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Abstract: Fine particulate matter (PM2.5) affects climate change and human health. Therefore, the
prediction of PM2.5 level is particularly important for regulatory planning. The main objective of the
study is to predict PM2.5 concentration employing an artificial neural network (ANN). The annual
change in PM2.5 in Liaocheng from 2014 to 2021 shows a gradual decreasing trend. The air quality in
Liaocheng during lockdown and after lockdown periods in 2020 was obviously improved compared
with the same periods of 2019. The ANN employed in the study contains a hidden layer with
6 neurons, an input layer with 11 parameters, and an output layer. First, the ANN is used with 80%
of data for training, then with 10% of data for verification. The value of correlation coefficient (R)
for the training and validation data is 0.9472 and 0.9834, respectively. In the forecast period, it is
demonstrated that the ANN model with Bayesian regularization (BR) algorithm (trainbr) obtained
the best forecasting performance in terms of R (0.9570), mean absolute error (4.6 µg/m3), and root
mean square error (6.6 µg/m3), respectively. The ANN model has produced accurate results. These
results prove that the ANN is effective in monthly PM2.5 concentration predicting due to the fact that
it can identify nonlinear relationships between the input and output variables.

Keywords: air pollution; artificial intelligence; COVID-19; deep learning; long short-term memory

1. Introduction

Air pollution has a significant impact on climate change, ecosystems, and human
health. Exposure to air pollution in 2019 caused 7 million premature deaths worldwide and
led to the loss of millions of healthy life years [1]. In 2019, a PM2.5 exposure level of 86%
of the global urban population exceeded the world health organization (WHO) standard,
resulting in 1.8 million deaths [2]. The risk of premature death attributable to PM2.5 in
China increased from 1.73 million in 2002 to 2.26 million in 2012, and then decreased slightly
to 2.12 million in 2017. From 2002 to 2017, PM2.5 in China caused an increase in deaths of
more than 0.39 million. However, emission control policies and technologies prevented
0.87 million premature deaths during the same period [3]. PM2.5 inhalation may increase
the risk of premature death due to cardiovascular diseases, respiratory diseases, lung cancer,
lower respiratory tract infections, brain diseases, and nervous system damage [4]. Therefore,
it is necessary to accurately predict air pollution to provide people with travel patterns.

Artificial intelligence (AI) is widely used in air pollution prediction [5]. The Back-
wards Propagation (BP) neural network algorithm is used to predict the quality of PM2.5
in Chongqing, which indicates that it is feasible to use a neural network to predict air
quality [6]. The artificial neural network (ANN) is used to forecast PM2.5 concentration
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with 80% of data for training then with 90% of data for training in Ahvaz. The value of
R for the data validation of these two networks was 0.80 and 0.83, respectively [7]. A
backpropagation artificial neural network (BPANN) combined with an adaptive multi-
objective particle swarm optimizer (AMOPSO) algorithm based on computational fluid
dynamics (CFD) is used to predict indoor PM2.5 concentrations. The proposed optimization
algorithm reduces PM2.5 concentrations by as much as 77.1% [8]. Four modeling tech-
niques, including time-integrated activity, Monte Carlo simulation, ANN, and principal
component analysis (PCA), are utilized to predict exposure values of PM2.5. The results of
a time-weighted activity model display the lowest correlation with measured values. For
Monte Carlo simulation, high correlation is obtained. Compared with the simple ANN
models, the PCA-ANN exports the most accurate results [9]. To summarize, numerous
studies show that ANN can be used to define functional relationships between dependent
and independent variables.

Deep learning displays prodigious potential in fitting nonlinear complex relationships
between the influencing factors and the pollution concentrations [10], and includes the
convolutional neural network (CNN) [11] and recurrent neural network (RNN) [12]. A
convolutional neural network (CNN) can learn the characteristics of data by directly
inputting the original image, which has been widely used in recent years. A deep learning-
based response surface model (deepRSM) is established based on the deep learning method,
which uses artificial intelligence to achieve more accurate response surface fitting, solves
the problem of rapid prediction of pollution control effects, and significantly improves the
applicability and effectiveness of the response surface model (RSM) for decision-making
assistance [10]. The CNN model on the air quality dataset is utilized to detect patterns for
future prediction modeling in India [11]. Nonetheless, the accuracy of the CNN model
is measured to determine the applicability of algorithm. The multi-directional temporal
convolutional artificial neural network (MTCAN) model maintains the temporal correlation
within the features’ measurement and meteorological and pollutant variables to impute and
forecast PM2.5 missing values [13]. A novel machine learning-based model (MCNN-BP)
is proposed by multiple convolutional neural networks (MCNN) and backpropagation
neural networks for making spatiotemporal PM2.5 prediction at 74 stations in Taiwan [14].

A long short-term memory (LSTM) neural network is a RNN with long-term and
short-term memory. The LSTM approach is also used for predicting O3, PM2.5, NOx, and
CO concentrations at a location in NCT-Delhi [15]. Geo-LSTM for predicting PM2.5 has
an RMSE of 0.0437, and performs almost 60.13% better than IDW [16]. The LSTM model
outperformed random forest (RF) and Cubist approaches for predicting PM2.5 because of
its RNN structure that can capture time dependence and nonlinear relationships among
PM2.5 concentrations and other independent variables, and exhibited a stable accuracy with
an R2 of 0.83 [17]. A workflow of future PM2.5 concentrations prediction was developed
based on an LSTM model. Using ground-based station PM2.5 data in 2014–2018, the 1 km
MAIAC AOD product and other auxiliary data were used to predict PM2.5 concentrations
in the next year and generate a national PM2.5 spatial map in China [17]. A novel hybrid
prediction model was constructed by combining the empirical mode decomposition (EMD),
sample entropy (SE), and bidirectional long- and short-term memory neural network
(LSTM) to predict PM2.5 concentrations [18]. A new PM2.5 prediction method based on a
hybrid model of complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) and bi-directional long short-term memory (BiLSTM) is presented. The
CEEMDAN-FE can effectively reduce the instability and high volatility of the original
PM2.5 data, overcome data noise, and prominently enhance the model’s performance in
forecasting PM2.5 concentration [19]. The CNN-LSTM model is also proposed to predict air
quality, and both the CNN-LSTM and the LSTM generally have better performance than the
CNN and the BPNN [20]. The advanced deep predictive convolutional LSTM (ConvLSTM)
model paired with the cutting-edge graph convolutional network (GCN) architecture is
used to predict hourly PM2.5 in the Los Angeles area. The RMSE and NRMSE of the model
show significant improvement over existing research in predicting PM2.5 concentration [21].



Atmosphere 2022, 13, 1221 3 of 16

Although the deep learning model can improve the prediction ability to some extent,
it requires massive data for training, and it has its scope of application, which leads to
different prediction performance of PM2.5 concentration time series in different ranges.

