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Abstract
We present a prediction model for digital printers and more
specifically for electrophotographic devices.

On the one hand, we propose an electrophotographic
simulation model which estimates the microscopic struc-
ture of any printed toner layer based on its input halftone
bitmap. Applying BOUGUER–BEER–LAMBERT’s law,
the obtained spatial toner arrangement yields the spec-
tral transmittance distribution for non-light scattering col-
ors. On the other hand, we introduce an extension to the
KUBELKA-MUNK (KM) model, which allows to compute
the halftone reflectance spectra from the estimated trans-
mittance spectra. The extended KM model bridges the gap
between the mathematical description of the optical point
spread function of common office papers and the experi-
mental results of simple reflectance measurements.

With the combination of the models, we are capable of
predicting the reflectance spectra of a printed monochrome
wedge with a mean estimation error of less than CIELAB
∆E ∗

94 = 1.

1. Introduction

In electrophotography, it is hard to reproduce homogenous
toner layers of uniform optical density values. Observed
under a microscope, the printed dots appear mostly like
clouds of randomly distributed toner particles. Occasion-
ally, the particles are deposited beyond their target area
and form extremely ragged dot edges. The high dot dis-
tortion causes a major difficulty in estimating the color of
electrophotographic halftone patches and affects the tone
reproduction curve to a high degree.

Another factor that affects halftone prints is the phe-
nomenon of light scattering within common office pa-
pers. Some of the light that strikes an unprinted area
around printed color particles, scatters within the substrate
and emerges under the dithered toner film and vice versa.
This creates a smoothing effect that is called the YULE–
NIELSEN effect [1] or the optical dot-gain [2]. It causes

the image to lose sharpness and to appear darker. With
the decreasing dot size of modern high resolution printers,
these combined effects become more and more significant.

To cope with both effects, we extend the KUBELKA–
MUNK model in order to take into account the lateral light
spreading responsible for the optical dot-gain. The model
transforms a given point transmittance, Tλ (x,y), i.e. the
spectral transmittance factor at each point (x,y), to a point
reflectance Rλ (x,y). We then briefly present an electropho-
tographic simulation model which estimates the unknown
point transmittance function Tλ (x,y). Finally, we compare
the prediction obtained by combining both models with
measured spectra of monochrome halftone patches.

2. Light Scattering in Paper

Lateral light scattering is often modeled by a point spread
function (PSF). In the literature, several approaches for
modeling the point spread function of paper are known.
Most of them were determined empirically, see for in-
stance [1], or assume a specific type of function [3, 4]. Oth-
ers are based on numerical simulations [2, 5], microscopic
reflectance measurements [6], image processing [7], multi-
flux theory [8] or radiative diffusion [9].

Nevertheless, and due to its simplicity, the theory of
KUBELKA–MUNK [10] has found a wide acceptance for
modeling light scattering dull materials having the same
surface characteristics over a wide area. The analysis is
based on the simplified assumption of two diffuse light
fluxes through the layer, one proceeding downward and the
other simultaneously upward. This concept is not adapted
to predict halftone prints on paper. This is due to the fact
that halftone prints cannot be regarded as infinitely wide
color layers and therefore laterally scattered rays cannot
be neglected. In this respect, none of the early publications
[11, 12, 13, a.o.] neither the bibliographical review given
by [14] propose nor indicate how to deal with halftone
prints.

However, BERG introduced isotropic light scattering
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within the framework of a KM oriented approach [15].
Still, his model remains restricted to two dimensions and
disregards the influences of brighteners in paper or surface
reflections. In the present article, we extend BERG’s dif-
ferential equation system to a cartesian three dimensional
space. In this space, we establish a differential equation
system taking into account absorption, scattering and pa-
per fluorescence. By considering the reflections at the air
coating boundaries, we specify the boundary conditions of
the differential equation system. The final solution of the
system is given by analytical equations in the FOURIER

domain. They describe the reflectance and transmittance
spectra as a function of different relevant optical constants,
such as the FRESNEL reflections and transmittance factors
and the specific scattering, absorptance and fluorescence
coefficients.

