

cement contents required for a given application. A pre-

dictive equation which can accurately determine the gain in
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strength of the cement-soil mix will not only save a lot of

time but will also lead to an optimum and effective uti-

lization of the cement.

Kaniraj and Havanagi [14] conducted unconfined com-

pression tests on samples of cement stabilized fly ash-soil

mixture compacted at optimum moisture content with

cement content varying from 3 to 9 %. Based on the

results, a prediction model for the unconfined compressive

strength with respect to cement content, fly ash content and

curing period was given. Miura et al. [7] identified the

water cement ratio as the critical factors governing the

engineering behaviour of high water content cement sta-

bilized clay and presented a model equation for unconfined

compressive strength as a function of water cement ratio.

An empirical relationship based on cement content, water

content and curing period was proposed to predict the

strength development in cement-soil mix by Tan et al. [2].

Based on Abram’s law, Horpibulsuk et al. [10] developed

the normalized empirical model to predict the strength of

cement stabilized soil using the clay–water cement ratio as

the principal parameter. Horpibulsuk et al. [12] through

experiments on cement admixed soft clays concluded that

clay–water/cement ratio is a microstructural parameter and

proposed a model equation to calculate the cement content

required to reach a desired strength. The prediction model

take care of any variations in the clay–water ratio during

the stabilization process by allowing the change in cement

content during the stabilization process.

Artificial intelligence (AI) techniques are considered as

alternate statistical method by many researchers and are

found to be better in prediction as compared to the

empirical methods [15–19]. Narendra et al. [20] carried out

laboratory experiments on cement stabilized red earth

(CL), brown earth (CH) and black cotton soil (CH) and

presented a predictive model for unconfined compressive

strength using genetic programming (GP). The developed

model contained liquid limit, liquidity index, water con-

tent, cement content, curing period, pH and sodium ion

concentrations (Na?) as the inputs. However, the output

was found to be more dependent on the water cement ratio,

cement content and curing period rather than the soil

properties, as only three types of soil samples were con-

sidered. Alavi et al. [21] studied application of artificial

neural network (ANN) to predict maximum dry density

(MDD) and unconfined compressive strength (UCS) of

stabilized soil and ANN was found to be a better prediction

technique. Das et al. [22] used ANN and support vector

machine (SVM) to predict the MDD and UCS of cement

stabilized soil based on soil plasticity (LL, PI), clay content

(C), sand content (S), gravel content (G), moisture content

(MC) and cement content (CC) as inputs. Based upon

different statistical performances criteria such as correla-

tion coefficient (R), absolute average error (AAE),

maximum absolute error (MAE), root mean square error

(RMSE) and overfitting ratio (OR), SVM was found to be a

better prediction technique than ANN.

However, the ANN has poor generalization, attributed to

attainment of local minima during training and needs

iterative learning steps to obtain better learning perfor-

mances. The SVM has better generalization compared to

ANN, but the parameters (C) and insensitive loss function

(e) need to be fine-tuned by the user. Moreover, these

techniques will not produce a comprehensive model

equation and are also called as ‘‘black box’’ system [23].

Therefore, the present study is an attempt to develop

comprehensive model equations to determine the MDD

and UCS of cement stabilized soil with the use of two

recently developed AI techniques; functional networks

(FN) and multivariate adaptive regression splines (MARS).

Multilinear regression (MLR) model was also developed to

compare the results.

Methodology

As the use of FN [24, 25], and MARS [25–27] is limited in

geotechnical, these are described briefly in the following

sections.

Functional Networks

ANNs have been extensively used in all the fields of sci-

ence and engineering including geotechnical engineering

and have been proved to be an able prediction tool. The FN

introduced by Castillo [28, 29], Castillo and Ruiz-Cobo

[30] and Castillo et al. [31, 32] is a powerful extension of

the ANNs and is advantageous to ANNs. Owing to their

advantages over ANNs, FNs have been successfully used in

various fields such as petroleum engineering [33], signal

processing, pattern recognition, function’s approximations

[34] real-time flood forecasting, science, bioinformatics,

medicine [35] structural engineering [36], transportation

engineering [37] and geotechnical engineering [24, 25].