The sudden outbreak of COVID-19 has not only seriously impacted global economic
activities, but also profoundly affected people’s living patterns [22]. Up to 30 June 2022 glob-
ally, over 6,332,963 people have died, and 544,324,069 have been infected with COVID-19
(WHO). In response to the epidemic, large measures such as shutdown and home isolation
have been taken all over the world, with unprecedented intensity and duration, which
provides a unique natural experimental condition for exploring the potential of global air
pollution reduction. This scenario provides an opportunity to understand and study air
pollution control and emission reduction measures. During COVID-19, the NO concen-
trations decreased by 58–70% in two towns in Paraiba Valley: São José dos Campos and
Guaratinguetá, Brazil [23]. PM2.5, NO2, and CO were reduced during COVID-19 in 2020 in
Chicago, IL, USA [24]. Brazil’s air quality improved due to mobility restrictions imposed
by COVID-19 [25]. After the lockdown, the PM2.5 pollution load throughout the whole area
in Lodz, Poland, and across its central parts in particular, decreased dramatically [26]. Car
transportation was limited due to the COVID-19 lockdown in Poland. Car transportation in
Krakow is responsible for up to 20% of the PM10 carbon fraction concentration [27]. During
the lockdown period, CO, NO, NO2, SO2, and PM2.5 decreased by 64%, 1.5%, 75%, 24%,
and 54%, respectively, compared to concentrations of these pollutants in 2019 in Bishkek,
Kyrgyz Republic [28]. NOx emission in China in the lockdown period was 53.4% lower than
the same period in 2019 [29]. The concentrations of atmospheric components in many coun-
tries and regions have also experienced a process of sharp decline, low-level maintenance,
and slow recovery. Air pollution mainly comes from traffic, industry, and power plant
emissions. Therefore, the change in air pollution can well reflect the change in social and
economic activities during the epidemic. By studying the air pollution observation data,
the spatial and temporal change pattern of air pollution during the COVID-19 epidemic
was revealed [29].

Many artificial intelligence techniques have been utilized to forecast PM2.5 concentra-
tion. Nevertheless, there are many challenges for precise prediction by diverse methods.
It is very difficult to cultivate precise artificial intelligence techniques with small PM2.5
datasets. Deep learning methods are successful owing to big training data which can be
used to predict PM2.5 concentration. It is difficult to pitch appropriate architectures and
parameters for deep learning methods with small PM2.5 datasets.

An artificial neural network (ANN) has the advantage of processing small data. There-
fore, we use an ANN to predict the monthly air pollution in Liaocheng City. Liaocheng
is a typical air pollution city in northern China. In this article, PM2.5 in Liaocheng in
Shandong Province, China, from 2014 to 2022 was investigated. Moreover, seasonal and
annual changes in PM2.5 concentration have been analyzed in this study. If the PM2.5 time
series to be modeled is sufficiently auto-correlated, the time series prediction model is
developed using an artificial neural network, and then the performance of the different
algorithms is tested. For different combinations of input variables, the different parameters
are compared, including input variables, hidden layer neurons, and transfer functions. We
also calculate the periodicity of the PM2.5 time series and evaluate the generalization ability
and the parameter uncertainty of the model development model. Overall, despite the
limited PM2.5 data used in this study, the developed ANN model is capable of predicting
monthly PM2.5 concentration over the study area reasonably well.

The remainder of this paper is as follows. Section 2 is devoted to artificial neural
network and air pollution data in Liaocheng. In Section 3, we analyze long-term changes in
the air quality in Liaocheng, predict the PM2.5 concentration in Liaocheng, and compare
with existing models. We discuss the topologies of the ANN. In Section 4, we summarize
the paper and put forward the future prospects of air pollution prediction.
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2. Materials and Methods

Liaocheng City is located in the west of Shandong Province in China (Figure 1), facing
Handan City and Xingtai City in Hebei Province across the Zhangwei River in the west,
and adjacent to Tai’an City and Jinan City and Henan Province across the Jindi River
and the Yellow River in the south and southeast. Liaocheng is on a Yellow River alluvial
plain, high in the southwest and low in the northeast, with an altitude of 22.6–49.0 m.
Liaocheng covers a total area of 8628 square kilometers. By the end of 2021, Liaocheng had
a permanent population of 5.9279 million. In 2021, Liaocheng achieved a regional GDP of
CNY 264.252 billion. It has a semi-arid continental climate. The annual average temperature
of Liaocheng City is 13.5 ◦C, the average temperature of January is−1.8 ◦C, and the average
temperature of July is 26.8 ◦C. The annual average precipitation is 540.4 mm, and the annual
mean wind speed is 2.3 m/s.
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Figure 1. Location of Liaocheng in Shandong Province, China. (a) The location of Liaocheng in China,
(b) The location of Liaocheng in Shandong Province.

As shown in Table 1, the most recent Chinese ambient air quality standards (CAAQS)
(GB3095-2012) were published in 2012, when PM2.5 and O3-8h were added for the first
time [30]. In 2012, a ‘Technical Regulation on Ambient Air Quality Index’ (HJ 633-2012)
released by the Chinese Ministry of Ecology and Environment (MEE) (https://www.mee.
gov.cn/, accessed on 1 January 2021) replaced the air pollution index (API) with AQI and
divided air quality into six levels (Table 2) [30].

Table 1. Chinese ambient air quality standards.

Air Pollutants Index Grade I Value Grade II Value

PM2.5 (µg/m3) Annual average 15 35
24 h average 35 75

PM10 (µg/m3) Annual average 40 70
24 h average 50 150

O3 (µg/m3) Maximum of daily 8 h moving average 100 160
NO2 (µg/m3) Annual average 40 40

24 h average 80 80
SO2 (µg/m3) Annual average 20 60

24 h average 50 150
CO (mg/m3) 24 h average 4 4

https://www.mee.gov.cn/
https://www.mee.gov.cn/
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Table 2. AQI scope and air quality category.

AQI Value Level Category Color Indication

0–50 I Excellent Green
51–100 II Good Yellow
101–150 III Mild pollution Orange
151–200 IV Moderate pollution Red
201–300 V Heavy pollution Purple

>300 VI Serious pollution Maroon

CO is measured utilizing the non-dispersive infrared absorption method, PM2.5 and
PM10 are measured utilizing the micro-oscillating balance method and the β absorption
method, and SO2, NO2, and O3 are measured by the fluorescence method, the chemilumi-
nescence method, and the UV-spectrophotometry method, respectively [31].

