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Abstract

The classification of motor imagery electroencephalogram (MI-EEG) is a piv-

otal part of the biosignal classification in the brain-computer interface (BCI)

applications. Currently, this bio-engineering based technology is being employed

by researchers in various fields to develop cutting edge applications. The classi-

fication of real-time MI-EEG signal is the core computing and challenging task

in these applications. It is well-known that the existing classification methods

are not so accurate due to the high dimensionality and dynamic behaviors of

the real-time EEG data. To improve the classification performance of real-time

BCI applications, this paper presents a clustering-based ensemble technique and

a developed brain game that distinguishes different human thoughts. At first,

we have gathered the brain signals, extracted and selected informative features

from these signals to generate training and testing sets. After that, we have

constructed several classifiers using Artificial Neural Network (ANN), Support

Vector Machine (SVM), näıve Bayes, Decision Tree (DT), Random Forest, Bag-

ging, AdaBoost and compared the performance of these existing approaches

with suggested clustering-based ensemble technique. On average, the proposed

ensemble technique improved the classification accuracy of roughly 5 to 15%

compared to the existing methods. Finally, we have developed the targeted
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brain game employing our suggested ensemble technique. In this game, real-

time EEG signal classification and prediction tabulation through animated ball

are controlled via threads. By playing this game, users can control the move-

ments of the balls via the brain signals of motor imagery movements without

using any traditional input devices. All relevant codes are available via open

repository at: https://github.com/mrzResearchArena/MI-EEG.

Keywords: Brain Computer Interface (BCI); Brain Machine Interface (BMI);

Brain Engineering; Motor Imagery Electroencephalogram (MI-EEG); Motor

Cortex; Clustering; Ensemble Learning.

1. Introduction

In this era, brain engineering is an emerging field of science and technology.

It includes the apprehension and accomplishment of various fields like physics,

chemistry, biology, computer science, and mathematics to base its application

[1]. On top of that, it incorporates the concepts and methods of varied fields like5

biological science, clinical medicine as well as engineering [2]. Brain-Computer

Interface (BCI) is a branch of brain engineering that targets to solve practical

problems of the life sciences. BCI and Human Machine Interface (HMI) are the

modern technology that is used as a tool to establish communication between

users and machines [3]. BCI technology incorporates neurophysiological activi-10

ties as input signals and then these signals interpret into meaningful commands

employing Machine Learning (ML) algorithms to execute actions by an exter-

nal system [4, 5]. BCI technology brings about a huge number of opportunities

in the medical field especially for the treatment and rehabilitation for disabled

people. Around the world, millions of people are affected by various forms of15

disability and physical impairment caused by various reasons such as – born

disability, old-age disability, early-age disability, accidental/unforeseen issues,

serious health problems, and more [6]. For disabled people, it is extremely diffi-

cult or, in some cases, impossible to do day to day chores without the assistance

of any caregiver. A variety of equipment and devices invented in this field for20
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rehabilitating and aiding disabled people to cope with their physical deficiencies

[7]. This technology allows disabled people to command and control external de-

vices such as – computers, wheelchairs, robots, etc., by utilizing their thoughts.

Notwithstanding, the horizon of this field has been broadened to a wide range of

non-medical applications like gaming, entertainment, military, and meditation25

training [8, 9]. The knowledge of BCI can also be applied in smart environment

systems like smart houses or smart workplaces. This technology has opened a

new window of opportunities for the gaming and entertainment industry and

different types of games already being developed using this technology to relief

from stress [10, 11].30

Fundamentally, BCI technology can be employed in three ways based on the

process of signal acquisition from brain [12]. One way is to place wires inside the

grey matter of the brain, this is called invasive BCI [13, 3]. Though invasive BCI

begets a better input signal, it is highly sophisticated and extremely sensitive

to implement [12, 14]. That is why it necessitates very proficient people to35

manipulate with. Another way is to place electrodes on the surface of the scalp

to measure activities from a huge group of neurons. This method is called non-

invasive BCI [15, 16]. In comparison with invasive BCI, it does not deliver better

input signals as good as [17]. But it is less sophisticated and easy to accomplish

with. The third type of BCI is called partially invasive BCI. In this technique,40

wires are placed inside the brain but above the grey matter of it [12, 17].