In FN the selection of neuron functions is a two-step

process. In the first step, called as the structural learning,

the functions are selected and in the second step, known as

the parametric learning the functions are estimated. The

second step is same as the determination of weights by the

ANNs. The FN can use arbitrary multiargument and vector

valued functions, whereas in ANNs can use only fixed

(sigmoid) functions.

Figure 1 shows the essential elements of a FN. As is

evident from the Fig. 1, each network contains storing

units to store the inputs (x1; x2; x3), outputs (f4; f5) and

intermediate information (X4;X5) and directed links to

connect the various input, output and intermediate units in
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accordance with the advance of the FN algorithm. Based

on physical relationship between input and output the ini-

tial topology of the FN is selected according to the prop-

erties of the data available. For a given topology, a unique

neuron function is arrived that produces a set of output.

Then the network is trained with available data minimizing

the Euclidean norm of the error function, given by

E ¼
1

2

X

n

i¼1

Oi � FðiÞð Þ2 ð1Þ

The Oi is the observed value of the output and the

approximate neural function fi(x) may be arranged as

fiðxÞ ¼
X

m

j¼1

aij;ijðxÞ ð2Þ

where ; = shape functions with algebraic expressions

1; x; x2; x3. . .xnð Þ, trigonometric functions such as

1; sinðxÞ; cosðxÞ; sinð2xÞ; cosð2xÞ; sinð3xÞ; cosð3xÞ½ �; or

exponential functions such as 1; ex; e2x; . . .; enxð Þ. The

associative optimization function may lead to a system of

linear or nonlinear algebraic equations. This paper applies

the associativity FNs. In general, with the use of the basic

theory of functional equations, any multi-input network can

be transformed to an associative network [30, 32]. Further

details regarding the algorithm for associative FN can be

found in Castillo [28].

Multivariate Adaptive Regression Splines

Multivariate adaptive regression spline (MARS) is an

adaptive regression technique, popularized by Friedman

[38] for solving regression-type problems. MARS is a

‘white box’ technique [23] as it is based on physical laws

and underlying physical relationships of the system can be

explained. The MARS algorithm does not presume any

relationship between the dependent and independent vari-

ables. It builds a relationship between the inputs and the

output using a set of coefficients and basis function (BF)s,

which are determined entirely from the data set for the

particular problem. This makes MARS particularly useful

for problems involving more number of inputs.

Divide and conquer strategy is the backbone of MARS

algorithm. It divides the training data set into a number of

piecewise linear segments called splines of different gradi-

ents. The end points of splines are known as knots and the

piece-wise linear functions or piece-wise cubic functions

between two knots is known as a BF. For the present study,

only piece-wise linear functions have been used in this study.

The MARS model is of the form of equation:

f ðxÞ ¼ b0 þ
X

M

i¼1

bmkmðxÞ ð3Þ

where each km is a BF, which can be a spline or a product

of two or more splines. The coefficients b are constants

estimated using the least squares method. A BF is of the

form max(0, x - t) where t is the location of a knot. It is

defined as,

max 0; x� tð Þ ¼ fx� t; if x[ t or; 0 otherwiseg ð4Þ

The MARS algorithm consists of two step process to fit

the data; forward step and backward pruning process. In

forward step process starting with the intercept b0, BFs are

added in each subsequent step to reduce the errors in

training step. This may lead to an overfitted model. In

second step, backward pruning process, generalized cross-

validation (GCV) technique is used to avoid the overfitting.

The GCV penalizes both BFs and knots, thereby reducing

overfitting or improving generalization of the model.

For a data with N samples, GCV is calculated using the

equation:

Fig. 1 A functional network showing its essential components
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GCV ¼
1
N

PN
i¼1 Yi � f ðXiÞ½ �2

1� Mþd M�1ð Þ=2
N

h i2
ð5Þ

where M is the number of BFs, d is the penalizing

parameter, N is the number of data sets and f(Xi) denotes

the predicted values of the MARS model. The denominator

of GCV is responsible for increasing variance in case of

increasing model complexity. The term (M - 1)/2 in the

denominator represents the number of knots. Thus, GCV

penalizes BFs as well as knots.