Backpropagation artificial neural network (BPANN) model topology includes an input
layer, an output layer, and a hidden layer. Each layer for BPANN has a particular number
of nodes depending on the complexity of the question. Each node in the input and hidden
layer is connected to each of the nodes in the coming layer (hidden or output) by a weight
factor and a bias value. The BPANN is a training algorithm and its learning rule is to utilize
the steepest descent method to continuously adjust the weights and bias of the neural
network by utilizing the backpropagation of the error [32]. To avoid overfitting and to
validate the stability of the ANN model, we use 80% of the data for training and 10% of
the data for examining. B(1) . . . B(n) are the data of monthly PM2.5 concentration as the
input variable, and B(n + 1) is PM2.5 predicted for +1 month (Figure 2). Bi is the node input,
s expresses the node output, and Wji expresses the weight, where P expresses the node
excitation threshold, and a and t express the basic and activation functions, respectively. A
node assesses the weighted summation of the inputs as:

a = (WjiBi) + P (1)

The activation function appraises output by:

s = t(a) (2)
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Figure 2. The architecture of the artificial neural network predicting PM2.5 concentration.

The properties of the ANN model are appraised using three norms containing: cor-
relation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE).
The R values are used to determine the model precision, and the RMSE values are used to
determine the residuals between predictions and actual PM2.5 values [33].



Atmosphere 2022, 13, 1221 6 of 16

RMSE =

√
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Fk denotes the actual PM2.5 concentration, Hk denotes the predicted PM2.5 concentra-

tion,
−
F is the mean of the actual PM2.5 concentration, and

−
H is the mean of the predicted

PM2.5 concentration.
The software we use is matlabR2010a, which was created by Little J. and Moler C.,

and it is from MathWorks Inc, Natick, MA, USA [34]. The values of air quality index
(AQI), PM10, PM2.5, NO2, SO2, CO, and O3 in Liaocheng from January 2014 to May 2022
are investigated (http://www.aqistudy.cn/, accessed on 1 June 2022), and these data are
divided into three parts: training period (January 2014 to September 2020); verification
period (October 2020 to July 2021); prediction period (August 2021 to May 2022) (Figure 3).
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Figure 3. Annual change in air quality in Liaocheng City from 2014 to 2021.

The average concentrations of the air pollutants during 2014–2021 in Liaocheng are
analyzed. SO2 (2014–2021) and NO2 (2019–2021) concentrations in Liaocheng meet the
national Grade I or Grade II for annual mean ambient air quality. NO2 (2014–2018),
PM2.5 (2014–2021), and PM10 (2014–2021) concentrations in Liaocheng exceed the national
Grade II for annual mean ambient air quality. AQI values (2020–2021) meet national
Level II, but AQI values (2014–2019) exceed national Level II.

3. Results and Discussion

In this section, we analyze the research results and discuss the structure of the artificial
neural network. Firstly, the air quality in Liaocheng from 2014 to 2021 is analyzed, and
the effects of the almost complete lockdown on air quality are analyzed. Finally, PM2.5
concentrations from January 2014 to May 2022, are simulated and predicted using the
artificial neural network.

http://www.aqistudy.cn/


Atmosphere 2022, 13, 1221 7 of 16

3.1. Long-Term Changes in the Air Quality in Liaocheng

As shown in Figure 3, the air quality in Liaocheng gradually improved year by year.
The formula for calculating the reduction rate of air quality is as follows:

D =

(
Ai − Aj

)
Ai

× 100% (6)

D is the reduction rate of air quality, and Ai and Aj are air quality.
Therefore, the reduction rates of AQI, PM2.5, PM10, SO2, CO, NO2, and O3 from 2014 to

2021 in Liaocheng were 27.1%, 56.2%, 56.3%, 74.0%, 63.7%, 32.5%, and −37.2%, respectively.
Air quality in 2021 was sharply better than that in 2014. However, the concentration of
O3 increased by 37.2%, and its change trend was different from that of other pollutants.
Although the concentration of PM2.5 in Liaocheng has decreased significantly in recent
years, there is still a big gap from the World Health Organization guidelines, and the ozone
problem is becoming increasingly prominent. Clean air policies play an important role
in reducing air pollution, and these policies include the action plan for the prevention
and control of air pollution, the three-year action plan for the defense of the blue sky, the
program for tackling key problems of air pollution in autumn and winter in key areas, and
the “one city, one policy” for coordinated prevention and control of fine particulate matter
and ozone pollution.

The concentration of PM2.5 in Liaocheng from 2014 to 2021 has obvious seasonal
variation characteristics. The average concentration of PM2.5 in spring, summer, autumn,
and winter was 61.6, 47.0, 67.0, and 106.5 (µg/m3), respectively. The seasonal average
concentration of PM2.5 in Liaocheng is the lowest in summer and the highest in winter. The
variation trend of the average concentration of PM2.5 in Liaocheng over four seasons is:
summer < autumn < spring < winter.

As shown in Figure 4, the monthly average concentration of PM2.5 in Liaocheng
from 2014 to 2021 also has obvious characteristics of monthly variation, and the average
concentration of PM2.5 shows a “U” shape. For example, the concentration of PM2.5 in
January is calculated by calculating PM2.5 concentration in January from January 2014
to January 2021. The average concentration of PM2.5 was the highest in January and the
lowest in August.

Atmosphere 2022, 13, x FOR PEER REVIEW 8 of 17 
 

 

2021. The average concentration of PM2.5 was the highest in January and the lowest in 
August. 

 
Figure 4. Monthly variation in PM2.5 concentration in Liaocheng City from 2014 to 2021. 

3.2. Air Quality Changes before, during, and after the Lockdown Period 
These data are divided into three parts: period I (before the lockdown) (1 January to 

26 January, 2019 and 2020); period II (during the lockdown) (27 January to 30 April, 
2020); period III (after the lockdown) (1 May to 20 July, 2020). First, we make statistical 
analysis for air quality in Liaocheng, from 1 January to 20 July in 2020, and these results 
are shown in Figure 5. The reduction rates of AQI, PM2.5, PM10, SO2, CO, NO2, and O3 
from period I to period II in Liaocheng were 53.9%, 64.1%, 51.1%, 26.0%, 61.6%, 52.7%, 
and −106.4%, respectively. Those from period II to period III in Liaocheng were, respec-
tively, 21.9%, −30.3%, −11.3%, −6.2%, −8.5%, −12.8%, and 52.1%. These results indicate that 
the air quality during lockdown was obviously improved compared with before and af-
ter lockdown periods. 

 
Figure 5. Air quality changes before, during, and after lockdown in 2020 (and the same period in 
2019) (unit: μg/m3 (CO (mg/m3)). 

