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Prediction of Missing Values in Microarray

and Use of Mixed Models to Evaluate the

Predictors∗

Guri Feten, Trygve Almøy, and Are H. Aastveit

Abstract

Gene expression microarray experiments generate data sets with multiple missing ex-
pression values. In some cases, analysis of gene expression requires a complete matrix as
input. Either genes with missing values can be removed, or the missing values can be
replaced using prediction. We propose six imputation methods. A comparative study of
the methods was performed on data from mice and data from the bacterium Enterococcus
faecalis, and a linear mixed model was used to test for differences between the methods.
The study showed that different methods’ capability to predict is dependent on the data,
hence the ideal choice of method and number of components are different for each data
set. For data with correlation structure methods based on K-nearest neighbours seemed
to be best, while for data without correlation structure using the average of the gene was
to be preferred.

∗We would like to thank two anonymous referees for constructive criticism. This work has
been financed by Norwegian University of Life Sciences.



1 Introduction

The technology of DNA microarray allows monitoring expression levels for
thousands of genes simultaneously. Large-scale gene expression studies have
been carried out to study cell cycle (Eisen et al., 1998), tumor tissues
(DeRisi et al., 1996), yeast sporulation (Chu et al., 1998), and resequence
and mutational analysis (Hacia, 1999). An introduction to the microarray
technology can be found in e.g. Nguyen et al. (2002a).

The microarray data are characterized by many measured variables
(genes) on only a few observations (replications, parallels). Often micro-
array experiments generate data sets with multiple missing expression
values. In some cases, analysis of gene expression requires a complete matrix
as input, e.g. hierarchical clustering.

There are different reasons for missing expression values. The micro-
array may contain weak spots. Usually these spots are filtered out. One
way to sort out weak spots is to compare the pixels of the spot with the
pixels of the background. If the fraction of spot pixels greater than the
median of the background pixels is less than a given threshold, the gene
expression that corresponds to this spot will be set as missing. Another
reason for missing expression values is technical errors during the
hybridization. Microarrays are scanned in a microarray scanner, producing
either fluorescence intensities or radioactive intensities. The intensities must
be higher than a given value. If the intensity is below this threshold, we
define the value as missing. A third reason for missing values is dust,
scratches, and systematic errors on the slides.

Recently comparative studies of three data imputation methods; a
singular value decomposition based method, weighted K-nearest neighbours,
and row average were presented (Troyanskaya et al., 2001; Hastie et al.,
1999). Bø et al. (2004) compared methods that utilize correlations between
both genes and arrays based on the least square principle and the method
of K-nearest neighbours. Ouyang et al. (2004) proposed an imputation
method based on Gaussian mixture clustering and model averaging. All
of these papers investigated the methods for different fractions of missing
data. Nguyen et al. (2004) investigated how the accuracy of four different
prediction methods; mean, K-nearest neighbours, ordinary lest squares
regression, and partial least squares regression, is depended on the actual
gene expression. In addition to the work that has been done on missing value
prediction for microarray data, larger studies have been devoted to similar
problems in other fields. Common methods include iterating procedures
(Yates, 1933; Healy and Westmacott, 1956), imputing conditional means
(Buck, 1960), hot deck imputation (Ernst, 1980), multiple imputation
(Rubin, 1987; Rubin and Schenker, 1991), and bootstrap (Efron, 1994).

In this paper different methods for replacing missing data have been
studied. In addition to previously studied methods; Principal Component
Regression (PCR), Partial Least Square Regression (PLSR), weighted
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K-nearest neighbours (KNN) with genes as neighbours, and gene average,
we focused on two methods; Factor Analysis Regression (FAR) and weighted
K-nearest neighbours (KNN) with observations as neighbours.

Earlier papers on missing values have none or few attempts on comparing
the prediction methods statistically. Bø et al. (2004) used paired t-test to
compare the methods. Cross Validation Analysis of Variance (CVANOVA)
was introduced to compare prediction methods by Indahl and Næs (1998).
Based on the idea of CVANOVA, in this paper we have used mixed models
to compare the methods.