Database and Preprocessing

A database available in literature [39] and used by [22]

has been considered for developing the prediction models

in this study. The inputs in the data set consist of liquid

limit (LL), plastic limit (PI) (%), percentage of sand (S),

percentage of gravel (G), moisture content (MC) and the

cement content (CC). The MDD (in kN/m3) and UCS (in

N/m2) were taken as the outputs for building the MDD

and the UCS prediction models, respectively. The max-

imum, minimum, average and standard deviation values

of the parameters used in the present study is shown in

Table 1.

The data set for building MDD model consist of 58

samples out of which 42 randomly selected data were

taken for training the models and 16 were used for testing.

The data set for building UCS model consisted of 51

samples out of which 37 randomly selected data were

taken for training the models and the rest 14 were used for

testing. The data was normalized between 0 and 1 before

using it for the FN and MARS analysis. The FN and

MARS [40] algorithm were implemented using Matlab

[41].

Results and Discussion

The development of the FN and MARS models, the pre-

diction equations and the comparison of FN and MARS

model with the multi linear regression (MLR) analysis and

previously available ANN and SVM model are presented

as follows.

FN Model

Associative FN model with five inputs and one output, as

shown in Fig. 2, were developed for the prediction of MDD

and UCS in this study. The complexity and accuracy of a

FN model depends upon the nature and degree of the BF

chosen. An increase in the degree of the chosen BF gen-

erally leads to more accurate model but at the same time it

leads to a more complex model equation. So, a trade off

was made between the complexity and accuracy while

adopting a model for the present problem. The corre-

sponding model equation is given by

y ¼ a0 þ aij
X

n

i¼1

X

m

j¼1

fi xj
� �

ð6Þ

where n is the number of inputs in the FN model and m is

the degree of the basis function used. In the present study,

cosine function was chosen as the basis function. The value

of a0 and the coefficients aij are determined from the FN

training algorithm.

The best model for the MDD and UCS prediction were

obtained with degree 5 and 4, respectively. The corre-

sponding model equations for the MDD and UCS are given

by Eqs. (7) and (8), respectively.

MDD in
kN

m3

� �

¼ �96267:2þ aij
X

n

i¼1

X

m

j¼1

fi xj
� �

ð7Þ

Table 1 Parameters of data considered for present study

Model L.L. (%) P.I. (%) Clay (%) Sand (%) Gravel (%) Moisture content (%) Cement content (%) DD (kN/m3)

MDD

Min 18.00 0.00 6.00 34.00 0.00 6.90 3.00 14.91

Max 48.00 48.00 53.00 94.00 46.00 19.00 6.00 21.68

Avg 32.23 12.21 23.95 64.50 11.66 9.96 5.59 18.80

SD 11.23 9.69 10.20 15.55 13.89 2.77 0.73 1.66

UCS (N/mm2)

UCS

Min 18.00 0.00 6.00 34.00 0.00 6.90 3.00 1.10

Max 73.00 48.00 53.00 94.00 46.00 19.00 6.00 4.70

Avg 31.55 12.32 24.16 62.48 13.44 10.16 5.54 2.76
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f1 xj
� �

¼ �1:00281� cosLL ð7aÞ

f2 xj
� �

¼ 9:9353� cosPI� 2:2882� cos2PI ð7bÞ

f3 xj
� �

¼ 35024:4� cosC � 21428� cos2C þ 9019:174
� cos3C � 2366:08� cos4C þ 295:443� cos5C