In the same period (before lockdown) of 2019, the average values of AQI, PM2.5, 
PM10, SO2, CO, NO2, and O3 were, respectively, 150.2, 112.1, 183.6, 25.6, 1.42, 63.4, and 49.8 
(μg/m3 (CO (mg/m3))), which was a decline of 20.4%, 24.3%, −3.0%, −44.7%, 20.9%, − 
11.1%, and 0.2%, compared with that of before lockdown 2020. However, in the same 
period (during lockdown) of 2019, those were, respectively, 110.7, 74.0, 134.8, 15.4, 0.89, 
36.7, 106.3 (μg/m3 (CO (mg/m3))), which is a decline of −24.7%, −32.3%, −35.4%, −32.2%, 
−25.8%, −27.5%, and −3.2%, compared with that of during lockdown in 2020. Those were, 

Figure 4. Monthly variation in PM2.5 concentration in Liaocheng City from 2014 to 2021.

3.2. Air Quality Changes before, during, and after the Lockdown Period

These data are divided into three parts: period I (before the lockdown) (1 January to
26 January 2019 and 2020); period II (during the lockdown) (27 January to 30 April 2020);
period III (after the lockdown) (1 May to 20 July 2020). First, we make statistical analysis
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for air quality in Liaocheng, from 1 January to 20 July in 2020, and these results are shown
in Figure 5. The reduction rates of AQI, PM2.5, PM10, SO2, CO, NO2, and O3 from period I
to period II in Liaocheng were 53.9%, 64.1%, 51.1%, 26.0%, 61.6%, 52.7%, and −106.4%,
respectively. Those from period II to period III in Liaocheng were, respectively, 21.9%,
−30.3%, −11.3%, −6.2%, −8.5%, −12.8%, and 52.1%. These results indicate that the
air quality during lockdown was obviously improved compared with before and after
lockdown periods.
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In the same period (before lockdown) of 2019, the average values of AQI, PM2.5, PM10,
SO2, CO, NO2, and O3 were, respectively, 150.2, 112.1, 183.6, 25.6, 1.42, 63.4, and 49.8
(µg/m3 (CO (mg/m3))), which was a decline of 20.4%, 24.3%, −3.0%, −44.7%, 20.9%,
− 11.1%, and 0.2%, compared with that of before lockdown 2020. However, in the same
period (during lockdown) of 2019, those were, respectively, 110.7, 74.0, 134.8, 15.4, 0.89,
36.7, 106.3 (µg/m3 (CO (mg/m3))), which is a decline of −24.7%, −32.3%, −35.4%, −32.2%,
−25.8%, −27.5%, and −3.2%, compared with that of during lockdown in 2020. Those were,
respectively, 124.6, 35.1, 86.9, 14.7, 0.65, 26.4, and 184.6 (µg/m3 (CO (mg/m3))) in the same
period (after lockdown) of 2019, which is a decline of −18.5%, −0.6%, −11.0%, −32.9%,
−6.9%, −11.9%, and −15.2% compared with that of after lockdown in 2020. It is also worth
noting that all the changes in air pollution during the lockdown period and after lockdown
(2019–2020) are consistent. These results also indicate that the air quality in Liaocheng
during lockdown and after lockdown periods in 2020 was obviously improved compared
with the same periods of 2019. However, air quality in Liaocheng before lockdown in 2020
was worse than that of the same period of 2019.

As shown in Figure 6, in Liaocheng during January–June 2019, the monthly aver-
age PM2.5 concentrations were 107, 112, 59, 54, 37, and 34 (µg/m3), respectively, while
those during January–June 2020 were 132, 56, 46, 41, 32, and 36 (µg/m3), respectively,
which were 23.4%, −50.0%, −22.0%, −24.1%, −13.5%, and 5.9% higher than those during
January–June 2019, respectively.
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3.3. Model Design Employing the Artificial Neural Network Modal

The cycles of monthly PM2.5 concentration in Liaocheng were calculated using wavelet
analysis (Figure 7). The wavelet variance can reflect the distribution of wave energy of a
time series. It can be used to determine the main periods of monthly PM2.5 concentration.
There are three obvious peaks in the wavelet variance chart, which correspond to the time
scales of 10 months, 21 months, and 33 months (Figure 7). These are the cycles of monthly
PM2.5 concentration. Among them, the maximum peak value corresponds to the 10 months,
which means that the period oscillation of about 10 months is the strongest, and it is the
first main cycle; the second peak corresponds to the 21 months, which is the second main
cycle; the third peak value corresponds to 33 months. This shows that the fluctuation of the
above three periods controls the variation characteristics of monthly PM2.5 concentration
in Liaocheng.
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The numbers of nodes in input and hidden layers are tested by trial and error. The
performance of different numbers of nodes in the input layer (Table 3) and hidden layer
(Table 4) is contrasted. Table 3 indicates the various input variables and Table 4 indicates
different nodes in the hidden layer. Tables 3 and 4 show simulation of PM2.5 during the
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training, verification, and predicting periods. Eleven variables were selected for the model
input. We used the most recent 11 months from September 2020 to July 2021 during the
predicting period. Furthermore, the number of neurons of the hidden layer was similarly
six. Finally, network topologies of the ANN (11-6-1) were the best.

Table 3. Comparison of R, RMSE(µg/m3), and MAE (µg/m3) between various input variables.

Variables R RMSE MAE

Training Verification Predicting Training Verification Predicting Training Verification Predicting

1 0.7681 0.6441 0.521 21.3 16.2 20.1 15.8 14.1 14.8
2 0.7929 0.7042 0.5354 20.2 15.4 21.2 14.3 12.5 14.3
3 0.7966 0.7985 0.6318 20.1 13.5 20.0 14.3 10.9 13.8
4 0.7995 0.7693 0.6797 20.0 15.0 19.9 14.2 12.5 13.8
5 0.8408 0.8678 0.6332 18.5 12.8 18.6 12.9 10.7 13.5
6 0.8627 0.8635 0.8844 17.3 12.1 12.7 12.0 9.8 10.4
7 0.8115 0.8815 0.8571 22.7 16.7 15.4 14.1 14.9 12.7
8 0.8166 0.8962 0.8651 21.1 19.2 18.3 14.2 16.9 15.7
9 0.7395 0.786 0.7721 29.3 15.2 14.8 18.2 13.3 11.2
10 0.8612 0.8433 0.8146 19.0 12.5 13.2 12.1 10.6 10.4
11 0.9472 0.9834 0.957 10.9 4.4 6.6 7.7 3.5 4.6
12 0.9055 0.9716 0.8691 14.4 7.3 11.1 9.3 5.8 9.5
13 0.9012 0.9709 0.8725 15.5 5.7 11.0 9.2 4.5 9.3
14 0.8534 0.7204 0.8474 19.9 15.5 16.8 12.0 12.0 13.0
15 0.839 0.9314 0.8224 20.7 11.8 20.3 12.5 9.3 16.4
16 0.8632 0.8927 0.849 19.6 11.9 17.7 11.5 8.0 14.1

Table 4. Comparison of R, RMSE(µg/m3), and MAE (µg/m3) between different nodes in the hidden layer.