In Section 2 we will present six methods to predict missing values, four
based on regression, and two based on K-nearest neighbours. A method
based on linear mixed models to compare the prediction methods is also
described. Further on, in Section 3, there is a presentation of the data used
in the study, followed, in Section 4, by the results of the study.

2 Methods

2.1 Prediction and missing values

Suppose we will study the gene expressions of p genes (typically 1000 −
40000) on n observations (p ≫ n), where several of the genes have missing
expressions. Our aim is to predict these missing values. Let yj denote the
n×1 vector containing the n gene expressions of gene j. Let X(j) denote the
n× (p− 1) matrix containing the gene expressions of the p− 1 other genes.
If nothing else is stated, both yj and X(j) are centered by subtracting their
column averages.

Some methods for predicting missing values are based on the regression
approach. Since p is larger than n, common methods as least square or
maximum likelihood does not apply. Hence other prediction methods have
to be used for the purpose of reducing the predictor space spanned by the
(p−1) columns in X(j) to a lower K-dimensional space. This is achieved by
constructing K components in the predictor space, where the components
optimize a defined object criterion.

If observation i has a missing value for gene j, it can generally be
predicted by a linear predictor ŷij given by

ŷij = ȳj + β̂
t

j(x(j)i − x̄(j)), (1)

where ȳj is the average of the uncentered expression of gene j, x(j)i is a
vector of the expressions of all the other genes of the observation with the
missing value, and x̄(j) is a vector containing the average of the uncentered
gene expression for each gene except gene j. To simplify the notation we
let y = yj, X = X(j), and β̂ = β̂j in the rest of the paper. We will in

the following present different methods for computing β̂, methods that are
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known from other fields to perform well, e.g. chemometrics (Martens and
Næs, 1989).

The methods predict the missing values by aim of an iterative method
based on the idea of the Expectation Maximization (EM) algorithm
(Dempster et al., 1977; Wu, 1983). For iteration q, define the matrix
W(q) =

[

y(q) X(q)
]

. Since methods based on regression can only be
performed on complete matrices, we initially (that is q = 0) set the missing
values equal to the average of the non-missing values for each gene. Let
q = q + 1, and then for each gene with missing values, compute the vector
β̂ in (1) from y(q−1) and X(q−1). Furthermore, y(q), is produced by replacing
the missing values in y with the fitted values from (1), and then update
W(q). The computation is repeated until ‖W(q−1) − W(q)‖/‖W(q−1)‖ is

below some threshold, e.g. 10−2, where ‖W‖ =
√

∑n

i=1

∑p

j=1w
2
ij (Hastie

et al. 1999).

2.2 Prediction methods

2.2.1 Parametric methods

In situations where there are more variables than observations, the matrix
XtX will be singular, and hence (XtX)−1 does not exist and ordinary least
square cannot be used. Hopefully a few linear combinations of the variables
will take care of most of the available information in data, and the remaining
combinations could be declared as noise and then removed.

The regression methods studied in this paper have in common that they
express the (p− 1)-dimensional vector β̂ in (1) by

β̂ = R(RtSR)−1Rts, (2)

where S = XtX, s = Xty, and the p × K matrix R are specified by the
regression methods. The vector β̂ in (2) can be written as

β̂ =
K

∑

k=1

akbk. (3)

Geometrically β̂ is element of a K-dimensional (K ≪ p) subspace spanned
by the vectors b1, . . . , bK . The constants ak and the p× 1 vectors bk are
specified by the regression methods. The optimal number of components
(K) for getting the best prediction, needs to be determined empirically.
The topic is discussed by Næs and Helland (1993) and Helland and Almøy
(1994).

The average The simplest method to predict missing values is to use the
average over the uncentered expression values for the associated gene. This
is equal to assuming β̂ = 0. The predictor in (1) is then simplified to

ŷij = ȳj.
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We call the method “average”.