2.1. Brightened Papers

Basically, the point spread function (PSF) of a brightened
paper is affected by the included fluorescent additives. The
supplied brighteners absorb a certain energy of the radia-
tions within the invisible upper frequency band, called the
excitation spectrum [16, 17]. A specific amount of that
energy, defined by the quantum yield, is then released by
radiative relaxation in the visible band, the fluorescence
spectrum. This technique compensates for the yellowish
appearance of natural non-brightened papers. But, as the
emission of the fluorescence spectrum happens in all space
directions within the paper’s body, it acts like a diffuse par-
tial light source or converter. By consequence, the bright-
ening effect amplifies the point spread function of the pa-
per in the bluish range of the visible light and must be taken
into account when analyzing the PSF.

2.2. Spectral Three Dimensional Scattering Analysis

Lets λ be the wavelength of light and x,y,z be the spa-
tial cartesian coordinates of a paper sheet of total thick-
ness D (see Fig. 1). Considering a tiny cube of the paper
sheet, we apply a wavelength dependent analysis of the up-
and downward oriented light fluxes (iλ, jλ) as well as the
lateral ones (pλ,qλ) and (rλ,sλ). For isotropic scattering,
any light flux that enters the infinitesimal volume element
dxdydz from a specific direction loses a fractional amount
σλ·dxdydz by scattering, αλ·dxdydz by absorption and
φaλ ·dxdydz by brightener excitation. At the same time,
it gains a corresponding amount by scattering σλ·dxdydz,
from the other fluxes and by fluorescence φ fλ ·dxdydz from
its own and from the other fluxes. Accordingly, a balance
of radiant fluxes can be derived for each ray exiting the
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Figure 1: Considered optical fluxes in a three dimensional paper
section.

volume element, yielding for the particular case of iλ

iλ (x,y,z)·dxdy = iλ (x,y,z+dz)·dxdy+[(
φ fλ−φaλ−αλ−5·σλ

)·iλ (x,y,z+dz)+(
σλ+φ fλ

)·( jλ (x,y,z)+ (1)

pλ (x+dx,y,z)+qλ (x,y,z)+

rλ (x,y,z)+ sλ (x,y+dy,z)
)]·dxdydz ,

with the spectral paper parameters:

αλ, σλ specific absorption and scattering coefficients of the paper,

φ fλ normalized fluorescent spectrum, weighted by the quan-
tum yield [16, Eq. (2)],

φaλ specific fluorescent extinction coefficient of the brighten-
ing additives according to [16, Eq. (1)].

The radiance balances of the remaining fluxes ( jλ, pλ, qλ,
rλ and sλ) are similar to Eq. (1) and can be derived accord-
ing to Fig. 1.

The excitation spectrum of common brighteners is usu-
ally active only within the invisible light frequency band.
Therefore, φaλ is generally neglectable and set equal to 0
because the interest of the analysis is focused on the visible
band of radiation only.

Analog to KM and BERG, we assume a linear varia-
tion of the fluxes along dx,dy, and dz which allows us to
ignore higher order terms. Hence, forming from Eq. (1) a
TAYLOR series expansion, we obtain a system of coupled
linear partial differential equations

∂iλ
∂z

=− (
φ fλ−αλ−5·σλ

)·iλ−(
σλ+φ fλ

)·( jλ + pλ +qλ + rλ + sλ
)

,

∂ jλ
∂z

=
(
φ fλ−αλ−5·σλ

)· jλ+(
σλ+φ fλ

)·( iλ + pλ +qλ + rλ + sλ
)

,
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∂pλ
∂x

=− (
φ fλ−αλ−5·σλ

)·pλ−(
σλ+φ fλ

)·(qλ + iλ + jλ + rλ + sλ
)