Concerning motor imagery EEG signal classification, the proficiency of many

single and ensemble classifiers had previously been evaluated. Our prior studies

had assessed the performance of existing single and ensemble classifiers in real-

time BCI applications [17, 13, 18]. It is well-known that the existing classifiers45

are not so accurate due to the high dimensionality and dynamic behaviors of the

real-time EEG data [19, 20]. Sometimes, the signals are biased with artifacts

and noise due to the low conductivity of the electrodes with the scalp [1]. The

objective of this paper is to extend our prior works and ameliorates the classifi-

cation performance by handling multiple electrodes/ neurons data at the same50

time. The proposed clustering-based ensemble technique clustered the dataset

3
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based on the position of the electrodes so that each cluster represents dissimilar

information. It also selects the model dynamically based on the electrode lo-

cations to classify real-time EEG data. We have constructed several classifiers

using Artificial Neural Network (ANN), Support Vector Machine (SVM), näıve55

Bayes, Decision Tree, Random Forest, Bagging, AdaBoost and compared the

performance of these existing approaches with the suggested technique. We also

developed a brain game to distinguish human thoughts in real-time. We em-

ployed the threading technique to control the signal classification and prediction

tabulation via animated ball in real-time.60

The remainder of this paper is organized as follows: Section 2 presents the

related works. Section 3 illustrates brain measurement techniques, signal ac-

quisitions, and datasets descriptions. Section 4 reveals supervised classification

and the proposed clustering-based ensemble method. Section 5 provides experi-

mental results and introduces a brain game that is controlled by brain signals of65

motor imagery tasks. Finally, Section 6 presents conclusions and future work.

2. Related Works

H. Raza et al. [1] presented an adaptive ensemble approach in EEG clas-

sification to handle non-stationarity in the motor imagery task; the proposed

approach collected MI correlated brain responses and extracted spatial pattern70

structures from it, and new classifiers are added over time with an existing en-

semble classifier to justify the deviations in streaming data input. Furthermore,

BCI-related EEG datasets are employed to evaluate the proposed approach with

single-classifier and it ameliorated the BCI performance significantly. S. Sreeja

et al. [14] proposed a sparse based classification method to classify MI related75

tasks from EEG data. For enhancing the computational time, they only used

wavelet energy without any pre-processing as a feature to classify MI data. In

their experiments, the proposed sparsity approach outperformed existing clas-

sifiers in a minor computation time.

M. Li et al. [2] proposed a novel decoding approach employing Overlapping80
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Averaging (OA) to interpret MI-EEG data. To overwhelm the constraint of the

general Region of Interest (ROI) based decrypting approach, they usedWeighted

Minimum Norm Estimate (WMNE). They experimented on a public dataset

employing 10-fold cross-validation and achieved higher decrypting accuracy of

81.32% than existing approaches. S. Sun et al. [19] researched to methodically85

assess the performance of popular ensemble methods: bagging, boosting and

random subspace to classify MI related tasks from EEG signals. They used

the base classifiers of SVM, DT, and k-Nearest Neighbors (k-NN) to advocate

the possibilities of ensemble classification methods. Moreover, few significant

inferences were produced to reveals the performance of ensemble methods for90

EEG classification in their study.

P. Pattnaik and J. Sarraf [21] attempted to apply left and right-hand move-

ment classification using raw EEG signals. Before applying the movement clas-

sification, they had removed the artifacts in the obtained signals employing a

low pass filtering technique. Moreover, they kept a strong focus on the ap-95

plication of BCI as well as the issues related to it. K. Mamun et al. [18]

introduced a technique to procure frequency reliant neural synchronization as

well as inter-hemispheric connectivity properties. They based their method on

Granger causality as well as wavelet packet transform (WPT) approaches. Their

approach was capable of decoding movement associated behaviors accurately as100

well as informatively, from the registered local field potentials (LFPs) activity.

Movement recognition accuracy was 99.8%, and afterward laterality recognition

was 81.5% on average. Finding of this study show that nominated optimum

neural synchronization associated with inter-hemispheric connectivity and has

the potential to give users control signal to supplement adaptive brain-machine105

interface (BMI).

