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Abstract: T cell immune responses are driven by the recognition of peptide antigens (T cell epitopes) that are bound to 

major histocompatibility complex (MHC) molecules. T cell epitope immunogenicity is thus contingent on several events, 

including appropriate and effective processing of the peptide from its protein source, stable peptide binding to the MHC 

molecule, and recognition of the MHC-bound peptide by the T cell receptor. Of these three hallmarks, MHC-peptide 

binding is the most selective event that determines T cell epitopes. Therefore, prediction of MHC-peptide binding 

constitutes the principal basis for anticipating potential T cell epitopes. The tremendous relevance of epitope identification 

in vaccine design and in the monitoring of T cell responses has spurred the development of many computational methods 

for predicting MHC-peptide binding that improve the efficiency and economics of T cell epitope identification. In this 

report, we will systematically examine the available methods for predicting MHC-peptide binding and discuss their most 

relevant advantages and drawbacks. 
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INTRODUCTION 

 Classical major histocompatibility complex (MHC) 
molecules play a pivotal role in the adaptive immunity 
mediated by the T cells. T cell immune responses are 
induced by the T cell receptor (TCR) mediated recognition 
of antigenic peptides that are bound to MHC molecules 
expressed on the surface of antigen-presenting cells (APCs) 
[1, 2]. T cells that recognize self-peptides are eliminated 
during the process of thymic selection; therefore, the primary 
targets of T cell immune recognition (reviewed in ref. [3]) 
are MHC molecules incorporating foreign peptides.  

 MHC molecules fall into two major classes –MHC class I 
(MHCI) and MHC class II (MHCII) [4]. MHC class I 
(MHCI) molecules are expressed on most nucleated cells, 
generally bind peptides processed from endogenously 
synthesized antigens, and are recognized by CD8 T cells. 
Activated CD8 T cells become cytotoxic T lymphocytes 
(CTLs) that recognize and kill host target cells that express 
MHCI-bound antigenic peptides (e.g., infected and tumor 
cells). 

 In contrast, MHC class II (MHCII) molecules are 
expressed mostly on professional APCs, bind peptides that 
are processed from extracellular antigens, and are recognized 
by CD4 T cells. Recognition of MHCII-peptide complexes 
stimulates the regulatory helper functions of CD4 T cells, 
which acquire TH1 or TH2 phenotypes that orchestrate the 
immune response [5, 6]. TH1 immune responses activate 
phagocytes, NKs and CD8 T cells, and are essential for 
fighting a variety of intracellular infections. TH2 responses 
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are key in eradicating extracellular pathogens through the 
activation of B cells. 

 In humans, MHC molecules are known as HLAs –
Human Leukocyte Antigens– and are encoded by the HLA 
region on chromosome 6p21.3. There are three types of 
classical HLA class I (HLA I) molecules (HLA-A, HLA-B, 
and HLA-C), as there are for classical HLA class II (HLA II) 
molecules (HLA-DP, HLA-DQ, and HLA-DR). HLA gene 
expression is codominant, and an individual typically 
expresses 6 different HLA I molecules and 12 or more 
different HLA II molecules. In the entire population, there 
are hundreds of different HLA alleles, rendering the HLA 
locus the most polymorphic gene system known [2]. The 
HLA IMGT/HLA database [7] currently includes 3528 HLA 
allelic sequences (2496 HLA I alleles and 1032 HLA II 
alleles) (release 2.25, 04/2009). Each individual HLA 
molecule binds a large repertoire of peptides estimated to 
range from 1,000 to 10,000 individual sequences [8], and 
because peptide binding specificity is determined by the 
HLA polymorphism [9], HLA allelic variants generally bind 
distinct sets of peptides.  

 The identification of both CD8 and CD4 T cell epitopes 
is important in understanding disease pathogenesis [10]. 
Moreover, it is the basis for the development of epitope-
based vaccines against infectious agents [11] and treatments 
for allergic [12], autoimmune [13] and neoplastic diseases 
[14]. Traditionally, the identification of T cell epitopes 
required the synthesis of overlapping peptides that spanned 
the entire length of a protein, followed by experimental 
assays for each peptide, such as in vitro intracellular 
cytokine staining [15], to determine T cell activation. This 
method is economically viable only for single proteins or 
pathogens that consist of several proteins. As a result, 
alternative computational approaches have been developed 
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for the prediction of T cell epitopes, which have significantly 
decreased the experimental burden that is associated with 
epitope identification.  

 Peptide binding to MHC is a prerequisite for T cell 
recognition and is, in addition, the event that most 
selectively defines T cell epitopes [16]. Therefore, the 
prediction of T cell epitopes relies primarily on predicting 
MHC-peptide binding. Many models and methods have been 
developed to predict peptide binding to MHC molecules, 
using different types of peptide binding data and algorithms. 
Notably, the same algorithm trained on data of different 
nature (e.g. quantitative versus qualitative data) will yield 
contrasting models. Moreover, completely different tech-
niques can result in models that, despite resembling formats, 
are intrinsically unrelated (e.g. motif matrices and quan-
titative matrices). This complexity makes the description and 
classification of the disparate methods for predicting MHC-
peptide binding somewhat difficult, and has led to some 
confusion in the literature. To avoid such confusion, in this 
review, we will carry out a comprehensive overview of the 
different methods to predict MHC-peptide binding, 
following a classification schema that focuses primarily on 
the type of data used for training. 