ð7cÞ

f4 xj
� �

¼ 1:8737� cos2S� 1:8634� cos3S ð7dÞ

f5 xj
� �

¼ 17665:04� cosG� 10866:88� cos2G

þ 4611:12� cos3G� 1220:68� cos4G

þ 153:2106� cos5G ð7eÞ

f6 xj
� �

¼ 111413:0106� cosMC� 68071:3239� cos2MC

þ 28542:0363� cos3MC� 7417:0681
� cos4MCþ 907:4254� cos5MC

ð7fÞ

f7 xj
� �

¼ 0:0995� cos3CC ð7gÞ

UCS in
N

m2

� �

¼ 3078:2131þ aij
X

n

i¼1

X

m

j¼1

fi xj
� �

ð8Þ

f1 xj
� �

¼ 35207:3382� cosLL� 18360:7562� cos2LL

þ 5631:7652� cos3LL� 778:9098� cos4LL

ð8aÞ

f2 xj
� �

¼ �45424:7841� cosPIþ 23901:5767� cos2PI

� 7438:6540� cos3PIþ 1049:2719� cos4PI

ð8bÞ

f3 xj
� �

¼ 9:3312� cosC � 4:2603� cos2C ð8cÞ

f4 xj
� �

¼ 3055:2498� cos S� 1694:0927� cos2S

þ 576:2671� cos3S� 93:5490� cos4S ð8dÞ

f5 xj
� �

¼ 1834:6819� cosG� 1012:4206� cos2G

þ 340:6439� cos3G� 54:4633� cos4G ð8eÞ

f6 xj
� �

¼ 274:6706� cosMC� 124:9777� cos2MC

þ 25:5542� cos3MC ð8fÞ

f7 xj
� �

¼ 0:1450� cosCC ð8gÞ

The inputs to be entered in Eqs. (7) and (8) are the nor-

malized value of the inputs between 0 and 1. Equations (8)

Fig. 2 Associativity functional network used in this study
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and (9) give the normalized value of the MDD and UCS

respectively between 0 and 1. The actual values of MDD

and UCS can be calculated using the Eqs. (9) and (10),

respectively.

MDDactual ¼ 6:77�MDDnorm þ 14:91 ð9Þ

UCSactual ¼ 3:6� UCSnorm þ 1:1 ð10Þ

Figures 3 and 4 give the scatter plot between the mea-

sured and predicted values of MDD and UCS, respectively.

It can be seen from the Figs. 3 and 4 that scatter of data from

the line of equality is within 80 % prediction limit for both

MDD and UCS. The correlation coefficient (R) value

between the measured and the predicted valued of the MDD

was found to be 0.908 and 0.922 for the training and testing

data set, respectively. The corresponding values for the UCS

prediction were 0.927 and 0.951. These values suggest a

strong correlation (|R|[ 0.8) in accordance to Smith [42].

However, it is also known that R is a biased estimate [43],

hence the efficiency of the developed models was also

considered according to Nash-Sutcliff coefficient of effi-

ciency (E) [44]. The E values for training and testing data set

for the MDD and UCS model are provided in Table 4. The

generalization of model is measured in terms of the over-

fitting ratio (OR), which is the ratio of RMSE of the testing

data to that of training data. The OR close to 1 shows a good

generalization by the model. The OR for the MDD and UCS

models are found out to be 1.13 and 0.976, respectively

showing good generalization of the developed model.

MARS Model

The complexity and accuracy of a MARS model depends

upon the maximum number of BFs allowed in the final

result. If more number of BFs are allowed, the model

achieved will be more accurate but at the same time, it will

be complex the model equation will be lengthy. Hence, a

tradeoff needs to be made between accuracy and com-

plexity in this case also. MARS models with 9 BFs were

adopted in this study to develop prediction models for

MDD and UCS. The corresponding equation for the model

for each parameter is provided in Eqs. (11) and (12)

respectively.

MDD in
kN

m3

� �

¼ 0:6360� 1:2631� BF1� 3:0761

� BF2þ 8:6173� BF3� 21:7470

� BF4� 28:5876� BF5� 3:8010

� BF6þ 1:1885� BF7þ 2:7682� BF8

þ 0:3274� BF9 ð11Þ

The BFs corresponding to Eq. (11) are provided in

Table 2.