,

∂qλ
∂x

=
(
φ fλ−αλ−5·σλ

)·qλ+ (2)(
σλ+φ fλ

)·( pλ + iλ + jλ + rλ + sλ
)

,

∂rλ
∂y

=
(
φ fλ−αλ−5·σλ

)·rλ+(
σλ+φ fλ

)·(sλ + iλ + jλ + pλ +qλ
)

,

∂sλ
∂y

=− (
φ fλ−αλ−5·σλ

)·sλ+(
σλ+φ fλ

)·(rλ + iλ + jλ + pλ +qλ
)

,

with neglected φaλ and omitted coordinates dependencies
(x,y,z) for improved readability.

2.3. Boundary Conditions

Choosing adequate boundary conditions is crucial. They
strongly affect the accuracy and the complexity of the
model. On the other hand, they build the connecting link
between pure mathematics and observed physics. We as-
sume non-fluorescent and weakly scattering inks.
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Figure 2: Scheme of the considered boundary conditions.

The paper is a translucent media and the optical con-
ditions at the paper top and bottom boundaries have to be
taken properly into account [18]. We assume a (45/0◦) cir-
cularly illuminated printed paper sheet placed on a back-
ing that has a spectral reflectance factor Rbλ . While both
paper faces could be covered with a coated or printed ink
layer, only top-face halftone prints are allowed (see Fig. 2).

Hereinafter, we use the word coating as a generic term
which includes also any printed ink layer.

At the paper edges, any light flux that passes through
the interfaces is subject to multiple reflections [19]. To
consider the resulting density augmentation, we adopt the
SAUNDERSON correction [20] which determines the frac-
tion of light being transmitted or reflected by the interfaces.
As the thickness of the layers is generally much thinner
than the paper’s body, we neglect any lateral spreading of
the optical fluxes within the printed layers. In the case of
a transmittance measurement, the fraction of light being
transmitted through a transparent backing and the bottom
coating layer is given by τbpλ . Taking into account multi-
ple reflections, τbpλ is derived as the sum of the infinitive
series of partially transmitted interreflections

τbpλ =τsλ ·Tbλ + τsλ ·Tbλ ·ρiλ ·σλ·T 2
bλ

+

τsλ ·Tbλ ·
(

ρiλ ·σλ·T 2
bλ

)2
+ · · ·

=
τsλ ·Tbλ

1−ρiλ ·σλ·T 2
bλ

, (3)

with the spectral parameters:

ρiλ , τiλ FRESNEL reflectance and transmittance factors at the in-
ner side of the coating-air interface,

ρsλ , τsλ FRESNEL reflectance and transmittance factors at the
outer side of the coating-air interfaces,

Tbλ internal transmittance of the bottom-face coating (possibly
a solid inked layer).

The scattering parameter σλ in the denominator of Eq. (3)
is responsible for the multiple internal reflections at the
back side coating.

In a similar manner, we approximate the spectral frac-
tion of light which is reflected from the bottom coating and
backing interface into the paper bulk by ρpbλ

ρpbλ =ρiλ ·T 2
bλ

+ τiλ ·Rbλ ·τsλ ·T 2
bλ

+ τiλ ·R2
bλ
·ρsλ ·τsλ ·T 2

bλ
+

τiλ ·R3
bλ
·ρ2

sλ
·τsλ ·T 2

bλ
+ · · ·

=T 2
bλ
·
[

ρiλ +τiλ ·τsλ ·Rbλ ·
(

1+ρsλ ·Rbλ +ρ2
sλ
·R2

bλ
+· · ·

)]

=(ρiλ + τiλ ·τsλ ·
Rbλ

1−ρsλ ·Rbλ

)·T 2
bλ

. (4)

The top surface transmits into the paper a fraction ap-
proximated by τapλ and a fraction out of the paper approx-
imated by τpaλ

τapλ(x,y) =
τsλ(x,y)·Ttλ(x,y)

1−ρiλ(x,y)·σλ·Ttλ(x,y)
2 , (5)