STRUCTURAL BASIS OF MHC-PEPTIDE BINDING 

 The three-dimensional (3D) structures of classical MHCI 
and MHCII molecules are strikingly similar despite sharing 

minimal sequence similarity (< 20% identity). MHCI 
molecules are heterodimers consisting of a single membrane-
spanning  chain that is paired with the soluble 2 
microglobulin ( 2m) protein. The peptide-binding domain of 
the MHCI molecule, formed by the distal 1 and 2 
segments of the  chain ( 1 2 domain), consists of two -
helices that lie above a floor composed of eight antiparallel 

-stranded sheets (Fig. 1A).  

 MHCII molecules are also heterodimers, but they consist 
of two membrane-spanning chains, –the  and  chains. The 
distal membrane regions of the  and  chains ( 1 and 1 
segments) fold together to form the peptide-binding domain 
(Fig. 1B), which closely resembles that of the MHCI [17, 
18]. Yet, there are key structural differences between the 
peptide-binding domains of MHCI and MHCII molecules 
that allow them to bind peptides in completely different 
modes. 

 MHCI-peptide ligands are short (8-11 amino acids) and 
their N- and C-terminal ends are connected to conserved 
residues of the MHCI molecule through a network of 
hydrogen bonds [19-21] (Fig. 1A). The MHCI binding 
groove contains deep binding pockets that are delineated by 
polymorphic side-chains [9] in which specific peptide side 
chains fit (anchor residues). Generally, positions 2 and 3, and 
the C-terminus of the peptides that bind to MHCI are anchor 
positions (Fig. 1A) [21], although the preferences for speci-
fic residues at anchor positions vary between MHCI 
molecules.  

 

 

 

 

 

 

Fig. (1). Binding of peptide ligands to MHCI and MHCII molecules. This figure shows the top of the molecular surface of the antigen-

presenting platform of representative human MHCI (A) and MHCII (B) molecules as viewed by the T cell receptor. The MHCI molecule 

corresponds to HLA-A*0201 in complex with the peptide LLFGYPVYV from HTLV-1 TAX protein (PDB: 1HHK). The MHCII molecule 

corresponds to HLA-DR1 in complex with the peptide PKYVKQNTLKLAT from influenza hemagglutinin protein (PDB:1FYT). Peptides 

bound to these molecules are represented by sticks to highlight the contours of the binding groove. Note how the peptide binding groove of 

the MHCI molecule is closed, and peptides bind in a manner such that both, the N-terminal and C-terminal ends of the peptide (indicated by 

arrow heads) are nestled into the MHCI binding groove, restricting their length to 8–11 residues. In contrast, the binding groove of the 

MHCII molecule is open, thereby imposing no limitation on the size of peptide ligands, whose N-terminal and C-terminal ends can extend 

beyond the binding groove. The side chains of N-terminal and C-terminal ends of the 9-mer peptide core that fits into the MHCII binding 

groove are indicated by arrow heads. The general binding mode of peptides to MHCI and MHCII is shown at the right corner of panels A 

and B. In this representation, peptide positions contacting the TCR and MHC are shaded in red and blue, respectively and are also indicated 

with opposing arrows. Positions shaded in grey can be anchor or TCR contact positions, depending of the specific MHC molecule. The 

figure was prepared using GRASP [122]. 
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 Because the geometry and chemical environment of the 
MHCI binding pockets impose tight constraints on the 
residues and overall peptide length to achieve binding, 
predicting MHCI-peptide binding is relatively simple and 
historically has progressed faster than that for MHCII 
molecules [22]. It is worth noting that peptides that have 
different sizes and bind to the same MHCI molecule often 
use alternative binding pockets [23]; therefore methods for 
predicting MHCI-peptide binding are specific for a fixed 
peptide length. However, most MHCI-peptide ligands have 
nine residues (they are 9-mers), making models for the 
prediction of 9-mer binders preferable. 

 In contrast to MHCI molecules, the peptide-binding 
groove of MHCII molecules is open, allowing the N- and C-
terminal ends of a peptide to extend beyond the binding 
groove (Fig. 1B). As a result, MHCII-bound peptides vary 
widely in length (9-22 residues), although only a core of nine 
residues (peptide-binding core) fits into the MHCII binding 
groove. The MHCII binding groove is shallower than that of 
MHCI, but it also has pockets that are outlined by 
polymorphic residues in which peptide side chains nestle. 
Typically, positions 1 and 9 of the peptide-binding core of 
MHCII-bound peptides are anchor positions [24] (Fig. 1B). 
A major contribution to the overall binding of peptide to 
MHCII [18, 19, 25] is due to a set of conserved hydrogen 
bonds that lie between the backbone of the peptide core and 
the MHCII molecule [18, 19, 25]. With regard to these 
properties, MHCII molecules impose relatively weak limi-
tations on peptide side chains, harboring broader peptide-
binding repertoires than MHCI molecules. This quality along 
with the variable length of the MHCII-peptide ligands, 
complicates the identification of MHCII-peptide binding 
motifs and the generation of peptide binding models in 
general. Most MHCII-peptide binding models assume that 
the peptide-binding core alone determines the binding 
energy. Therefore, the generation of such models usually 
includes a preliminary step that identifies the binding core of 
the peptides. This step is an oversimplification, however, 
because there is evidence that the peptide-binding core 
flanking residues (PFRs) contribute to the overall binding 
[26]. 