Principal Component Regression (PCR) In Principal Component
Analysis (PCA), we will explain as much of the variance-covariance structure
as possible through a few linear combinations of the original explanatory
variables (Massy, 1965). The PCR method is equivalent to applying these
combinations as explanatory variables, and performing a least square
regression on the new variables. This transformation eliminates the
collinearity between the variables, and the stability of the regression
coefficients is increased, while some bias is introduced. The scores of the
principal components are given by

Z = XE,

where E is the orthogonal matrix whose K columns are the eigenvectors of
XtX. The eigenvectors’ contribution to the expression is quantified by the
corresponding eigenvalues. We identify the most significant eigenvectors by
sorting them based on their corresponding eigenvalues. The components
having small eigenvalues are assumed corresponding to noise.

We get β̂ with PCR if we insert

R = E = [e1, e2, . . . , eK ]

in equation (2), or equivalently insert

ak =
et

ks

lk
and bk = ek

in (3), where lk is the eigenvalue corresponding to the eigenvector ek. In
PCR we therefore use fewer variables, but keep the important information.

Partial Least Square Regression (PLSR) This method is well known
from chemometrics (Martens and Næs, 1989), and has previously been used
in classification based on microarray gene expression data (Nguyen and
Rocke, 2002b; Ghosh, 2003). It is shown that PLSR is useful as a predictive
modelling regression method in the kind of data where there are many more
variables than observations (Næs et al., 1986; Höskuldsson, 1988).

We receive β̂ with PLSR by inserting

R = [s1, s2, . . . , sK ]

in (2), where the vector sk = Xt
kyk is the non-normalized eigenvector

corresponding to the largest eigenvalue of Xt
kyky

t
kXk, and where Xk and

yk denote the residual after k components, given by

yk = yk−1 − Xk−1sk−1(s
t
k−1Sk−1sk−1)

−1st
k−1sk−1,

Xk = Xk−1 − Xk−1sk−1(s
t
k−1Sk−1sk−1)

−1st
k−1Sk−1,
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where Sk−1 = Xt
k−1Xk−1, X1 = X, and y1 = y. There is no simple

expression of the ak’s and bk’s in (3), the exception is one component,
then

a1 =
st
1s1

s1S1s1

and b1 = s1.

Factor Analysis Regression (FAR) In contrast to PCR and PLSR,
the FAR method is based on a statistical model. Let y be the expression of
a gene with missing values, and let x be a vector containing the expressions
of the (p− 1) other genes. Let us assume that both x and y simultaneously
follow the factor analysis model given by (Lawley and Maxwell, 1973)

[

y
x

]

= µ + Γf + ǫ, (4)

where µ (p × 1) is a vector of constants, Γ (p × r) is a matrix of factor
loadings, f (r × 1) is a vector of factor scores, and ǫ (p × 1) is a vector of
specific factors with equal variance. Let f ∼ N(0, Ir), ǫ ∼ N(0, ψIp), and

Cov(f ,ǫ) = 0 (r × p), then the covariance matrix of
[

y xt
]t

is given by

ΓΓt + ψIp+1 =

[

γt
yγy + ψ γt

yΓ
t
x

Γ
x
γy Γ

x
Γt

x
+ ψIp

]

. (5)

More details regarding the factor model can be found in any textbook in
multivariate analysis, e.g. Mardia et al. (1979).

If we assume that Γ is a matrix with orthogonal columns, then
cumbersome, but straightforward calculation gives the following maximum
likelihood estimators of the parameters in (5)

ψ̂ = (p− r)−1

p
∑

k=r+1

lk = l̄r,

Γ̂
x

= Hr(Lr − l̄rIr)
0.5,

γ̂y = (Lr − l̄rIr)
0.5gr.