J. Lu et al. [22] investigated the prospect of ameliorating performance in a

Transcranial Doppler ultrasonography (TCD) based BCI. They used the struc-

tures and classifiers that are computationally suitable for online application by

running an offline investigation of TCD recordings. From earlier offline TCD110

researches, pattern recognition and signal processing routine are used by them

5
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and received roughly 73% accuracy in their experiment. Later, methodical

feature selection approaches and three classifiers such as: näıve Bayes, Linear

Discriminant Analysis (LDA), and SVM were compared. Combining the SVM

classifier with weighted sequential forward selection(WSFS), a topmost accu-115

racy of 87.60±3.27% was acquired. M. M. Shanechi [23] examined the decoding

algorithms made in the BMI study. It is possible to design a motor BMI as a

closed-loop control system. They inspected current decoder designs that em-

phasize the unique properties of BMI. Moreover, a discussion was presented

about the existing opportunities to formulate a control-theoretic framework to120

design BMI, as well as, assisting the development of more advanced BMI control

algorithms.

R. M. Mehmood et al. [24] proposed a method that considerably enhances

the rate of emotion recognition regarding the popularly implemented spec-

tral power band routine. Features selected by this routine performed better125

than both univariate and multivariate attributes. The optimal attributes were

later processed to classify emotion by applying KNN, SVM, LDA, näıve Bayes,

Random Forest, and deep learning classifiers. M. A. Lebedev and M. A.L.

Nicolelis[25] emphasized on some of the essential challenges encountered by BMI

research. Moreover, they proposed a chain of milestones to convert up to date130

experimental advances into viable medical applications within the coming 10 -

20 years. The guideline they provided underscores the contemporary history

of the BMI and puts a strong emphasis on the influential factors related to its

growth.

3. EEG Signal Acquisition135

3.1. Functional Areas of Brain

The human brain is the main organ of the human nervous system [18]. The

central nervous system has consisted of both the brain and spinal cord. The

human brain acts as the master of the whole body, as almost all of the body

activities are controlled by it. It has the functionalities of receiving, processing140

6
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and generating information for the well-being of human beings [26]. The sense

organs send informations to the brain. The brain then integrates, coordinates

and processes the given input informations to produce decisions and commands

to the rest of the body [21]. Different brain parts are responsible for completing

different tasks. Motor system is the part that both generates and controls the145

movements of the body [18]. The nerves do the job of transferring the motor

system-generated movements from the brain to the motor neurons in the body.

The action of the muscle is governed by the passing movements. Using the

spinal cord, the corticospinal tract passes movements to the torso as well as

to the limbs. The eyes, mouth, and face related movements are carried by150

the cranial nerve [25]. The motor cortex generates the movement of arms and

legs. The motor cortex consists of three parts- primary motor cortex, premotor

cortex, and supplementary motor area [22]. Locating on the frontal lobe of

the brain, the primary motor cortex is one of the essential brain areas that

are necessary for motor function. The primary motor cortex produces neural155

impulses and then these impulses control the execution of movement [13].

3.2. Brain Measurement Techniques

In BCI, different kinds of neurological modalities are applied to obtain neuro-

logical brain signals [18]. Electroencephalography (EEG) is one of the variety of

ways that are applied for measuring brain activities. It is usually a non-invasive160

approach and assesses voltage oscillations ensuing from ionic current inside the

brain neurons [12]. Another non-invasive method for measuring brain activ-

ities includes positron emission tomography (PET), magneto-encephalography

(MEG), Transcranial Doppler ultrasonography (TCD) as well as functional mag-

netic resonance imaging (fMRI) [9, 27]. Some of the invasive electrophysiological165

methods are local field potentials (LFPs), electrocorticography (ECoG), as well

as single-unit recording. EEG, ECoG, LFPs as well as single-neuron recordings

are the only methods which are popular in use because of their relative simplicity

and inexpensiveness, and they also come with high temporal resolution [18, 28].

On the other hand, fMRI, MEG, and PET are very costly and not much usable;170
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(a) (b)

Figure 1: (a) Electrodes distribution of emotiv epoc+ neuroheadset (b) following the interna-

tional 10-20 system. Source: emotiv systems.

which makes them unpopular to use [12]. In our experiment, we used Emotiv

EPOC+ EEG neuroheadset because it is less sophisticated, inexpensive, and

easy to use.