PREDICTION OF MHC-PEPTIDE BINDING 

 There are myriad methods and models for predicting 
MHC-peptide binding, which differ in the techniques and 
algorithms that are applied as well as on the nature of the 
data used for training. However, the methods to predict 
MHC-peptide binding are generally described with regard to 
the techniques and algorithms used to develop them, which 
has led to some confusion in the literature. Instead, here we 
will review the different MHC-peptide binding prediction 
methods following a system that focus primarily on the type 
of data used for training (Fig. 2). Under this scope, methods 
to predict MHC-peptide binding can be first classified in two 
overarching groups: those generated from sequences of 
peptide binders (sequence-based models or peptide-data 
driven models), and those that do not require any peptide 
binding data and are based solely on the sequence and 
structure of MHC molecules (modeling-based methods). 
Sequence-based models can also be divided in two types: 

those based on qualitative data that describe the ability of 
peptides to bind to MHC molecules (e.g. binders and non-
binders) and those trained on quantitative data consisting of 
peptides whose binding affinity for MHC molecules has 
been determined. Qualitative data will only produce 
qualitative binding models that will predict, with some 
certainty, whether a test peptide binds to a given MHC 
molecule. Essentially, qualitative models try to recognize the 
binding pattern/feature that is present on the peptides used 
for training: therefore we will hereafter refer to them as 
binding pattern recognition models. In contrast, one can 
develop quantitative regression models from peptides that 
have known binding affinities to MHC molecules. These 
models target the prediction of the actual binding affinity of 
peptides to MHC; thus, we term these methods quantitative 
binding affinity models.  

1. Binding Pattern Recognition Models 

1.1. Sequence Motifs 

 A sequence motif is the simplest method of representing 
the peptide binding motif of a specific MHC molecule. It 
consists of a symbolic peptide string that lists the amino acid 
preferences of the MHC molecule at each position of the 
peptide. The first peptide binding motifs were obtained by 
pool sequencing of peptide ligands eluted from MHCI 
molecules [22]. In general, however, peptide binding motifs 
are identified by comparing sets of peptide sequences that 
are known to bind to MHC molecules [22, 27]. The largest 
collection of peptide binding motifs for MHCI and MHCII 
molecules is stored in the SYFPEITHI database [27].  

 MHC allele-specific peptide binding motifs were the first 
models to enable accurate identification of MHCI restricted 
T cell epitopes [28, 29], and they remain widely used (Table 
I). Yet, the use of sequence motifs is too simplistic, because 
residues that do not reside at anchor positions also contribute 
to binding [30, 31]. Moreover, sequence motifs are too rigid 
to predict MHC-peptide binding, yielding many false 
negatives.  

1.2. Motif Matrices 

 Motif matrices represent an enhancement of sequence 
motifs. Examples of motif matrices were first developed by 
De Groot et al. [32] and Rammensee et al. [27] (Table I). 
These matrices consist of tables whose coefficients are 
associated with the position-specific amino acid frequencies 
found on peptides that bind to a specific MHC molecule. For 
any peptide sequence, the binding score is calculated by 
summing the relevant position and residue-matched matrix 
coefficients. Peptide biding scores that are generated using 
motif matrices are continuous; therefore, a binding threshold 
is required to distinguish the true binders.  

 Related to motif matrices are the profiles developed by 
Reche et al. [33-35] from sets of aligned peptides that bound 
to specific MHC molecules. These profiles are readily 
available for free public use at the RANKPEP site [33] 
(Table I). Profiles ––also known as position-specific scoring 
matrices (PSSMs)– were first introduced in 1987 by 
Gribskov et al. [36] to detect distantly related sequences and 
basically consist of log-odds matrices whose coefficients are 
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Table I. Freely Available Servers for Public Prediction of MHC-Peptide Binding 

1. Binding Pattern Recognition Methods 

Server name URL Technique/Algorithm Class nMHC(1) Stypes(2) Ref. 

MOTIF_SCAN http://www.hiv.lanl.gov/content/immunology/motif_scan/motif_scan Sequence Motifs I and II YES YES – 

SYFFPEITHI http://www.syfpeithi.de/Scripts/MHCServer.dll/EpitopePrediction.htm Motif Matrices (MM) I and II YES NO [27] 

RANKPEP http://imed.med.ucm.es/Tools/rankpep.html Profiles or PSSM I and II NO NO [33] 

PEPVAC http://imed.med.ucm.es/PEPVAC/ Profiles or PSSM I YES YES [112] 

EPIMHC http://imed.med.ucm.es/epimhc/ user made Profiles I and II NO NO [113] 

NetMHC http://www.cbs.dtu.dk/services/NetMHC/ Weight-Matrices I YES NO [38] 

ANNPRED http://www.imtech.res.in/raghava/nhlapred/neural.html ANN I YES NO [114] 

MULTIPRED http://antigen.i2r.a-star.edu.sg/multipred/ ANN I and II YES YES [66] 

MULTIPRED http://antigen.i2r.a-star.edu.sg/multipred/ pHMM I and II YES YES [66] 

SVMHC http://www-bs.informatik.uni-tuebingen.de/SVMHC/ SVM I and II YES NO [50] 

MHC2PRED http://www.imtech.res.in/raghava/mhc2pred/ SVM II YES YES [51] 

POPI http://iclab.life.nctu.edu.tw/POPI/ SVM I and II YES NO [52] 

KISS http://cbio.ensmp.fr/kiss SVM I YES NO [54] 

2. Quantitative Binding Affinity Methods (regression models)      

Server name URL Method/Algorithm Class nMHC(1) Stypes(2) Ref. 