Here lk is the k’th largest eigenvalues of ([y,X]t[y,X]), Lr is the diagonal

matrix with the r largest eigenvalues, and
[

gr, Ht
r

]t
is the p× r matrix

of the corresponding eigenvectors (Almøy, 1994). Assuming (5) we obtain
by straightforward matrix calculation the following maximum likelihood
regression vector for

β = (Γ
x
Γt

x
+ ψI)−1Γ

x
γy = Γ

x
(Γt

x
Γ

x
+ ψI)−1γy

as
β̂ = Hr(Lr − l̄rIr)L

−1
r gr[1 − gt

r(Lr − l̄rIr)L
−1
r gr]

−1,

or expressed as in (3) where

ak = gk(1 − l̄K l
−1
k )(1 − gt

K(LK − l̄KIK)L−1
K gK)−1 and bk = hk,

with gk being the k’th element of gK , and hk being the k’th vector of HK .
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2.2.2 Non-parametric methods

K-Nearest Neighbours (KNN) While all the previously presented
methods are parametric, another way to predict missing values is by the
application of some non-parametric methods. The most used method is
K-nearest neighbours, which predict missing values by imputing them with
a weighted average of their neighbours (Troyanskaya et al., 2001). The
neighbours can be either observations or genes. We assume that there
exist one or several groups of coregulated genes, hence we can use genes as
neighbours.

To define a neighbour we need a distance measure between the object
with the missing values of interest and the neighbours. In this paper we have
used Euclidean distance based on all pairs of non-missing data. Different
objects have different numbers of complete pairs, hence the sum is scaled
up proportionally to the number of complete pairs. When observations are
neighbours use X′ = X, and when genes are neighbours use X′ = Xt. The
distance between two rows (i and l) is given by

dil =

√

p

cil

∑

j∈Cil

(x′ij − x′lj)
2, (6)

where p is the number of columns in X′, cil is the number of complete pairs
of rows i and l, Cil is the set of complete pairs of rows i and l, x′ij is the
value in column j and row i, and x′lj is the value in column j and row l. The
algorithm of K-nearest neighbours uses imputed values from objects close
to the object with the missing value (Little and Rubin, 1987). We have
used an extended version where neighbours are weighted down according to
increasing distance (Troyanskaya et al., 2001).

Consider a row i that has one missing value in column j, the KNN
method finds K other rows which have a value present in column j, with
value most similar to row i. The missing value in column j and row i can
then be replaced by using

x̂′ij = x̄′(i) +

∑

l 6=i(x
′
lj/dil)

∑

l 6=i(1/dil)
,

where x̄′(i) is the average value of the uncentered row i, x′lj is the l’th value

in column j, and dil is the Euclidean distance given in (6) (Little and
Rubin, 1987). Note that when we use genes as neighbours, we center the
observations instead of the variables.

2.3 Validation

The original data set was pre-processed by removing the genes containing
missing expression values, yielding complete matrices. To create test data
sets we deleted randomly between 0.1% and 20% of the data from the
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complete matrix. Each method was then used to recover the introduced
missing values for the data set. The predicted values were compared to
those in the original data set. We determined the method with optimal
number of components for every fraction of data missing.

For Principal Component Regression, Partial Least Square Regression,
and Factor Analysis Regression different numbers of components were used.
For K-nearest neighbours, both the number of neighbouring genes and the
number of neighbouring observations optimal for prediction were varied.

The ability of the predictor is usually evaluated by its expected square
loss,

θ2
jk(m) = Ej(yj − ŷjk(m))

2,

interpreted as the long run average square difference between the uncentered
expression of gene j and the predicted expression using k components within
method m. Since θ is a complicated function of unknown parameters, it
can be estimated by the root mean square error of prediction (RMSEP).
The commonly used RMSEP is given by

RMSEP =

√

1
∑

j∈Q tj

∑

j∈Q

∑

i∈Tj

(yij − ŷijk(m))2,

where Q is the set of genes with missing values, tj is the number of missing
values in gene j, Tj is the set of observations with missing values in gene
j. Further on, yij is the observed uncentered expression of observation i in
gene j, and ŷijk(m) is the predicted value of observation i in gene j using
method m with k components/neighbours. Only if all the genes, or the
number of missing values is equal for all genes, RMSEP 2 is an unbiased
estimate of the average (over genes) prediction error,