3.3. EEG Emotiv EPOC+ Neuroheadset

The Emotiv EPOC+ 14 channels is an EEG neuroheadset that ables to pro-175

duce measurable electric potentials to assess brain activities [29]. It is equipped

with 14 saline sensors (electrodes) which are put on the scalp of the brain follow-

ing the international 10-20 system. In the 10-20 system, the real distance among

two adjacent sensors can be either 10% or 20% [29]. The electrodes are situ-

ated in F3, F4, FC5, FC6, F7, F8, AF3, AF4, T7, T8, O1, O2, P7, P8 locations and180

two reference electrodes- Driven Right Lag (DRL) and Common Mode sense

(CMS) are located at P3 and P4 locations [29, 13, 17]. The electrodes distribu-

tion of emotiv epoc+ employing the 10-20 system is shown in Fig. 1.

3.4. EEG Brain Signal Recording

In this study, six healthy subjects (age 18±8) had participated and they had185

no neurological disorders. They were informed briefly about the experimental

8
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procedures and gave informed consent before the experiment. Firstly, we devel-

oped an application program via implementing Java-based technology as well as

Emotiv SDK to obtain brain signals from Emotiv neuroheadset. Then, we ac-

quired an average band power of theta, alpha, low beta, high beta, and gamma190

EEG neural frequency rhythms via the application program. EEG brainwaves,

ranges and their association with different activities in the brain are described

in section 3.5. We have mentioned earlier, the primary motor cortex produces

neural impulses that control the execution of movements. In our MI hand move-

ment experiment, we have selected F3, FC5, FC6 and F4 locations that are best195

fitted in the primary motor cortex area of the brain. We had employed Emotiv

SDK API to acquire the average band power of these selected electrodes from

the newest epoch with 0.5 seconds step size and 2 seconds window size. The

average band power (BP) summarizes the overall power of the given frequency

band and is calculated for the filtered band between 4 to 45 Hz by each electrode.200

We have recorded the MI-EEG brain signals for binary and ternary classes and

the class values are steady, left and right-hand. During the experiment, partic-

ipants wore the headset and connected it to the developed program computer

through a wireless connection to the USB dongle. From each participant, we

have taken two trials to obtain a training set for 30 seconds and one trial to205

acquire a testing set for 15 seconds. MI-EEG brain signal recording source code

is available via open repository at: https://github.com/mrzResearchArena/

MI-EEG/tree/master/Brain-Game/eeg_data_recording.

3.5. EEG Data Descriptions

The EEG measures different neural frequency rhythms that are associated210

with different regions, pathologies or brain states. Neural frequency is assessed

by calculating the number of wave repeats within a second [12]. Table 1 illus-

trates the EEG brainwaves, ranges and their association with different activities

in the brain [12, 3]. Most of the brain oscillations are connected with motor and

sensory actions and associated with different brain functions. Brain oscillations215

are identified via electrodes then distributed into different frequency rhythms

9
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that are revealed in Fig. 2 [30, 28].

Figure 2: Different EEG neural frequency rhythms: (a) theta, (b) alpha, (c) low beta, (d)

high beta, and (e) gamma

Table 1: EEG brainwaves, ranges and their association with different activities in the brain.

Rhythms Band (Hz) Different band activities inside the brain

Theta (θ) 4 to 8 Sleeping, drowsiness, meditation, relaxed

Alpha (α) 8 to 12 Calmness, learning, body integration, relaxed

Low beta (β) 12 to 18 Active concentration, arousal, conscious thought

High beta (β) 18 to 25 Anxiety, task-oriented, logical thinking

Gamma (γ) 25 to 45 Cognitive functioning and high processing tasks

We have distributed the recorded MI-EEG dataset into binary-class and

ternary-class sets based on the class values. We also occupied an EEG eye state

dataset from the UCI Machine Learning repository (https://archive.ics.220

10
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uci.edu/ml/datasets/EEG+Eye+State) to experience our proposed clustering-

based ensemble method. This EEG dataset is collected via an emotiv epoc+

neuroheadset from the EEG measurement of two different eye states [31]. The

comprehensive information of binary-class, ternary-class, and EEG eye state

datasets are illustrated in Table 2.225

Table 2: Hand movement MI-EEG and EEG eye state dataset discribtion.