BIMAS http://www-bimas.cit.nih.gov/molbio/hla_bind/ Quantitative Matrices (QM) I NO NO [67] 

IEDB http://tools.immuneepitope.org/analyze/html/mhc_binding.html ARB-QM I NO NO [115] 

IEDB http://tools.immuneepitope.org/analyze/html/mhc_binding.html SMM-QM I NO NO [115] 

netMHCII http://www.cbs.dtu.dk/services/NetMHCII/ SMM-QM II YES NO [72] 

PROPREDI(3) http://www.imtech.res.in/raghava/propred1/ QM I YES YES [116] 

PROPRED(4) http://www.imtech.res.in/raghava/propred/ QM (Virtual QM) II YES YES [117] 

MHCPRED http://www.jenner.ac.uk/MHCPred/ QSAR I and II YES NO [77] 

netMHC http://www.cbs.dtu.dk/services/NetMHC/ ANN-regression I YES NO [79] 

netMHCpan http://www.cbs.dtu.dk/services/NetMHCpan/ ANN-regression I YES NO [81] 

netMHCIIpan http://www.cbs.dtu.dk/services/NetMHCIIpan/ ANN-regression II YES NO [82] 

IEDB http://tools.immuneepitope.org/analyze/html/mhc_binding.html ANN-regression I NO NO [115] 

SVRMHC http://SVRMHC.umn.edu/SVRMHCdb SVM-regression I and II NO NO [118] 

HLABIND http://atom.research.microsoft.com/hlabinding/hlabinding.aspx Adaptive Double Threading I YES NO [84] 

3. Modeling-Based Methods 

Server name URL Method/Algorithm Class nMHC(1) Stypes(2) Ref. 

PREDEP http://margalit.huji.ac.il/Teppred/mhc-bind/index.html Threading I NO NO [89] 

MHC-THREAD http://www.csd.abdn.ac.uk/~gjlk/MHC-Thread/ Threading II NO NO [119] 

(1) The server allows multiple (n) selections of MHC molecules for peptide binding predictions. 

(2) The server allows the identification of promiscous MHC-binding peptides and/or prediction of peptides binding to supertypes  

(3) PROPREDI QMs were compiled by the authors from the literature. 

(4) PROPRED QMs correspond to the TEPITOPE virtual QMs.  
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logarithm ratios of observed amino acid frequencies with 
respect to the relevant background frequencies. Unlike basic 
motif matrices, profiles also correct for sequence redun-
dancies (through sequence weights) and missing data (using 
pseudo-counts that are estimated from substitution matrices). 
RANKPEP MHCII-specific profiles were generated from 
peptide-binding cores that were identified from MHCII-
peptide ligands using an expectation-maximization motif 
discovery program [37]. Virtually identical to these PSSMs 
are the weight-matrices latter described by Nielsen et al. 
[38]. 

 All of the motif matrices described above were deve-
loped solely from positive examples that consisted of known 
MHC-binding peptides. In contrast, Mallios [39] described a 
motif matrix to predict peptide binding to HLA-DR 
molecules that was generated from positive and negative 
data using an stepwise discriminating analysis (SDA). 
Mallios [39] described this method as quantitative, because, 
in contrast to sequence patterns, it yielded continuous scores 
that discriminated peptides as binders and non-binders. The 
method, however, was not trained on quantitative binding 
affinity but on qualitative data; thus it cannot predict peptide 
binding affinities.  

 The prediction of MHC-peptide binding using motif 
matrices and sequence motifs assumes that peptide residues 
contribute independently to binding. Such an assumption, in 
general, is well supported by experimental data, but there is 
also evidence indicating that the contribution of peptide 
residues to MHC-binding is influenced by neighboring 
residues [40].  

1.3. Machine Learning-Based Motifs 

 Machine learning algorithms (MLAs) can handle non-
linear data and capture binding interferences between peptide 
residues. Using MLAs, peptide binding motifs are learned 
under a classification schema, in which MLAs are trained on 
positive (e.g., peptide binders) and negative (e.g., non-
binders) sets of examples. Experimental data on non-binding 
peptides generally are unavailable, and randomly selected 
peptides from a large database often are used instead. MLAs 
can also learn more complex patterns under a multiclass 
classification, in which they are trained on MHC-binding 
peptides that are grouped into more than two classes (e.g., 
high binders, intermediate binders, weak binders, and non-
binders).  