Nodes R RMSE MAE

Training Verification Predicting Training Verification Predicting Training Verification Predicting

1 0.9036 0.9202 0.692 14.5 8.6 15.4 10.2 7.6 12.3
2 0.904 0.9214 0.6925 14.4 8.6 15.4 10.1 7.6 12.3
3 0.9209 0.9478 0.811 13.1 7.5 12.6 8.7 5.9 9.4
4 0.9256 0.9351 0.8176 12.8 9.4 12.5 8.8 7.8 9.0
5 0.9167 0.9537 0.9106 14.2 8.3 9.1 9.6 7.3 7.4
6 0.9472 0.9834 0.957 10.9 4.4 6.6 7.7 3.5 4.6
7 0.8387 0.9573 0.7978 22.5 13.9 19.8 14.8 13.2 16.9
8 0.7771 0.8386 0.782 27.6 12.0 15.9 18.3 9.3 13.6
9 0.8252 0.8355 0.8441 23.4 19.5 19.4 16.1 17.1 16.9
10 0.8621 0.8802 0.844 21.8 15.7 19.3 14.2 13.3 17.3
11 0.7772 0.8657 0.7922 29.8 14.2 15.5 19.5 12.8 12.8
12 0.8136 0.8148 0.8137 28.5 15.2 15.5 18.6 13.6 12.9
13 0.7768 0.8949 0.712 27.9 13.2 17.7 18.0 12.4 14.2
14 0.8399 0.9616 0.8523 24.6 14.8 18.5 16.6 14.1 17.1
15 0.7105 0.8186 0.7954 33.1 14.0 16.6 21.7 11.4 13.0
16 0.8028 0.8966 0.8283 28.5 11.5 16.1 19.2 10.5 14.2

Training algorithms of the ANN are also selected by trial and error. Table 5 indicates
the performances of training algorithms for forecasting PM2.5 concentration. Trainbr is an
algorithm of Bayesian regularization (BR) backpropagation, and it is a network training
function that updates weights and deviation values on the basis of Levenberg Marquardt
optimization. It minimizes the combination of squared errors and weight values, and then
defines the correct combination to generate a network with good generalization. Trainbr is
the algorithm that best predicted the PM2.5 concentration. It showed the best performance
in simulating PM2.5 during the training period, the verification period, and the prediction
period. The simulated PM2.5 concentration was very close to the actual PM2.5 concentration.
To avoid overfitting problems, a test experiment wad conducted. The ANN model has anal-
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ogous R values, so consequently there were no overfitting problems with the ANN model.
The RMSE value for the ANN employing trainbr for the training period is 10.9 µg/m3, and
that for the verification period is 4.4 µg/m3. The R values for the ANN employing trainbr
during the training and verification periods were 0.9472 and 0.9834, respectively. The MAE
for the ANN using trainbr were 7.7 µg/m3 and 3.5 µg/m3, respectively.

Table 5. Comparison of R, RMSE(µg/m3), and MAE (µg/m3) between various training algorithms.

Training
Functions R RMSE MAE

Training Verification Predicting Training Verification Predicting Training Verification Predicting

trainbr 0.9472 0.9834 0.9570 10.9 4.4 6.6 7.7 3.5 4.6
trainlm 0.9158 0.9094 0.6952 13.5 9.3 15.3 9.3 6.9 11.8

traingdx 0.7385 0.7806 0.6020 23.3 23.2 25.4 18.0 19.6 21.4
traingd 0.6446 0.8103 0.7158 26.4 21.5 27.0 18.8 17.1 22.5

traingdm 0.6469 0.8017 0.6042 26.1 19.0 25.6 19.6 15.0 19.7
trainrp 0.4024 0.4660 0.6717 31.1 22.4 25.5 23.4 18.3 20.9

traincgp 0.8072 0.7114 0.7576 20.5 21.6 24.6 14.6 16.0 19.7
traincgf 0.7026 0.7686 0.4458 24.4 18.6 28.8 18.9 16.5 25.3
traincgb 0.6722 0.5321 0.7767 25.6 28.8 22.3 19.0 24.7 17.7
trainscg 0.8615 0.9518 0.8442 20.0 12.4 14.6 11.7 10.8 11.2
trainbfg 0.6573 0.8805 0.7233 26.0 17.3 28.7 19.8 14.5 24.3
trainoss 0.6198 0.6442 0.7081 26.8 22.4 24.3 20.6 18.4 21.3

Transfer functions of the ANN are picked by trial and error. Table 6 indicates that
the transfer function logsig-poslin is better than others during training, verification, and
predicting stages. Purelin is a linear transfer function and poslin is a positive linear transfer
function. Tansig is a hyperbolic tangent sigmoid transfer function and logsig is a logarithmic
sigmoid transfer function.

Table 6. Comparison of R, RMSE(µg/m3), and MAE (µg/m3) between various transfer functions.

Transfer
Function R RMSE MAE

Training Verification Predicting Training Verification Predicting Training Verification Predicting

tansig-purelin 0.8240 0.8996 0.7771 22.7 13.0 20.0 13.9 10.0 16.2
tansig-logsig 0.7326 0.8685 0.7129 31.0 12.6 16.1 20.2 10.7 11.9
tansig-tansig 0.7431 0.8821 0.7247 30.5 11.3 15.2 19.6 9.3 11.0

logsig-purelin 0.8343 0.9089 0.8501 22.9 11.5 16.4 14.2 9.6 14.9
logsig-tansig 0.6720 0.7507 0.5837 36.9 15.4 18.1 25.0 11.9 13.7
logsig-logsig 0.8166 0.9096 0.8943 24.2 12.7 13.2 15.2 10.6 11.1

purelin-tansig 0.6712 0.7809 0.6515 37.3 16.3 18.4 25.7 13.1 14.7
purelin-logsig 0.9042 0.9219 0.6969 14.4 8.6 15.3 10.1 7.5 12.1

purelin-purelin 0.8980 0.9741 0.7115 14.8 5.2 15.2 10.3 4.4 12.2
tansig-poslin 0.8664 0.9645 0.9338 21.5 5.2 7.8 12.1 4.5 6.1
logsig-poslin 0.9472 0.9834 0.9570 10.9 4.4 6.6 7.7 3.5 4.6
poslin-poslin 0.8980 0.9741 0.7115 14.8 5.2 15.2 10.4 4.5 12.2
purelin-poslin 0.8936 0.9784 0.7210 25.9 12.7 20.3 19.8 11.2 14.9

3.4. Prediction of the PM2.5 Concentration in Liaocheng and Comparison with Existing Models

In the forecast period, PM2.5 concentration in the next month is predicted employ-
ing the previous months’ PM2.5 concentration. Table 6 indicates the predicting perfor-
mance employing trainbr for the designed ANN model. For PM2.5 concentration in
Liaocheng during the predicting period, the R, RMSE, and MAE are 0.9570, 6.6 µg/m3,
4.6 µg/m3, respectively.