θ2
k(m) =

1

q

∑

j∈Q

θ2
jk(m), (7)

where q is the number of genes with missing values. Instead we have used
a modified version of RMSEP, whose square value is an unbiased estimate
of θ2

k(m), given by

RMSEPk(m) =

√

√

√

√

√

1

q

∑

j∈Q





1

tj

∑

i∈Tj

(yij − ŷijk(m))2



. (8)

Comparison of methods In order to compare the different methods for
predicting missing values, the predictors may be compared using ideas from
CVANOVA (Cross Validation Analysis of Variance) introduced by Indahl
and Næs (1998). This method is based on two-way analysis of variance of
prediction results obtained using cross-validation.
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Here we will generalize this method and base the analyses on the mixed
model

(yij − ŷijk(m))
2 = µ+ τi + ηj + ξm + δk(m) + (ηξ)jm + (ηδ)jk(m) + ǫijk(m), (9)

where µ is the common average, τi is the effect of the i’th observation, ηj

is the effect of the j’th gene, ξm is a parameter associated with the m’th
method, δk(m) is the effect of the k’th component within method m, (ηξ)jm

is the effect of the interaction between the j’th gene and the m’th method.
Further on, (ηδ)jk(m) is the effect of the interaction between the j’th gene
and the k’th component within method m, and ǫijk(m) is a random error
component. In the model we will assume ηj ∼ N(0, σ2

η), (ηξ)jm ∼ N(0, σ2
ηξ),

and ǫijk(m) ∼ N(0, σ2
ǫ ). Since we will only apply our conclusions to the

observations considered in the analysis, the effect of observation is fixed.
The data were analyzed as a mixed model, and the hypotheses that

there is effect of method, component(method), gene, gene*method, and
gene*component(method) were tested by PROC GLM in SAS (The SAS
System for Windows, release 8.02, SAS Institute Inc). These tests are
usually robust against deviations from the normal distribution (Lindman,
1992), and the problem of using the non-normal (yij − ŷijk(m))

2 should be
minimal. We could have used the absolute error of prediction, |yij − ŷijk(m)|,
but since we evaluate the methods by RMSEP, and RMSEP uses the square
error of prediction, we do not.

3 Data

To demonstrate the different methods for predicting missing values we have
used data from two cDNA microarray experiments as examples.

The first is gene expression data from a study of lipid metabolism in mice
focusing on identifying genes with altered expression. A mouse model with
very low High Density Lipoprotein (HDL) cholesterol levels was compared
to inbred control mouse. The treatment group consisted of 8 mice where
the apolipoprotein (apo) AI gene was knocked out. Apo AI is a gene
playing an important role in the HDL metabolism. The control group
consisted of 8 inbred “normal” mice. Gene expressions from 5548 genes
were measured, including 200 related to lipid metabolism. We removed all
genes containing missing values, yielding 5486 genes. We denote this data
set apo AI. (Callow et al., 2000.) The eigenvalues of the covariance matrix
of apo AI are presented in Figure 1a. The fact that one of the eigenvalues is
large compared to the others is an indication of strong correlation structure
between the genes.

The second example is gene expression data from a study of bacterial
response to stress (not published earlier). The reference samples were
normal cells of the bacterium Enterococcus faecalis (denoted V583), and the
test samples were cells from the same bacterium, but stressed with nisin.
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a) b)

Figure 1: The eigenvalues of apo AI (a) and V583 (b).

There were five replicates of every gene on the array. Gene expressions from
3245 genes were measured. We removed all genes containing missing values,
yielding 2744 genes. The eigenvalues of the covariance matrix of V583 are
presented in Figure 1b. All the eigenvalues are approximately equal. This
is an indication of weak correlation structure between the genes.

4 Results

We are interested in knowing whether the results of the methods are
dependent of the fraction of missing values. Figure 2 presents the minimum
RMSEP for each method at different fractions of missing values. Notice that

a) b)

Figure 2: The minimum root mean square error of prediction (RMSEP) for
different methods with different fractions of data missing for apo AI (a) and
V583 (b). Average (•), FAR (�), KNNgene (�), KNNobs (N), PCR (◮),
and PLSR (◭).

there seems to be almost no change in RMSEP with increasing number of
missing values, except when the fraction of missing values increases from
0.1% to 1%. The differences between Average and the other methods are
constant over different fractions of missing values, except 0.1%.