 Artificial Neural Networks (ANNs) are one of the MLAs 
most frequently applied to the recognition of MHC-peptide 
binding patterns. ANNs are connectionist models that 
commonly are used in biology for classification and pattern 
recognition [41]. ANNs were introduced first to predict 
peptide binding to MHCI – specifically to HLA-A*0201 [42, 
43] and K

b
 [44] (a mouse MHCI molecule)– and latter 

extended to MHCII with HLA-DR4(DRB1*0401) [45, 46]. 
These models for peptide binding prediction to MHCII were 
trained on peptide-binding cores, which were identified prior 
to training the ANNs. To this end, Brusic et al. [46] devised 
a system that used an automated evolutionary algorithm to 
identify the peptide-binding core of MHCII-peptide binders, 
which were subsequently fed to an ANN. Predictions of 

peptide binding to MHC molecules using ANN-based motifs 
can be made at the MULTIPRED site (Table I). 

 Support vector machines (SVMs) have also been applied 
to recognize MHC-peptide binding. SVMs are a relatively 
new type of MLA that are increasingly being used in the life 
sciences to identify patterns [47-49]; they classify by 
constructing an N-dimensional hyperplane that separates the 
data optimally into categories. Using this approach, Donnes 
and Elofsson [50] developed the SVMHC method (Table I), 
which is available online to predict peptide binding to 
MHCI. Later, Bhasin and Raghava [51] used a similar SVM-
based approach to predict peptide binding to HLA-DR4 
(DRB1*0401).  

 Peptide input data used for training SVMs, and in general 
to any MLA, can be encoded into different formats, wherein 
the only limitation is that each peptide needs to be 
represented by a fixed length vector. Frequently, peptides are 
represented in binary format, but recently Tung and Ho [52] 
used the physicochemical properties of peptides known to 
bind to MHCI molecules as input data for SVMs, developing 
the POPI method (Table I). Similarly, Salomon and Flower 
[53] predicted MHCII-peptide binding using a kernel-based 
SVM that was trained on the similarity scores of MHCII 
allelic-specific peptide ligands. Notably, Salomon and 
Flower [53] did not preprocess the MHCII-peptide binders to 
identify the peptide-binding core; thus their method also can 
model the influence of PFRs (peptide-binding core flanking 
residues) on binding.  

 The unavailability of peptide binding data always limits 
the development of allelic-specific MHC-peptide binding 
predictors. Interestingly, Jacob and Vert [54] combined the 
routine SVM formulation, described by Donnes and Elofsson 
[50], with an user-defined measure of similarity between 
alleles, which allowed for the

 
estimation of peptide binding 

to MHCI alleles with few known binders. Jacob and Vert’s 
[54] predictive models are readily available at the KISS site 
(Table I). 

 Decision trees (DTs) are one of the most popular classi-
fication algorithms [55] and they also have been applied to 
predict MHC-peptide binding. In this approach, the DT is 
used to construct a graph model of the MHC-peptide binding 
motif, which subsequently can be used to decide whether a 
test peptide fits into that motif. Savoie et al. [56] were the 
first to report the use of BONSAI DTs to predict peptide 
binding for HLA-A*0201. A similar tree-structured 
technique was later reported by Segal et al. [57] to predict 
peptide binding to K

b 
(a mouse MHCI molecule). More 

recently, Zhu et al. [58] trained DTs using peptide binding 
data from different MHCI molecules simultaneously, which 
improved the prediction accuracy

 
of peptides that bind to a 

specific MHCI molecule. 

1.4. Hidden Markov Models Motifs  

 The Hidden Markov model (HMM) is the most widely 
used technique in speech and sequence pattern recognition 
[59, 60]. HMMs are based on parametric statistical models, 
wherein the system that is being modeled is assumed to be 
connected by a Markov chain of unknown hidden parameters 
that are obtained from the observable data. HMMs can cope 
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with non-linear data. However, unlike the MLAs that we 
have described, they can be trained only on positive data. 

 Three types of HMMs have been used to predict MHC-
peptide binding: fully connected HMMs [61], structure-
optimized HMMs [62, 63], and profile HMMs [63]. Fully 
connected HMMs (fcHMMs) were the first to be applied to 
predict MHC-peptide binding, specifically to HLA-A*0201 
[61]. fcHMMs have the greatest potential to model non-
linear data, recognizing different patterns in the peptide 
binders that are used for training, but they carry high 
computing costs. Profile HMMs (pHMMs) are derived from 
sets of aligned peptides using tools such as the HMMER and 
SAM packages [64]. pHMMs perform dramatically fewer 
computations than fcHMMs but are much weaker in 
modeling different patterns. In fact, pHMMs that are derived 
from sets of ungapped alignments (the case for peptides 
binding to MHC) are nearly identical to profile matrices 
[65]. In structure-optimized HMMs (soHMMs), the model's 
connectivity is greatly reduced with regard to fcHMMs, and 
yet they have some capacity to model non-linear data. 
HMMs used to predict peptide binding to MHCI and MHCII 
molecules are implemented in the MULTIPRED method 
[66] (Table I). 