τpaλ(x,y) = τiλ(x,y)·Ttλ(x,y) , (6)
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with the internal point transmittance Ttλ at each point (x,y)
of the front side coating (top halftoned surface). Addi-
tionally, a “specular” reflectance ρapλ must be taken into
account at the front side. It represents the measured part
of the light that reflects off the surface before entering the
paper. ρapλ includes both pure FRESNEL reflectance and
weakly scattered light within the top coating layer. Ac-
cording to our experience, best results are achieved by
modeling the internal reflectance from the front side coat-
ing as follows

ρapλ(x,y) = ρs(x,y)·Ttλ(x,y)
pink , (7)

where pink is an exponent determined by the scattering
power of the used ink.

Applying these corrections, the boundary conditions
for the system of differential equations (2) in reflectance
mode of a paper sheet of thickness D are

jλ(x,y,0) = ρpbλ ∗∗ iλ(x,y,0) , (8)

iλ(x,y,D) = τapλ ·i0λ , (9)

where i0λ is the normalized illumination intensity in front
of the coated paper. The two dimensional convolution in
the (x,y) domain is indicated by ∗∗ needed due to the dif-
fuse reflection at the backing of the light flux reaching the
bottom side. Accordingly, for a paper illuminated by j0λ
from the bottom side, the boundary conditions in transmit-
tance mode are given by

jλ(x,y,0) = ρpbλ ∗∗ iλ(x,y,0) + τbpλ · j0λ , (10)

iλ(x,y,D) = 0 . (11)

Finally, before getting measured by a spectrophotome-
ter, the upward light flux jλ(x,y,z) emerging from the scat-
tering medium at D gets diffusely transmitted through the
top coating layer τpaλ(x,y). The normalized illuminating
intensities i0λ and j0λ are set to 1 or 0 depending on the
measuring setup, yielding the model of the measured re-
flectance and transmittance spectra

Rλ(x,y) = ρapλ(x,y)+τpaλ(x,y)∗∗ jλ(x,y,z)
∣∣
z=D . (12)

Tλ(x,y) = τpaλ(x,y)∗∗ jλ(x,y,z)
∣∣
z=D . (13)

2.4. Paper Modulation Transfer Function

The partial differential equation system Eq. (2) is of the
same type as the one proposed in BERG’s thesis and in
the original KM work. The obtained system is simpli-
fied by applying the differentiation theorem of the two di-
mensional FOURIER transform [21] along the lateral di-
mensions x and y. Processing the obtained equation alge-
braically cancels four of the partial equations and the dif-
ferentiations remains only in the perpendicular variable z.

For the case of isotropic scattering we obtain the point re-
flectance spectrum

Rλ(x,y) = ρapλ(x,y)+ τapλ(x,y)·F −1
x,y

[
Fx,y

[
τpaλ(x,y)

]·
r1ξψλ

+ r2ξψλ
·ρpbλ + e

2Dcξψλ ·(−r1ξψλ
+r3ξψλ

·ρpbλ)

d1ξψλ
+d3ξψλ

·ρpbλ + e
2Dcξψλ ·(d2ξψλ

−d3ξψλ
·ρpbλ)

]
,

(14)

and the point transmittance spectrum

Tλ(x,y) = τbpλ ·F −1
x,y

[
Fx,y

[
τpaλ(x,y)

]· (15)

e
Dcξψλ · t1ξψλ

d1ξψλ
+d3ξψλ

·ρpbλ + e
2Dcξψλ ·(d2ξψλ

−d3ξψλ
·ρpbλ)

]
,

with:

ξ,ψ the spatial frequencies,

Fx,y the FOURIER transform and F −1
x,y its inverse.

The remaining coefficients r1···3ξψλ
, t1ξψλ

and d1···3ξψλ
are

dependent on the spatial frequencies and on the optical
property coefficients given in Sec. 2.2. They are rather in-
volved and prevent the inverse analytical FOURIER trans-
formation of both expressions from being feasible. The re-
maining coefficients as well as a more detailed derivation
will be presented in the Ph. D. of the first author, which
will be published soon.