UCS in
N

m2

� �

¼ 0:1914þ 1:2208� BF1þ 11:8112

� BF2þ 3:5029� BF3� 63:3180

� BF4� 1:0002� BF5þ 114:6534

� BF6þ 3:3040� BF7� 794:9950

� BF8� 147:5978� BF9 ð12Þ

The BFs corresponding to prediction model for UCS

(Eq. 12) are provided in Table 3.

Similar to FN models, the inputs to be entered in

Eqs. (11) and (12) are the normalized value of the inputs

between 0 and 1. Equations (11) and (12) give the nor-

malized value of the MDD and UCS respectively between
Fig. 3 Scatter plot between the measured and predicted values of

MDD according to FN, MARS and MLR modelling

Fig. 4 Scatter plot between the measured and predicted values of

UCS according to FN, MARS and MLR modelling
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0 and 1. The actual values of MDD and UCS can be cal-

culated using the Eqs. (9) and (10), respectively. It may be

mentioned here that the above explicit model equation for

both MDD and UCS as per FN and MARS model can be

calculated in a programmable calculator instead of going to

intrinsic part of MARS or FN.

Figures 3 and 4 give the scatter plot between the mea-

sured and predicted values of MDD and UCS according to

MARS model along with the results of FN model. For the

MARS model also, most of the data lie within the 80 %

prediction limit for both MDD and UCS. The R value

between the measured and the predicted values of the

MDD for the MARS model was found to be 0.925 and

0.922 for the training and testing data set, respectively. The

corresponding values for the UCS prediction were 0.927

and 0.954. These values also suggest a strong correlation in

accordance with Smith [42]. The R values for MDD

according to MARS model are marginally better than those

of FN model. However, the R values for UCS according to

both MARS and FN model are close. The E values for

training and testing data set for the MDD model are 0.856

and 0.644, respectively. The corresponding values for UCS

model are 0.851 and 0.814, respectively. The E value for

MDD in training is better for MARS than that for FN. The

trend is reverse for the testing data set. For the UCS model,

the E value for training data set according to the MARS

and FN model are close. However, the E value for the

testing data set was found to be lower for the MARS model

than the FN model. The OR for the MDD and UCS models

according to MARS were found out to be 1.61 and 0.91,

respectively. The high value of OR value for MDD shows a

poor generalization. As per Das and Basudhar [44],

efficiency of a model should be compared in terms of

testing data rather than training data. Hence, based on the

comparison in terms of R and E for testing data and OR

values FN model was found to be better than MARS model

for prediction of MDD. But, the MARS prediction model

for UCS was found to be better than the FN model.

Multilinear Regression Model (MLR Model)

Using the above data, a MLR model was also developed

and is presented as follows for comparison with AI models.

The prediction equations for MDD and UCS according

to MLR analysis are presented in Eqs. (13) and (14).

MDD in
kN

m3

� �

¼ 33:9� 0:0064� LLþ 0:0523� PI

� 0:03� C � 0:064� S� 0:073� G

� 0:482�MC� 0:924� CC

ð13Þ

UCS in
N

m2

� �

¼ �17:1� 0:0155� LL� 0:0305� PI

þ 0:203� C þ 0:228� Sþ 0:248� G

� 0:0223�MC� 0:268� CC

ð14Þ

Figures 3 and 4 give the scatter plot between the mea-

sured and predicted values of MDD and UCS according to

MLR model also. For the MLR model, some of the data lie

outside the 80 % prediction limit showing a poorer pre-

diction for the MLR model as compared to the FN and

MARS models. The R and E values for the MLR model for

the MDD and UCS models are also shown in Table 4.