Figure 8 makes clear predicted PM2.5 concentration. The training and verification
values are from January 2014 to July 2021. Then, we began to predict from August 2021
to May 2022. In both the training stage and the verification stage, the simulated values
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and the observed values are very close, especially in the simulated minimum value. In the
10 months, the forecasting PM2.5 concentration is similar to the actual PM2.5 concentration.

Atmosphere 2022, 13, x FOR PEER REVIEW 12 of 17 
 

 

Table 6. Comparison of R, RMSE(μg/m3), and MAE (μg/m3) between various transfer functions. 

Transfer Func-
tion 

R   RMSE   MAE   

 Training Verification Predicting Training Verification Predicting Training Verification Predicting 
tansig-purelin 0.8240 0.8996 0.7771 22.7 13.0 20.0 13.9 10.0 16.2 
tansig-logsig 0.7326 0.8685 0.7129 31.0 12.6 16.1 20.2 10.7 11.9 
tansig-tansig 0.7431 0.8821 0.7247 30.5 11.3 15.2 19.6 9.3 11.0 

logsig-purelin 0.8343 0.9089 0.8501 22.9 11.5 16.4 14.2 9.6 14.9 
logsig-tansig 0.6720 0.7507 0.5837 36.9 15.4 18.1 25.0 11.9 13.7 
logsig-logsig 0.8166 0.9096 0.8943 24.2 12.7 13.2 15.2 10.6 11.1 

purelin-tansig 0.6712 0.7809 0.6515 37.3 16.3 18.4 25.7 13.1 14.7 
purelin-logsig 0.9042 0.9219 0.6969 14.4 8.6 15.3 10.1 7.5 12.1 

purelin-purelin 0.8980 0.9741 0.7115 14.8 5.2 15.2 10.3 4.4 12.2 
tansig-poslin 0.8664 0.9645 0.9338 21.5 5.2 7.8 12.1 4.5 6.1 
logsig-poslin 0.9472 0.9834 0.9570 10.9 4.4 6.6 7.7 3.5 4.6 
poslin-poslin 0.8980 0.9741 0.7115 14.8 5.2 15.2 10.4 4.5 12.2 

purelin-poslin 0.8936 0.9784 0.7210 25.9 12.7 20.3 19.8 11.2 14.9 

3.4. Prediction of the PM2.5 Concentration in Liaocheng and Comparison with Existing Models 
In the forecast period, PM2.5 concentration in the next month is predicted employing 

the previous months’ PM2.5 concentration. Table 6 indicates the predicting performance 
employing trainbr for the designed ANN model. For PM2.5 concentration in Liaocheng 
during the predicting period, the R, RMSE, and MAE are 0.9570, 6.6 μg/m3, 4.6 μg/m3, 
respectively. 

Figure 8 makes clear predicted PM2.5 concentration. The training and verification 
values are from January 2014 to July 2021. Then, we began to predict from August 2021 to 
May 2022. In both the training stage and the verification stage, the simulated values and 
the observed values are very close, especially in the simulated minimum value. In the 10 
months, the forecasting PM2.5 concentration is similar to the actual PM2.5 concentration. 

 
Figure 8. Training, verification, and prediction of monthly average PM2.5 concentration in 
Liaocheng from 2014 to 2022. 

Different models for predicting PM2.5 concentration are evaluated in Table 7. In re-
cent years, artificial neural networks have provided many applications for PM2.5 pre-
dicting. Moreover, researchers have begun using hybrid techniques to address complex 
air pollution problems for urban environments. Ten hidden neurons are used in the 
Bayesian regularized neural network (BRNN) and forward feature selection (FFS) 
(BRNN/FFS) estimation system to estimate PM2.5 concentration. MSE, RMSE, and MAE 

Figure 8. Training, verification, and prediction of monthly average PM2.5 concentration in Liaocheng
from 2014 to 2022.

Different models for predicting PM2.5 concentration are evaluated in Table 7. In recent
years, artificial neural networks have provided many applications for PM2.5 predicting.
Moreover, researchers have begun using hybrid techniques to address complex air pol-
lution problems for urban environments. Ten hidden neurons are used in the Bayesian
regularized neural network (BRNN) and forward feature selection (FFS) (BRNN/FFS)
estimation system to estimate PM2.5 concentration. MSE, RMSE, and MAE and R2 of the
BRNN/FFS model are 7.4972 µg/m3, 2.7381 µg/m3, 2.3292 µg/m3, and 0.95 [35]. The
backpropagation neural network of prediction of PM2.5 concentrations seems to perform
better in southern China, achieving the best results in the Pearl River Delta (PRD) region.
Compared with the cities in northern China, the cities in the PRD have smaller MAE
(12–20 µg/m3 vs. 25–40 µg/m3) and RMSE (15–25 µg/m3 vs. 35–60 µg/m3) for different
prediction time steps [36]. It is better to predict PM2.5 concentrations through ALSTM
than to predict PM2.5 through LSTM, SVR, and GBTR. The ALSTM learns the weight of air
pollutants in different areas more accurately. At the first hour in the future, the RMSE of all
stations will be 3.94 µg/m3 and the MAE will be 2.94 µg/m3 [37]. The deep LSTM model 2
is a multivariate model using Dew alongside PM2.5 concentration in the Kathmandu val-
ley. Model 2 with single-step prediction is the best-performing model, with RMSE of
13.04 µg/m3 and MAE of 10.81 µg/m3 [38]. The performance of the weighted bagging-
based neural network (WBBNN) trained by fuzzy features is the best in the 12 cases, and
its RMSE, R2, and MAE are 33.812 µg/m3, 0.8371, and 34.515 µg/m3, respectively [39].
As shown in Table 7, the R-square (R2), RMSE, and MAE ranges of different models are
0.74–0.961, 1.1064–24.22874 µg/m3, and 0.6561–34.515 µg/m3. Compared with the results
of other models, our model is at the upper middle level. This is because our data volume is
relatively small.
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Table 7. The difference between existing PM2.5 models and the proposed ANN model.