However, the obtained solution of the reflections and
transmission spectra, are well suited for numerical trans-
formation by an inverse two dimensional fast FOURIER

Transform (FFT). Actually, the fractions in the second line
of Eq. (14 and 15) describe the mathematically derived
Modulation Transfer Function (MTF), i.e. the FOURIER

transformed PSF of coated and brightened papers. With
the extended SAUNDERSON correction terms ρapλ , ρpbλ ,
τapλ , τpaλ and τbpλ , the solution accounts additionally for
the multiple reflections occurring within the coatings at
both sides of the paper for reflectance or transmittance con-
siderations.

3. Computation of the Transmittance
Spectra

The point transmittance distribution Ttλ(x,y) is estimated
applying BOUGUER–BEER–LAMBERT’s law [22]. As-
suming weakly light scattering inks, the mentioned law as-
sociates the internal transmittance ϑi (λ) of a filter i having
the particular thickness δi to its normalized transmittance
ϑre fi (λ)

ϑi (λ) = ϑδi
re fi

(λ) . (16)
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Then, when printing M primary inks, the point transmit-
tance distribution Ttλ(x,y) is approximated by the product
of the internal spectral transmittance distributions ϑre fi (λ)

Ttλ(x,y) =
M

∏
i=1

ϑδi(x,y)
re fi

(λ) , (17)

with an unknown ink relative thickness profile δi(x,y).
How to estimate δi(x,y) is described in the following sec-
tion.

4. Application for Electrophotographic
Printers

For the case of common desktop laser printers, we cal-
culate the point transmittance distribution Ttλ(x,y) of
Eq. (17) by applying an electrophotographic simulation
model. The model is established on a microscopic grid
with a resolution of 6.0µm. The chosen resolution rep-
resents the lower average size of commonly used toners.
In order to simulate the effects of each significant printer
process step, a 2×2mm wide color patch is simulated and
passed from one sub-model to the other [23].

4.1. Electrostatic Field of Exposed Bitmaps

The surface of the photoconductive plate is assumed to
be homogeneously charged during the charging step. Its
surface charge is considered being neither dependent on
the actual bitmap nor on the previously printed ones. In
order to predict the deposited toner layers, the most sig-
nificant process step is the constitution of the attracting
electrostatic field formed by the exposed photoconductive
plate according to the input bitmap. A suitable computa-
tion scheme is based on NEUGEBAUER’s circular convo-
lution kernel. In his publications [24, 25], he has shown
that the density of an electrophotographic image is essen-
tially given by the perpendicular component of the electro-
static field above the photoconductive plate. He introduced
a Modulation Transfer Function C (k) that relates the elec-
trostatic field to the line exposure of a photoconductor

C (k) =
A(k)
B(k)

·cosh
(
k·(L1 − z)

)
, (18)

with

A(k) = sinh(k·L2)− β
k·L2

·(cosh(k·L2)−e−β) ,

B(k) =
[
1−( β

k·L2

)2]·[cosh(k·L1)·sinh(k·L2)+

η·sinh(k·L1)·cosh(k·L2)
]
,

and

k exposed line frequency; line pairs per 2π microns,

L1 distance between the development electrode and the pho-
toconductive plate,

L2 thickness of the photoconductive plate,

β function of L2, drift mobility, trapping time and the initial
plate voltage,

η dielectric constant of the plate,

z average distance between the electrophotographic plate
and the charges of the toner particles which will be de-
veloped.

The perpendicular electrostatic field component Ezk (u)
of a single exposed line is determined by the inverse
FOURIER transform c(u) of the MTF given in Eq. (18)
convolved with the intensity profile I (u) of an exposure
spot [26, Eq. (5.5)]

Ezk (u) = I (u)∗ c(u) , (19)

with

u spatial line coordinate,

c FOURIER-Transform of C(k), evaluated numerically,

I saturated GAUSSIAN intensity profile.