Table 2 BFs corresponding to

MDD prediction model using

MARS

Basis function Expression Basis function Expression

BF1 max(0,MC – 0.0909) BF6 BF1 9 max(0,0.7167 - S)

BF2 max(0,0.0909 - MC) BF7 max(0,0.2766 - C)

BF3 BF1 9 max(0,C – 0.2766) BF8 max(0,C – 0.2766) 9 max(0,0.2174 - G)

BF4 BF3 9 max(0,PI – 0.2917) BF9 max(0,G – 0.0870)

BF5 BF3 9 max(0,0.2917 – PI)

Table 3 BFs corresponding to UCS prediction model using MARS

Basis function Expression Basis function Expression

BF1 max(0,0.3542 - PI) BF6 max(0,S - 0.6167) 9 max(0,C – 0.3617)

BF2 BF1 9 max(0,0.2979 - C) BF7 BF1 9 max(0,C – 0.2609)

BF3 max(0,0.6167 - S) 9 max(0,PI –

0.1042)

BF8 BF2 9 max(0,MC – 0.1240)

BF4 max(0,0.6167 - S) 9 max(0,S – 0.5167) BF9 max(0,0.6167 - S) 9 max(0,0.1042 – PI) 9 max(0,MC –

0.1488)

BF5 max(0,0.6167 - S) 9 max(0,0.5167 – S)
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Though OR value as per MLR model the MDD and UCS

models are found to be 1.22 and 1.12, respectively,

showing good generalization but prediction model is not

efficient as R (0.75 and 0.73) and E (0.21 and 0.35) values

for both MDD and UCS models, particularly for testing

data are very less.

Comparison with Other AI Techniques

The data set used in this study has been used by Das et al.

[22] to predict MDD and UCS using ANN and SVM. Das

et al. [22] have used different ANN models named as

Bayesian regularization neural network (BRNN), Leven-

berg–Maqruardt neural network (LMNN) and differential

evolution neural network (DENN). The comparison of the

MAE, AAE and RMSE is presented in Figs. 5, 6, 7, 8. For

MDD model, Figs. 5 and 6 present the MAE, AAE and

RMSE for the training and testing data set, respectively.

Similarly for the UCS model, Figs. 7 and 8 present the

MAE, AAE and RMSE for the training and testing data set,

respectively. Table 4 compares the values of R, E and

overfitting ratio (OR) for the prediction techniques used by

Das et al. [22] and those used in this study. It can be seen

from the Table 4 than both FN and MARS are better than

the ANN models for MDD prediction in terms of different

statistical criteria. Only the MAE in training was found to

be higher for the FN and MARS model than different ANN

models. Though, performance of the SVM in terms of R

and MAE, AAE and RMSE in training for MDD prediction

was found better than the FN and MARS model. The

performance of SVM is same as that of FN and MARS for

the testing data set. Hence, it can be inferred that FN and

MARS are a better tool than ANN and SVM for prediction

of MDD.

A similar trend was observed between the FN, MARS

and ANN models for the UCS prediction also, i.e., FN

and MARS outperformed thee ANN models. The R value

for the SVM model for UCS prediction in training was

found to better than those of FN and MARS, but the

values of MAE, AAE and RMSE were found to be lower

for the FN and MARS models. The FN and MARS

techniques have a better prediction performance than the

SVM technique for the testing data set for UCS predic-

tion. Thus, FN and MARS prove to be a better prediction

tool than ANN and SVM for prediction of UCS also. FN,

MARS, ANN and SVM outperformed the MLR model for

the MDD and the UCS prediction. However, FN model is

better than MARS model in terms of generalization i.e.

lower OR values.

Sensitivity Analysis

The sensitivity analysis is carried out for a model to find

out the relative importance of input parameters in affecting

the output. Since, the MARS model did not incorporate all

the inputs and the MLR model was found to have a poor

performance, the sensitivity analysis according to FN

model only has been presented in this study. The sensitivity

analysis was carried out according to Gandomi et al. [45].

To calculate the sensitivity of a given input, only the values

of the said input were varied whereas the value of all other

inputs was kept constant equal to their average value. The

sensitivity was calculated according to the Eqs. (15) and

(16).