2. Quantitative Binding Affinity Models 

2.1. Quantitative Additive Models 

 Quantitative matrices (QMs) are the most widely used 
additive models in predicting MHC-peptide binding. QMs 
resemble motif matrices, but, in contrast to motif matrices, 
they are generated from actual peptide binding affinity data. 
Therefore, peptide scores computed with QMs are intended 
to reflect actual binding affinities to MHC. The first QMs 
were derived by Parker et al. [67] for MHCI molecules, and 
they are implemented by the BIMAS method (BIMAS-QMs) 
(Table I). Parker et al.’s [67] QMs were generated from 
limited numbers of peptides.  

 QMs for predicting peptide binding to MHC molecules 
have also been developed using binding affinity data 
obtained from positional scanning combinatorial peptide 
libraries (PSCPLs) [68,69]. In this approach, all possible 
peptides of a given length are represented by sets of 
sublibraries, and in each sublibrary, one amino acid is fixed 
and the remaining positions contain mixtures of all amino 
acids. The coefficients of QMs that are generated using 
PSCPLs typically are logarithmic peptide concentrations 
relative to a reference peptide library.  

 Several other methods have been used to construct QMs 
from large sets of binding affinity data of peptides to MHC. 
Bui et al. [70] used the Average Relative Binding (ARB) 
method to derive QMs (ARB-QMs) to predict the binding 
affinity of peptides to MHCI and MHCII (Table I). 
Similarly, Peters et al. [71] have used a Stabilized Matrix 
Method (SMM) to generate QMs (SMM-QMs) from peptide 
binding affinity data, which was first applied to HLA-
A*0201 [40]. For MHCII molecules, Nielsen et al. [72] used 
a novel SMM approach (SMM-align) to predict peptide 
binding affinity. Interestingly, Nielsen et al.’s [72] included 
the two most proximal PFRs to the peptide-binding core into 
their models, which improved their predictive performance.  

 Closely related with to QMs are the virtual QMs that 
were derived by Sturniolo et al. [73] to predict peptide 
binding affinity to HLA-DR molecules. These authors used 
peptide libraries to obtain a quantitative representation of the 
interaction of all natural amino acid residues with struc-
turally identified binding pockets of HLA-DR molecules 
(pocket binding profile). Subsequently, they showed that the 
binding affinity of a peptide to any HLA-DR allele can be 
predicted by selecting the appropriated binding pocket 
profiles, using the TEPITOPE [74] system. TEPITOPE QMs 
are readily available for free public use at the PROPRED site 
(Table I).  

 As motif matrices, QMs assume an independent 
contribution of peptide side chains to MHC binding. In 
contrast, Doytchinova and colleagues [75, 76] used partial 
least squares (PLS), a robust multivariate statistical method, 
to derive quantitative structure activity relationship (QSAR) 
additive models, wherein the binding affinity of peptides to 
MHC is computed as the sum of

 
amino acid contributions at 

each position plus the contribution of adjacent side chains
 

interactions. PLS models for predicting peptide binding 
affinity to MHCI and MHCII molecules is implemented 
using the MHCPRED method [77] (Table I). 

2.2. Machine Learning-Based Regression Models  

 Machine Learning regression models for predicting the 
binding affinity of peptides to MHC result from regression 
training of MLAs on peptides that have known binding 
affinities to MHC molecules. Both SVMs and ANNs have 
been used in this context. SVM regression has been applied 
by Liu et al. [78] to predict peptide binding affinity to MHCI 
molecules. These models are available at the SVRMHC site 
(Table I). ANNs were shown to perform sensitive 
predictions of peptide binding affinity to MHCI molecules 
by Buus et al. [79] and are implemented using the NetMHC 
method (Table I). The NetMHC method was latter improved 
by Nielsen et al. [80], who trained ANNs using combi-
nations of novel input representations (sparse encoding, 
blosum encoding, and input that was derived from HMMs).  

 As noted, MHC binding predictions are limited by the 
availability of experimental peptide binding data. Inge-
niously, by combining MHCI peptide binding residues and 
peptide binding affinity data as input information for training 
the ANNs, Nielsen et al. [81] developed the NetMHCpan 
method (Table I), which can predict peptide binding 
affinities to uncharacterized MHCI molecules. Nielsen et al. 
[82] also followed a similar approach in developing the 
NetMHCIIpan method (Table I), which predicts binding 
affinities of peptides to HLA-DR molecules with little or no 
binding data. The NetMHCIIpan predictive models were 
obtained from MHCII-peptide binding sequences of known 
binding affinity that were preprocessed with the SMM-align 
method and, in combination with the HLA-DR residues that 
make contact with the peptide, used as input data for training 
ANNs. 

2.3. Structure-Based Quantitative Methods 

 Several groups have combined peptide binding data with 
3D-structural information of MHC molecules to predict 
peptide binding affinities. To this end, Doytchinova and 
Flower [83] used a powerful molecular comparative 
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similarity index analysis (CoMSIA) to predict the binding 
affinity of peptides to MHCI. The combination of 3D-
structural information and peptide binding data can generate 
models that extrapolate peptide binding affinity predictions 
to MHC molecules for which very little binding data exist, as 
has been shown recently by Jojic et al. [84] using an 
adaptive double threading approach (Table I).  