Literature Model Area R2 RMSE (µg/m3) MAE (µg/m3)

[7] ANN Ahvaz, Iran 0.74
[35] BRNN/FFS Kaohsiung, Taiwan, China 0.95 2.7381 2.3292
[36] MLP Eastern China, China 41.97 31.11
[37] Aggregated LSTM Taiwan, China 3.94 2.94
[38] LSTM Kathmandu valley, Nepal 13.04 10.81
[39] WBBNN Beijing, China 0.8371 33.812 34.515
[40] BPNN Beijing, China 24.06
[41] ANN Delhi, India 0.86
[42] ANN Addis Ababa, Ethiopia 0.943
[43] LSTME Beijing, China 12.6 5.46
[44] CNN-LSTM Beijing, China 0.921573 24.22874 14.63446
[45] CNN United States 0.84 2.55 1.56
[46] 3D CNN-GRU The great Tehran 0.78 6.44 8.89
[47] CEEMDAN-DeepTCN Beijing, China 1.1064 0.6561
[48] CNN-GBM Shanghai, China 0.85 10.02 3.56
[49] LSTM Santiago, Chile 0.87
[50] DNN China 0.93
[51] DBN-BP Chengdu, China 14.06
[52] LSTM-Bayes Tianjin, China 0.94 13.06 8.61
[53] CNN-BP Taiwan, China 0.89 4.98
[54] Lag-FLSTM Wayne County in Michigan 3.482 1.85
[55] STWC-DNN China 0.92 12.7 8.36
[56] WPD-SE-VMD-Q-GRU Harbin, Nanjing, Shijiazhuang 2.9437 2.2342
[57] CNN-SPP-LSTM Shanghai, China 0.961 9.485 6.009
[58] ANN California, United States 0.984 0.027
[59] CNN-BiLSTM-Attention Beijing, China 0.96 3.095 2.366

This paper ANN Liaocheng, China 0.9159 6.631 4.6245

4. Conclusions

The time series prediction methods of PM2.5 concentration have the task of predict-
ing future PM2.5 concentration based on historical PM2.5 data. The PM2.5 time series in
Liaocheng shows regular upward and downward cyclic changes. There is autocorrelation
in PM2.5 time series, which refers to the correlation between the current PM2.5 values and its
previous PM2.5 values. Moreover, the relationship between inputs and PM2.5 concentration
is nonlinear. The artificial neural network is very good at dealing with this nonlinear
relationship. Table 3 shows the R, RMSE, and MAE between various input variables. The
number of nodes of the input layer rises from 1 to 16 in the PM2.5 prediction model. The
following observations can be made with raising the number of nodes of the input layer
during the training, verification, and predicting period: the R values slowly increase and
then decrease, but the RMSE and MAE values slowly descend and then rise. The change
characteristics of the number of neurons in the hidden layer are similar to the above results
(Table 4). Therefore, the best topology of the pattern for PM2.5 concentration prediction is
identified as 11-6-1 for ANN.

The COVID-19 epidemic had a significant influence on the air pollution of Liaocheng
in unprecedented ways. Air quality in Liaocheng during lockdown was obviously better
than before lockdown and after lockdown. The possible reason is that during COVID-19
epidemic prevention, industrial production and transportation activities were prodigiously
reduced, resulting in a quick reduction in air pollutant emissions.

We investigated the practicability of hiring AI with past months’ PM2.5 concentration
as input variables to predict the coming month’s PM2.5 concentration. The performance of
the ANN model was evaluated with three statistical indicators. A simple ANN model with
the 11 past months’ PM2.5 concentration as input variables was distinguished. The precise
forecasting capability of the ANN model was also demonstrated. These results prove that
the ANN can grasp the complex nonlinear relationship between input and output variables.
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Since air pollution in Liaocheng is still very serious, we will further strengthen the research
on PM2.5 prediction models. The prediction results of the ANN model can provide scientific
basis for the prevention and control of air pollution.

The Chinese government has put forward the goals of carbon peaking and carbon
neutralization, and formulated the implementation plan for the synergy of pollution re-
duction and carbon reduction. In this study, we only use artificial neural network for
prediction, and consider the past PM2.5 data for time series analysis. In the future, in order
to further improve PM2.5 prediction accuracy, we will use deep learning to predict the daily
or hourly PM2.5 concentration, such as long short-term memory (LSTM), gated recurrent
unit (GRU), convolutional neural network (CNN), deep Boltzmann machine (DBM), deep
belief network (DBN), CNN-LSTM, and graph convolutional network (GCN), and consider
climate change and air pollutant emissions.

Author Contributions: Conceptualization, Z.H. and Q.G.; methodology, Z.H. and Q.G.; formal
analysis, Z.H., Z.W. and X.L.; data curation, Z.H., Z.W. and X.L.; supervision, Z.H., Z.W. and X.L.;
writing—original draft preparation, Z.H. and Q.G.; writing—review and editing, Z.H. and Q.G. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (41572150),
Shandong Social Sciences Planning Research Program (18CKPJ34), Shandong Province Higher Edu-
cational Humanities and Social Science Program (J18RA196), and State Key Laboratory of Loess and
Quaternary Geology Foundation (SKLLQG1907).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data and methods used in the research have been presented in suffi-
cient detail in the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fowler, D.; Pyle, J.A.; Sutton, M.A.; Williams, M.L. Global Air Quality, past present and future: An introduction. Philos. Trans. R.

Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190323. [CrossRef] [PubMed]
2. Southerland, V.A.; Brauer, M.; Mohegh, A.; Hammer, M.S.; van Donkelaar, A.; Martin, R.V.; Apte, J.S.; Anenberg, S.C. Global

urban temporal trends in fine particulate matter (PM2.5) and attributable health burdens: Estimates from global datasets. Lancet
Planet. Health 2022, 6, e139–e146. [CrossRef]

3. Geng, G.; Zheng, Y.; Zhang, Q.; Xue, T.; Zhao, H.; Tong, D.; Zheng, B.; Li, M.; Liu, F.; Hong, C.; et al. Drivers of PM2.5 air pollution
deaths in China 2002–2017. Nat. Geosci. 2021, 14, 645–650. [CrossRef]

4. Qi, Y.; Wei, S.; Xin, T.; Huang, C.; Pu, Y.; Ma, J.; Zhang, C.; Liu, Y.; Lynch, I.; Liu, S. Passage of exogeneous fine particles from the
lung into the brain in humans and animals. Proc. Natl. Acad. Sci. USA 2022, 119, e2117083119. [CrossRef]

5. Guo, Q.; He, Z.; Li, S.; Li, X.; Meng, J.; Hou, Z.; Liu, J.; Chen, Y. Air Pollution Forecasting Using Artificial and Wavelet Neural
Networks with Meteorological Conditions. Aerosol Air Qual. Res. 2020, 20, 1429–1439. [CrossRef]

6. Chen, Y. Prediction algorithm of PM2.5 mass concentration based on adaptive BP neural network. Computing 2018, 100, 825–838.
[CrossRef]

7. Goudarzi, G.; Hopke, P.K.; Yazdani, M. Forecasting PM2.5 concentration using artificial neural network and its health effects in
Ahvaz, Iran. Chemosphere 2021, 283, 131285. [CrossRef]