Ni ¼ fmax xið Þ � fmin xið Þ ð15Þ

Si ¼ Ni

,

X

n

i¼1

Ni ð16Þ

where fmax(xi) and fmin(xi) are the maximum and minimum

of the predicted output over the ith input domain respec-

tively, when the other inputs are equal to their average

values, n is the number of variables which is equal to 7 in

the present study. Table 5 shows the sensitivity analysis of

inputs for FN model for both MDD and UCS. The moisture

content (MC) and specific gravity (G) are found to be the

most important inputs for the MDD and UCS models,

respectively. Identification of MC as the most important

Table 4 Comparison of R, E

and OR for the MDD and UCS

prediction using ANN, SVM,

FN, MARS and MLR

MDD UCS

Training Testing OR Training Testing OR

R E R E R E R E

BRNN 0.91 0.81 0.84 0.69 1.79 0.86 0.81 0.87 0.69 1.80

DENN 0.91 0.81 0.88 0.73 1.67 0.88 0.81 0.85 0.73 1.66

LMNN 0.81 0.64 0.76 0.53 1.59 0.86 0.64 0.84 0.53 1.58

SVM 0.95 0.93 1.63 0.98 0.92

FN 0.91 0.82 0.92 0.73 1.13 0.93 0.86 0.95 0.70 0.98

MARS 0.92 0.86 0.94 0.64 1.61 0.92 0.85 0.95 0.81 0.91

MLR 0.67 0.45 0.75 0.21 1.22 0.81 0.65 0.73 0.35 1.12
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parameter for the MDD model was found to be in accor-

dance with Das et al. [22]. The cement content is found to

be the least important input both for the MDD and the UCS

models. This may suggest that for low cement stabilization

it is more important to have proper grading of the mixture

than the cement content.

BRNN DENN LMNN SVM FN MARS MLR

MAE 1.23 1.54 2.07 1.39 1.58 1.58 2.30

AAE 0.53 0.50 0.70 0.37 0.49 0.39 1.49

RMSE 0.63 0.64 0.88 0.49 0.70 0.62 1.22

0.00

0.50

1.00

1.50

2.00

2.50

MAE AAE RMSEFig. 5 Bar chart showing

MAE, AAE and RMSE for the

training data set in MDD

according to ANN, SVM, FN,

MARS and MLR analysis

BRNN DENN LMNN SVM FN MARS MLR

MAE 2.69 2.07 2.80 1.82 1.81 1.79 2.31

AAE 0.95 0.88 1.13 0.61 0.62 1.00 2.22

RMSE 1.13 1.07 1.40 0.80 0.79 1.00 1.49

0.00

0.50

1.00

1.50

2.00

2.50

3.00

MAE AAE RMSEFig. 6 Bar chart showing

MAE, AAE and RMSE for the

testing data set in MDD

according to ANN, SVM, FN,

MARS and MLR analysis

BRNN DENN LMNN SVM FN MARS MLR

MAE 1.27 1.05 1.26 1.39 0.87 0.85 1.36

AAE 0.38 0.33 0.36 0.37 0.12 0.12 0.28

RMSE 0.47 0.46 0.47 0.49 0.35 0.35 0.53

0.00

0.40

0.80

1.20

1.60

MAE AAE RMSEFig. 7 Bar chart showing

MAE, AAE and RMSE for the

training data set in UCS

according to ANN, SVM, FN,

MARS and MLR analysis
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Conclusions

In the present study an attempt has been made to develop

prediction models for both the MDD and UCS of cement

stabilized soil using two recently developed AI techniques;

FN and MARS.

Based on different statistical criteria like correlation

coefficient, coefficient of efficiency, maximum absolute

error and root mean square error for testing (new) data, FN

and MARS prediction models for both MDD and UCS are

found to be better than existing ANN and SVM models.

Based on overfitting ratio, it was also observed that FN and

MARS have better generalization than the ANN and SVM

models. In terms of R and E for testing data and OR values

FN model was found to be better than MARS model for

prediction of MDD. But, the MARS prediction model for

UCS was found to be better than the FN model. Sensitivity

analysis shows that MC and G are the most important

parameters for the MDD and UCS prediction respectively.

The cement content was found to be the least important

parameter for both MDD and UCS prediction. This may

suggest that for low cement stabilization, it is more

important to have proper grading/packing of materials than

the cement content. Unlike ANN and SVM, the prediction

models for both the MDD and UCS based on FN and

MARS are very comprehensive and can be used by the

professional engineers for the initial trial of different

mixture.
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