3. Modeling-Based Methods  

 In this category, we include methods that are not trained 
on any binding data and are solely based on the 3D structure 
of the MHC molecule; hence, they are often known as 
structure-based methods. However, we have classified them 
as modeling-based methods for two reasons: 1) as has been 
shown, there are other methods that use 3D-structural 
information of MHC molecules but in combination with 
peptide binding data; and 2) the 3D structure of most MHC 
molecules is not known but can be modeled or simulated. 
Modeling-based methods for predicting MHC-peptide 
binding are less accurate than data-driven models. Yet, they 
have the greatest potential, because they can be applied to 
any MHC molecule. 

 The first approach that was used to predict MHC-peptide 
binding was based on molecular dynamics simulations 
(MDSs) [85]. This method was computationally intensive 
and when it was tested on HLA-B*2705, it allowed only a 
crude discrimination between binders and non-binders. 
Altuvia et al. [86] introduced a structure-based algorithm to 
predict peptide binding to HLA-A*0201 that was consi-
derably faster and more accurate. The algorithm consisted of 
fitting the peptide in the binding groove of the MHCI –

peptide threading– and evaluating MHCI-peptide pairwise 
interactions using the knowledge-based potential matrix of 
Miyazawa and Jernigan [87]. This matrix, however, was 
only useful to predict the binding of peptides to MHCI 
molecules that had hydrophobic binding pockets but not to 
those with hydrophilic or charged pockets. In response to 
these limitations, Zhao et al. [88] and Schueler-Furman [89] 
developed novel knowledge-based potential matrices, which 
allowed to predict peptide binding to most MHCI molecules 
using to peptide threading. Recently, Mohanapriya et al. [90] 
also used peptide threading to predict peptide binding to 
MHCII molecules.  

 Docking or computer-simulated ligand binding has also 
been used to predict MHC-peptide binding. Docking 
methods use energy-scoring functions to calculate the 
binding energy of a series of ligand candidates. In this 
regard, Logean et al. [91] developed a tailor-made energy 
scoring function (FRESNO) to predict peptide binding to 
MHCI molecules. Peptide threading and docking methods do 
not perform exhaustive figurations of the MHC-peptide 
structure. Nevertheless, accurate prediction of MHC-peptide 
structures can certainly improve the accuracy of peptide 
binding predictions and relevant efforts have been made to 
model the appropriate geometry of MHCI- and MHCII-
bound peptides [92-96]. 

MHC SUPERTYPES 

 The development of T cell epitope-based vaccines with 
wide population coverage is significantly hindered by HLA 
polymorphisms; they generally determine the peptide 
binding specificity of MHC molecules [9]. Therefore, grou-

 

 

 

 

 

 

 

 

 

Fig. (2). Classification of MHC-peptide binding prediction methods. This figure shows a schematic overview of the different methods for 

predicting MHC-peptide binding according to the data used for training. Pattern Binding Recognition Models can also be generated using 

techniques that require only one class of data (e.g., peptides known to bind to a given MHC molecule).  
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ping MHC molecules into supertypes, based on similarities 
in peptide binding specificity, is useful to optimize the 
composition of epitope-based vaccines. 

 MHC supertypes were first identified by Sette and 
Sidney [97, 98], who, by inspecting HLA I allele-specific 
binding motifs, recognized that most HLA I alleles could be 
classified into nine supertypes. Further, they observed that 
88% of the population expressed the alleles of just three 
supertypes (HLA-A2, HLA-A3, and HLA-B7). Subse-
quently, other more sophisticated computational approaches 
have emerged to classify HLA I and HLA II alleles, which 
have served to refine and expand the original supertypes 
defined by Sette and Sidney [97, 98]. Reche and Reinherz 
[99, 100] described a method for defining MHC supertypes 
by clustering MHC allelic-specific peptide binding 
repertories and Lund et al. [101] reported a similar method 
by clustering peptide binding matrices. These methods for 
identifying MHC supertypes are limited by the availability of 
allele-specific predictors of peptide binding. In contrast, 
Doytchinova et al. [102-104] have reported a system to 
classify into supertypes all HLA I and HLA II allelic 
variants, which is solely based on the 3D

 
structure of MHC 

molecules. Similarly, Kangueane et al. [105] recognized that 
all HLA-A, -B, and -C alleles can be grouped into supertypes 
on the basis of several critical polymorphic residues. 

COMPARING THE METHODS FOR PREDICTING 
MHC-PEPTIDE BINDING  

 Peptide-data driven models overwhelmingly outperform 
modeling-based methods. Despite the focus of many studies 
on evaluating the success of various MHC-peptide binding 
prediction methods, there is no consensus on the ideal 
method. This controversy arises because the predictive per-
formance of the methods varies for different MHC molecules 
and evaluation test sets. Moreover, the value of comparative 
evaluations between pattern recognition models and 
regression models must be examined with caution, because a 
regression model can be used to predict whether a peptide 
binds to MHC, but a pattern recognition model cannot 
predict binding affinities. Therefore, peptide scores that are 
obtained using pattern recognition models should not be 
correlated with binding affinities. 