Datasets No Att. Training Testing Classes

of Att. Types Data Points Data Points

Binary-class 5 Real & 472060 52304 2

MI-EEG Nominal

Ternary-class 5 Real & 473676 124492 3

MI-EEG Nominal

EEG eye state 15 Real & 14980 2

Nominal

3.6. Visualization Brain Activities

The motor imagery hand movement deviations are found very high in the

recorded MI-EEG responses as tabulated in Fig. 3. It represents that the

movement and steady can be effortlessly found from the MI-EEG responses.

It also highlighted that the movements of left and right-hand are challenging230

to categorize. We already mentioned that the primary motor cortex produces

neural impulses to control the execution of movements. These movements are

engendered from the related area and produced similar patterns that generate

difficulty to classify patterns effortlessly.

4. Classification235

In classification techniques, instance classification is accomplished via train-

ing and testing steps [32]. Training data points are used to build mining classi-

fier, where all data points are labeled with class values. At the time of testing,

data points are classified employing mining classifier [33]. In this technique,

N number of instances reveal a dataset, D = { x1, ..., xN } where each data240

11
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(a) (b)

(c) (d)

Figure 3: Dissimilar events inside the brain: (a) steady and right-hand movement; (b) steady

and left-hand movement; (c) right and left-hand movement; (d) steady, right and left-hand

movement.
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point xn ∈ D contains F features Af , f = 1, ..., F . Here, anf illustrates the

value of attribute Af of data point xn and each one belongs to a class of C

classes { c1, ..., cl, ..., cM }. In this section, we will briefly describe the proposed

clustering-based ensemble model with four single classifiers and three ensemble

learning methods.245

4.1. Artificial Neural Network (ANN)

An artificial neural network (ANN) is a brain-inspired classification system

based on the arrangement of biological neural networks [34]. It consists of

input, output layers and sometimes single or multiple hidden layers exist to find

complex patterns. To compute neuron input I, it uses bias weight θ, connected250

all neurons weightW and output O [34]. After that, neuron input I manipulates

to calculate neuron output O employing different activation functions. Neuron

input I and output O calculated by employing non-linear sigmoid function, are

illustrated in Eq. 1 and 2 [24].

Ij =
N∑

i=1

WijOi + θj (1)

Oj =
1

1 + e−Ij
(2)

The network contains several connections, each connection computes the255

output of a neuron and then used by another neuron as input [24]. Weights

are allocated to each connection to reveal relative importance. Initially, all the

weights are assigned randomly. After that, each neuron learns from the set of

training instances D, computes the error according to the desired output of

D and adjusts the weights based on errors. The backpropagation algorithm is260

employed updating weights to ameliorate the network until achieving the pure

output weight [34].

Wki = Wki + ηOkOi(1−Oi)
N∑

i=1

WijErrjOj(1−Oj) (3)
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Eq. 3 is employed iteratively to adjust all the weights of the network. Here,

the learning rate, η expresses the proportion of corrective steps to adjust the

errors of the model in each iteration [34, 24].265

4.2. Support Vector Machine (SVM)

A Support Vector Machine (SVM) is a supervised classifier that explores

training instances and discovers hyperplanes, or support vectors to maximize the

margin among the classes [35]. In two dimensional space, the support vectors

split a plane into two chunks through a line where each cluster denotes individual270

classes [18]. A set of training data points, D= {x1, ..., xN} having N number

of data points with class values C= {1,−1} is employed to train the classifier.