From Figure 2a the non-parametric methods (KNN) seem to give best
results, with KNN with genes as neighbours as the superior. The method
FAR gave approximately the same results as PCR, and was also close to
PLSR. All the regression methods gave better results than averaging over
the gene. Regarding Figure 2b approximately equal results were obtained
by all methods.
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The number of components leading to the minimum RMSEP (Figure 2),
are given in Table 1. For the regression methods the number of components

apo AI

Method 0.1% 1% 5% 10% 15% 20%

PCR 3 2 2 2 2 2

PLSR 1 1 1 1 1 1

FAR 3 2 2 2 2 2

KNNobs 4 4 4 4 5 4

KNNgene 8 11 18 21 21 29

V583

Method 0.1% 1% 5% 10% 15% 20%

PCR 4 4 4 4 4 4

PLSR 3 2 3 3 * *

FAR 4 4 4 4 4 4

KNNobs 2 3 4 4 4 4

KNNgene 4 4 2600 1083 805 448

Table 1: Number of components for each method for each fraction of missing
values. When 15% and 20% of the values in V583 are missing RtSR in (2)
becomes singular for PLSR.

at the minimum RMSEP seems to be independent of the fraction of missing
values, that means the fraction of missing values is of little importance for
the decision of number of components. For the non-parametric methods
(KNN) the number of components seems to change with increasing fraction
of missing values. Note that minimum RMSEP is obtained by different
number of components for the two data sets.

Figure 3 shows the behaviour of the methods at different numbers of
components/neighbours when 1% of the data are missing. The results of

a) b)

Figure 3: The RMSEP for different methods with 1% of the data missing
for apo AI (a) and V583 (b). Average (——), FAR (— — —), KNNgene
(- - -), KNNobs (— - —), PCR (— - - —), and PLSR (— - - - —).

the other fractions are not shown here, but these results are almost identical.
For V583 we achieved the best results using gene average, while the opposite
was the case for apo AI. In the latter case few components for the regression
methods gave better results than a large number of components. The
methods obtained their minimum with 1-2 components (Table 1). On the
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contrary, using KNN the number of neighbours has almost no relevance as
long as we use enough neighbours.

The results in this paper are based on one realization of the data set
at each fraction of missing values. To study the effect of which values
are missing, five different realizations of the data set of 1% missing values
for apo AI were done (results not shown). The methods and the number
of components were ranked in the same way in all the realizations, hence
the choice of method seems independent of the data randomly chosen as
missing. There were a slight difference in the RMSEP for the different
realizations (the standard deviation of RMSEP was approximately 0.012).
The standard deviation of RMSEP will decrease with increasing number of
missing values (the standard deviation of RMSEP was approximately 0.006
for 20% missing values), since RMSEP will be based on a higher fraction of
the data and different realizations may have more of the missing values in
common.

To decide if the methods gave significantly different error of prediction,
i.e. there exists an optimal method with an optimal number of components,
we used the model in equation (9) on responses received from FAR, PCR,
PLSR and KNN with observations as neighbours. This model was also used
to decide if the optimal method and the optimal number of components
were different for each gene. Table 2 presents the p-values for different
tests based on this model. (Since square error is probably non-normal, an

Source p-value (apo AI) p-value (V583)
method <0.0001 0.0089
component(method) <0.0001 <0.0001
gene <0.0001 <0.0001
gene*method <0.0001 <0.0001
gene*component(method) >0.9999 <0.0001

Table 2: Table of p-values corresponding to the tests based on model (9).

analysis based on absolute error was carried out. However the p-values were
almost identical (results not shown).)

From Table 2 it is clear that both method and component within method
were significant. There was also a significant effect of gene and of the
interaction between gene and method, which means that the optimal method
for one gene is not necessarily the optimal method for another gene. In apo
AI we could not prove any effect of interaction between gene and number
of components within each method, this is due to large variance inside the
genes. In V583 we found this interaction to have significant effect.
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5 Discussion

We have studied different methods for replacing missing values. In addition
to previously studied methods; PCR, PLSR, KNN with genes as neighbours,
and gene average, we focused on two methods; FAR and KNN with
observations as neighbours. In addition we applied a method based on
linear mixed models to compare the prediction methods.