 Often predictive methods based on ANNs and SVMs are 
described as superior methods, because they can model 
binding interferences between peptide side chains. However, 
using a benchmark of peptides of known binding affinities to 
MHCI, Gulukota et al. [43] found that modeling peptide side 
chain interactions using ANNs only improved marginally the 
predictions obtained with QMs, which assume an 
independent binding contribution of each peptide residue 
[43]. In another study, Yu et al. [106] compared the efficacy 
of simple sequence motifs, SYFPEITHI motif matrices [27], 
ANN-based classification models, HMMs, and BIMAS-QMs 
to predict peptide binding to MHC, concluding that ANN-
based classification models and HMMs were superior when 
trained on large datasets (more than 50 peptides). The 
HMMs that were used in this evaluation were profile HMMs 
generated from ungapped alignments of peptides. As noted, 
such HMMs are equivalent to profile PSSMs [107] and both 
should share the same detection and predictive powers, 

provided that they are generated from the same peptides. 
HMMs are superior to profile PSSMs only when they are 
derived from gapped alignments. Interestingly, Yu et al. 
[106] also found that despite the inferiority of simple 
sequence motifs to the other methods, they were the best 
predictors when the training sets consisted of merely several 
peptides.  

 Peters et al. [108] also performed a comparative 
validation using a benchmark that consisted of peptides of 
known affinities to different MHCI molecules. These authors 
found that SMM-QMs and ANN-based regression models 
performed better than ARB-QMs and BIMAS-QMs. They 
also reported that SYFPEITHI motif matrices [27] are poor 
predictors of peptide binding affinity, as one would expect. 
More recently, Lin et al. [109] evaluated several methods for 
predicting peptide binding affinity to MHCII using a 
benchmark of peptides of known binding affinities to MHCII 
wherein NetMHCIIpan was judged to be the best predictor, 
followed by PROPRED (TEPITOPE QMs). 

WEB SERVERS AND DATABASES 

 The methods for predicting MHC-peptide binding that 
have been described in this article and are available for 
public use on the Internet are listed on Table I. All of the 
methods in Table I have been developed under cross-
validation; therein, choosing the right tool for predicting 
MHC-peptide binding is not straightforward. However, one 
must know whether a specific method predicts binding 
affinities or merely qualitative binding (binding pattern 
recognition models).  

 Prediction rates obtained with any of these methods 
generally vary for the different MHC molecules. Moreover, 
not a single method has yet to yield reasonably accurate 
predictions for all MHC molecules. Therefore, users should 
make use of these web-based methods as frameworks to 
carry their own computational experiments and test the 
performance for the MHC molecule of interest. To this end, 
users should refer to their own sets of MHC-binding 
peptides, which can be obtained from public resources such 
as those listed in Table II. Web-based prediction tools 
should themselves facilitate computational experimentation, 
providing results that are easy to interpret and in formats that 
can be easily downloaded and processed for further analysis 
by users. 

CONCLUDING REMARKS 

 The prediction of MHC-peptide binding is the basis for 
anticipating T cell epitopes. The identification of T cell 
epitopes requires laborious and costly experiments, and the 
prediction of MHC-peptide binding significantly decrease 
these experimental burdens. In recent years, there has been 
tremendous growth of methods that predict MHC-peptide 
binding, and significant progress has been reported with 
regard to their in silico predictive accuracy and the range of 
MHC molecules that can be targeted for peptide binding 
predictions.  

 In practice, however, the prediction of MHC-peptide 
binding is far from perfect. For example, in a recent study, 
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Wang et al. [110] predicted 167 9-mer peptides from 
influenza A virus (IAV) as potential binders of various HLA 
I alleles, using NetMHC [79, 80]. Subsequently, these 
authors tested binding and only 89 peptides (53% of the 
pool) were classified as authentic binders; 39 failed to bind 
altogether, and another 39 bound very weakly. Of the 
successful binders, only 13 peptides elicited T cell responses 
(real T cell epitopes) (7.8% of their total predicted peptide 
pool). A similar discovery ratio of IAV-specific CD8 T cell 
epitopes restricted by K

b
 and D

b 
was reported by Zhong et al. 

[111] using SYFPEITHI motif matrices [27]. This low 
epitope-discovery rate is, however, deceiving, because 
MHC-peptide binding predictions do not substitute for 
experimental work but merely complement it. Thus, an 
alternative approach would have required to make and test 
over 4000 9-mers constituting the IAV proteome that, based 
on size, can bind to MHC. However, a reasonable question 
arises with regard to the use of MHC-peptide binding predic-
tion methods: Do they overlook any true MHC-binding 
peptides?  

 Overall, the results that we have discussed indicate that 
predicting MHC-peptide binding is vital for epitope 
identification but remains challenging with ample room for 
improvement. Furthermore, the gap between the peptides 
that are predicted to bind to MHC and those that experi-
mental turn out to bind, implies that new evaluation 
benchmarks and experimental data are required. Indeed, we 
believe the field will benefit from launching a Critical 
Assessment of Techniques for MHC-peptide binding/ 
Epitope Prediction, similar to the Critical Assessment of 
Techniques for Protein Structure (CAPS). Under this 
program, computational methods will be used for blind de 

novo prediction of peptides that bind to MHC from query 
proteins that, for evaluation purposes, have been experi-
mentally screened for MHC-peptide binding. Given the 
synergy between peptide data and MHC-peptide binding 
predictions, this endeavor will undoubtedly serve to improve 
the accuracy of MHC-peptide binding prediction methods. 
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