We can select two parallel support vectors with supreme probable distance to

separate classes. The maximum distance between two hyperplanes is called the

margin [18].275

−→m .−→x − b = 0 (4)

−→m .−→x − b = 1 (5)

−→m .−→x − b = −1 (6)

Any hyperplane can be inscribed as the Eq. 4 where −→m is a normal vector

and parameter b/|−→m | regulates the offset of the support vector from the origin

[35]. Eq. 5 and 6 will be employed when the data points xn are on or above the

hyperplane and on or below the hyperplane respectively [23].

d =
|ax1 + by1 + cz1 + d|√

a2 + b2 + c2
(7)

The distance, d among these two support vectors is 2/|−→m |. So, we have to280

minimize the |−→m | to maximize the d. The distance is calculated manipulating

the distance among a point and plane equation that reveals in Eq. 7 [35, 18].
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4.3. Näıve Bayes Classifier (NB)

Näıve Bayes classifier is a probabilistic machine learning classifier based on

Bayes’ theorem. It engenders probability scanning the training instances only285

ones and can handle the missing attribute values easily by omitting its proba-

bilities [32]. It takes a dataset, D with F number of attributes as input to build

the classifier model. For testing a new instance, xnew, the classifier will calculate

the posterior probability and assign a class label with the highest probability.

P (Ci|X) =
P (X|Ci)P (Ci)

P (X)
(8)

In Eq. 8, Bayes theorem states mathematically as P (X) is constant for all290

classes [32]. Here, P (X|Ci) and P (Ci) represents conditional and priori class

probability. For instance, NB classifier predicts a new data point, X as class

Ci, if P (X|Ci)P (Ci) is greater than P (X|Cj)P (Cj) [33].

P (X|Ci) =
F∏

f=1

P (xf |Ci) (9)

P (xf |Ci) =
1√
2πσ

e−
(x−µ)2

2σ2 (10)

For data point X, xf denotes to the value of feature Af . The probability

P (xf |Ci) can be simply assessed from the training instances, if feature, Af295

is categorical-valued. Otherwise, feature Af is continuous-valued, then Af is

estimated through a Gaussian distribution with standard deviation σ and mean

value µ shown in Eq. 10 [33, 32].

4.4. Classification and Regression Tree (CART)

The CART uses Gini Index that engenders binary classification tree to make300

decisions [32]. Firstly, it assesses the adulteration of dataset, D where proba-

bility Pn is estimated through |cl, D|/|D| reveals in Eq. 11 [33]. Here, the sum

is calculated over C classes and each instance, xn ∈ D belongs to a class cl.

Gini(D) = 1−
N∑

n=1

P 2
n (11)
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It splits the dataset, D considering binary split and the weighted sum of the

adulteration of every resulting sub-data. For instance, the dataset, D splits into305

D1 and D2 considering the Gini Index of D which is calculated in given Eq. 12

[36].

GiniA(D) =
|D1|
|D| Gini(D1) +

|D2|
|D| Gini(D2) (12)

For each attribute, Af considers each probable sub-data and nominated as

the splitting attribute which ameliorate the reduction impurity, shown in Eq.

13 [36, 33].310

∆Gini(A) = Gini(D)−GiniA(D) (13)

According to the attribute Gini Index impurity, it will split the dataset

and create leaf nodes until all the splitting data belongs to an equivalent class.

Algorithm 1 outlines the Classification and Regression Tree Algorithm [37].

Algorithm 1 CART Algorithm

Input: A dataset, D

Output: A decision tree, DT

Method:

1: Compute the Gini Index of D

2: for feature, f=1 to F do

3: Calculate Gini Index for attribute, Af all values

4: Store information of attribute, Af

5: Calculate gini gain of attribute, A

6: end for

7: DT = set best gini gain attribute, A as node

8: DT = add attribute values as edge

9: Repeat until splitting data belong to the same class
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4.5. Random Forest

Random forest is an ensemble approach to classify a high volume of data with315

superior accuracy [38]. Initially, it splits a set of instances, D into numerous

subsets D1, D2, ..., Dn depending on the number of features F . Then, it

constructs multiple decision trees based on the number of subsets and returns

the most popular class among the trees as prediction [38, 19]. The learning

scheme of random forest is tabulated in Algorithm 1. There is an association320

between the accuracy and number of engendered trees, the number of trees is

directly proportional to accuracy. In machine learning, overfitting is one of the

crucial problems and it may abate the classifier accuracy [38]. Random Forest

classifier has overcome this difficulty. As it considers the vote of generated

every decision trees, it will not overfit the model and gain greater accuracy than325

a single classifier model [38, 1].