This study considers situations where data are missing completely at
random, i.e. the mechanism responsible for the missing values is not
influenced by the values of the variables. Another situation, beyond the
scope of this paper, is when data are missing at random, i.e. the missing
values are independent of the gene expression, but dependent of some other
variables, e.g. the corresponding background value.

The methods studied in this paper have been applied to two different
data sets, one with relatively strong correlation structure between the genes
and one with weak correlation structure between the genes. The strength of
the correlation is reflected by the proportions between the eigenvalues of the
covariance matrix. If there is strong correlation structure, one or several of
the eigenvalues are relatively large. In the case of weak correlation structure,
all eigenvalues are approximately equal. In the latter case the average
is assumed to be the best predictor. For data with stronger correlation
structure, the regression methods or the non-parametric methods should
be applied, since they use the information among genes that lies in the
correlation. The non-parametric methods (KNN) seem to give best results,
with KNN with genes as neighbours as the superior. This can be explained
by the assumption that there exist groups of coregulated genes, hence using
genes from the same group as neighbours we achieve good prediction.

Intuitively we might assume that an increased error of prediction (defined
as θ in (7)), and hence RMSEP, should follow from an increasing number
of missing values, due to the fact that we have less information. If this
is not the case, it indicates that the error of prediction differs for some
genes. When 0.1% of the values were missing, approximately 1.5% (apo
AI) and 0.5% (V583) of the genes had missing values, and the estimate of
the prediction error was sensitive to which genes had missing values due to
the effect of gene. When more genes had missing values, the estimate was
more robust, and it stabilized. If the prediction ability among the methods
for different fractions of missing values was non constant, it would be an
indication of an interaction effect between gene and method.

In this paper we have studied the ability of different methods to predict
missing values in gene expression matrices. However, the final interest
is not the predicted values themselves, but rather how they influence on
the further analysis. The optimal prediction method is the method that
gives similar conclusions as we would obtain by analyzing the original
data. Another criteria than RMSEP could have been better suited for
this purpose. To improve the prediction for further analysis of the data,
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the accuracy of the methods could have been investigated over the range
of the expression values (Nguyen et al., 2004). However, this is beyond the
scope of this paper.

Our final goal is to predict the gene expression values originally missing
in the gene expression matrix. Those genes are never used in the calibration
of the model, since they were removed to receive a complete matrix. The
significant effect of gene indicates that there exists no general error of
prediction for all the genes, hence it is hard to estimate the error of prediction
for the genes that originally have missing values. In situations with
significant effect of the interaction between gene and number of components
within method, there exists no number of components/neighbours optimal
for prediction of every gene. When predicting the genes that originally
missed values, we do not know what method is best for those genes. With
no interaction, we assume that the optimal number of components in the
calibration is also the best on the genes originally left out.

Our study shows that the optimal prediction method and number of
components heavily depend on the gene expression matrix, hence there is
no general advice for all situations. The first step should always be an
investigation of the eigenvalues of the covariance matrix, for the purpose
of achieving some knowledge of the correlation structure, and thereby the
most suitable prediction methods. Weak correlation structure indicates
that average is the optimal method, while stronger correlation structure
indicates that regression methods and KNN are better choices. Stronger
correlation structure requires a smaller number of components than weaker
correlation structure. The best method for each situation can be found by
first removing all genes with missing values, yielding a complete matrix.
Further on, one removes from the complete matrix approximately the same
fraction of data originally missing, and tries out different methods and
number of components on the new matrix. The mixed model proposed
in (9) can then be used to test which methods and number of components
that are best for each gene, and if the differences are significant. A new
realization of the data set should be used to estimate the corresponding error
of prediction. Finally one finds the combination of methods and components
that gives the best prediction and uses it on the original matrix.
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