8. Li, L.; Fu, Y.; Fung, J.C.H.; Tse, K.T.; Lau, A.K.H. Development of a back-propagation neural network combined with an adaptive
multi-objective particle swarm optimizer algorithm for predicting and optimizing indoor CO2 and PM2.5 concentrations. J. Build.
Eng. 2022, 54, 104600. [CrossRef]

9. Gao, S.; Zhao, H.; Bai, Z.; Han, B.; Xu, J.; Zhao, R.; Zhang, N.; Chen, L.; Lei, X.; Shi, W.; et al. Combined use of principal component
analysis and artificial neural network approach to improve estimates of PM2.5 personal exposure: A case study on older adults.
Sci. Total Environ. 2020, 726, 138533. [CrossRef] [PubMed]

10. Xing, J.; Zheng, S.; Ding, D.; Kelly, J.T.; Wang, S.; Li, S.; Qin, T.; Ma, M.; Dong, Z.; Jang, C.; et al. Deep Learning for Prediction of
the Air Quality Response to Emission Changes. Environ. Sci. Technol. 2020, 54, 8589–8600. [CrossRef]

11. Chauhan, R.; Kaur, H.; Alankar, B. Air Quality Forecast using Convolutional Neural Network for Sustainable Development in
Urban Environments. Sustain. Cities Soc. 2021, 75, 103239. [CrossRef]

http://doi.org/10.1098/rsta.2019.0323
http://www.ncbi.nlm.nih.gov/pubmed/32981444
http://doi.org/10.1016/S2542-5196(21)00350-8
http://doi.org/10.1038/s41561-021-00792-3
http://doi.org/10.1073/pnas.2117083119
http://doi.org/10.4209/aaqr.2020.03.0097
http://doi.org/10.1007/s00607-018-0628-3
http://doi.org/10.1016/j.chemosphere.2021.131285
http://doi.org/10.1016/j.jobe.2022.104600
http://doi.org/10.1016/j.scitotenv.2020.138533
http://www.ncbi.nlm.nih.gov/pubmed/32320881
http://doi.org/10.1021/acs.est.0c02923
http://doi.org/10.1016/j.scs.2021.103239


Atmosphere 2022, 13, 1221 15 of 16

12. Chang-Hoi, H.; Park, I.; Oh, H.-R.; Gim, H.-J.; Hur, S.-K.; Kim, J.; Choi, D.-R. Development of a PM2.5 prediction model using
a recurrent neural network algorithm for the Seoul metropolitan area, Republic of Korea. Atmos. Environ. 2021, 245, 118021.
[CrossRef]

13. Samal, K.K.R.; Babu, K.S.; Das, S.K. Multi-directional temporal convolutional artificial neural network for PM2.5 forecasting with
missing values: A deep learning approach. Urban Clim. 2021, 36, 100800. [CrossRef]

14. Kow, P.-Y.; Chang, L.-C.; Lin, C.-Y.; Chou, C.C.K.; Chang, F.-J. Deep neural networks for spatiotemporal PM2.5 forecasts based on
atmospheric chemical transport model output and monitoring data. Environ. Pollut. 2022, 306, 119348. [CrossRef] [PubMed]

15. Krishan, M.; Jha, S.; Das, J.; Singh, A.; Goyal, M.K.; Sekar, C. Air quality modelling using long short-term memory (LSTM) over
NCT-Delhi, India. Air Qual. Atmos. Health 2019, 12, 899–908. [CrossRef]

16. Ma, J.; Ding, Y.; Cheng, J.C.P.; Jiang, F.; Wan, Z. A temporal-spatial interpolation and extrapolation method based on geographic
Long Short-Term Memory neural network for PM2.5. J. Clean. Prod. 2019, 237, 117729. [CrossRef]

17. Wang, Z.; Zhou, Y.; Zhao, R.; Wang, N.; Biswas, A.; Shi, Z. High-resolution prediction of the spatial distribution of PM2.5
concentrations in China using a long short-term memory model. J. Clean. Prod. 2021, 297, 126493. [CrossRef]

18. Teng, M.; Li, S.; Xing, J.; Song, G.; Yang, J.; Dong, J.; Zeng, X.; Qin, Y. 24-Hour prediction of PM2.5 concentrations by combining
empirical mode decomposition and bidirectional long short-term memory neural network. Sci. Total Environ. 2022, 821, 153276.
[CrossRef]

19. Jiang, X.; Wei, P.; Luo, Y.; Li, Y. Air Pollutant Concentration Prediction Based on a CEEMDAN-FE-BiLSTM Model. Atmosphere
2021, 12, 1452. [CrossRef]

20. Yan, R.; Liao, J.; Yang, J.; Sun, W.; Nong, M.; Li, F. Multi-hour and multi-site air quality index forecasting in Beijing using CNN,
LSTM, CNN-LSTM, and spatiotemporal clustering. Expert Syst. Appl. 2021, 169, 114513. [CrossRef]

21. Muthukumar, P.; Nagrecha, K.; Comer, D.; Calvert, C.F.; Amini, N.; Holm, J.; Pourhomayoun, M. PM2.5 Air Pollution Prediction
through Deep Learning Using Multisource Meteorological, Wildfire, and Heat Data. Atmosphere 2022, 13, 822. [CrossRef]

22. Guo, Q.; Wang, Z.; He, Z.; Li, X.; Meng, J.; Hou, Z.; Yang, J. Changes in Air Quality from the COVID to the Post-COVID Era in the
Beijing-Tianjin-Tangshan Region in China. Aerosol Air Qual. Res. 2021, 21, 210270. [CrossRef]

23. Conti, L.M.; Herdies, D.L.; Alvim, D.S.; Corrêa, S.M. Analysis of the Effect of the Truck Strike and COVID-19 on the concentration
of NOx and O3 in the Metropolitan Region of the Vale do Paraiba, São Paulo, Brazil. Aerosol Air Qual. Res. 2022, 22, 210364.
[CrossRef]

24. Khan, S.; Dahu, B.M.; Scott, G.J. A Spatio-temporal Study of Changes in Air Quality from Pre-COVID Era to Post-COVID Era in
Chicago, USA. Aerosol Air Qual. Res. 2022, 22, 220053. [CrossRef]

25. Rudke, A.P.; de Almeida, D.S.; Alves, R.A.; Beal, A.; Martins, L.D.; Martins, J.A.; Hallak, R.; de Almeida Albuquerque, T.T.
Impacts of Strategic Mobility Restrictions Policies during 2020 COVID-19 Outbreak on Brazil’s Regional Air Quality. Aerosol Air
Qual. Res. 2022, 22, 210351. [CrossRef]
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