The circular convolution kernel Ezk (x,y) is approxi-
mated by rotating Ezk (u) around the vertical axis, basically
implemented by substituting

√
x2+y2 for u. For any ex-

posed bitmap, the overall perpendicular component of the
attracting electrostatic field, which forms the latent image,
is obtained by superposing the electrostatic field compo-
nent Ez (x,y) at each exposed printer dot (x,y).

4.2. Development, Transfer and Fusing

In the development nip [27], toner particles charged elec-
trostatically are deposited according to the attracting elec-
trostatic field Ezk (x,y) of the latent image. For simplic-
ity, given the charges of the toners q(x,y), it is assumed
that the deposition of the particles occurs as soon as the at-
tracting perpendicular component of the COULOMB force
is strong enough to overcome the impeding adhesion force
threshold thimp

q(x,y)·Ez (x,y) > thimp . (20)

Accordingly, the charge distribution influences the de-
velopment behavior, and the size distribution mainly af-
fects the micro transmittance structure of the printed result
(Sec. 3). In order to model the toner charge and size distri-
butions, the model utilizes a lognormal based probability
density function describing the toner charges q(x,y) and a
RAYLEIGH based function describing the particles diame-
ter δi (x,y) distributions [28].
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Figure 3: Spectral (45/0◦) reflectance predictions for the verifi-
cation set of halftone wedges printed on a brightened high quality
office paper.

During the transfer process step, some of the developed
toner particles may be rejected, resulting in an incomplete
transfer efficiency. The lack of transfer is modeled by re-
jecting a proportional part of the developed toner particles.

Finally, after transferring the toner layers to a paper
sheet, the image is fixed permanently by melting the toner
to the medium. The main spreading effects within the fuser

nip are simulated by applying a smoothing filter to the
transferred particles. The applied filter convolution kernel
is based on a hyper-parabola [28]. These filter operations
yield the micro thickness profile δi (x,y) needed in Eq. (17)
for each color layer i and each simulated high resolution
grid pixel (x,y).

5. Experimental Results

The two independent models that we introduced, the light
scattering as well as the electrophotographic model, incor-
porate many parameters which need to be estimated for
each paper/printer combination. Generally, the calibra-
tion is performed by presenting a calibration set of mea-
sured spectra of different printed patches as an optimiza-
tion goal to a constrained non-linear optimization routine
of MATLAB

TM
[29].

The parameters of the light scattering model were esti-
mated independently from the electrophotographic model.
The calibration set consisted of measured spectra of the
paper white and of printed solid patches of each consid-
ered primary color. After a completed optimization run,
the light scattering parameters were fixed. Applying the
light scattering model with the determined coefficients,
the parameters of the electrophotographic model were es-
timated using measured spectral reflectance factors of 3
monochrome halftone prints of each considered primary
color.

The estimation performance of the whole model is fi-
nally quantified by comparing the measured and predicted
reflectance spectra of an extended extra set of 12 halftone
patches (Fig. 3). The latest obtained colorimetric mean er-
ror is about CIELAB ∆E ∗ ≈ 1.5.

6. Conclusion

For the accurate prediction of the reflectance of halftone
prints, we propose an extended model describing the in-
teraction of light and halftone prints based on the con-
cepts of KUBELKA-MUNK and the thesis of BERG. By
taking the dominant optical scattering properties of com-
mon brightened office papers into account, it is possi-
ble to fit the model to measured spectral reflectances of
printed solid patches. Thanks to our modified KM model
and the extended SAUNDERSON corrections, we derived
a mathematic description of the paper point spread func-
tion. In addition, we present a simulation model that ap-
proximates the microscopic point transmittance structure
of electrophotographic halftone prints.

The monochrome mean prediction performance of the
combined models reaches a color deviation error of less
than CIELAB ∆E ∗ ≈ 1.5.
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