4.6. Bagging

Bagging is also called Bootstrap Aggregation, which is an ensemble approach

employed in statistical classification and regression to boost the performance of

ML algorithms [1]. It combines the prediction of different equal-weighted models330

and classifies a new instance using the voting technique[19]. In the bagging

technique, it requires a set of instances, D of size N , number of iterations, I

to build the classifier model. It generates new datasets, {D1, D2, ..., Dn} by

sampling the original dataset, D with replacement until the iterations number,

I. Then, it uses each sub-datasets and learning scheme illustrated in Algorithm335

1 to derive classifier models. To classify a new instance, xnew, it combines the

output of each model and considers the majority voting as prediction [19, 1, 39].

4.7. AdaBoost

Adaptive Boosting (AdaBoost) is a popular ML meta-algorithm, which com-

bines a series of classifiers weighted votes to classify identified or unidentified340

instances [1]. It emphases on noisy data and builds a strong classifier by com-

bining a set of weak classifiers [40]. Initially, it assigns an equal weight, 1/d
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to each training data point, xi ∈ D. Then, it engenders a group of datasets,

{D1, D2, ..., Dn} by sampling D with replacement based on instance weight un-

til the iterations number, I. Each generated dataset, Di derives a model, Mi345

and computes the error of the model by adding the weights of all instances in

Di. Eq. 14 is shown the error calculation function of a model where err(xj)

will be 1 when xj will misclassified, otherwise 0 [41, 42].

error(Mi) =
d∑

j=1

wj ∗ err(xj) (14)

If the error of a model exceeds 0.5, we will regenerate Di and derive a new

Mi. We will update the weight of an instance as if the weight of classified350

instances is abated and misclassified instances are enlarged [37]. To classify a

new instance, it combines the votes and weights of each classifier.

4.8. Proposed Ensemble Method

The ensemble method is a technique to construct a powerful model by in-

corporating numerous classifiers. It considers several classifiers prediction to355

acquire state-of-the-art performance. In this section, we will discuss the pro-

posed clustering-based ensemble technique that is used to classify motor imagery

hand movement tasks. Initially, the proposed method takes the training EEG

brain data D= {x1, ..., xN} from NE neurons, or electrodes. Then, we have

clustered the dataset, D into NE clusters based on the position of the elec-360

trodes. All clustered datasets D1, D2, ..., DNE represent diverse electrodes and

labeled with previous class values. We also clustered the attributes of every sub

dataset, Dn, into C clusters. After getting sub dataset, we have construct m

number of decision trees D1, .., DTm with mth cluster attributes employing de-

cision tree induction algorithm (CART). The working procedures of the CART365

algorithm reveals comprehensively in section 4.4. We compute the error rate

of DT1, DT2, ..., DTm on dataset, Dn and consider the minimum error rate as

threshold, T . Then, we have considered the decision tree, DTm with minimal

error rate for ensemble trees DT ∗. Finally, we predict each real-time EEG data
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point, xnew employing DT ∗ based on the position of the electrodes and delib-370

erate the majority vote as prediction among the predictions of DTn ∈ DT ∗.

The data points are coming from dissimilar electrodes and select the model dy-

namically based on the position of the electrodes. The process of classifying

motor imagery tasks is illustrated in Fig.4 and the proposed clustering-based

ensemble method is summarized in Algorithm 2. Space and time complexity of375

the proposed method depends on the number of features, dimensions of training

data and size of the engendered tree.

Figure 4: The process of classifying real-time motor imagery EEG data.
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Algorithm 2 Proposed Clustering-based Ensemble Method

Input: Motor imagery data D, Number of neurons NE,

Threshold value T, Data Points N & CART

Output: Ensemble Model, M∗

Method:

1: Clustering Dataset:

2: for n=1 to NE do

3: for i=x1, ..., xN do

4: if i.neuronid mod NE = n− 1 then

5: Dn = Dn ∪ i

6: end if

7: end for

8: end for

9: for n=1 to NE do

10: Cluster attributes Dn into C clusters;

11: for m=1 to C do

12: Build DTm with mth attributes cluster;

13: Calculate error(DTm) on Dn;

14: if error(DTm) ≤ T then

15: DT ∗ = DT ∗ ∪DTm;

16: end if

17: end for

18: end for

Predict every, xnew employing DT ∗ based on neurons

Every DTn ∈ DT ∗ predict xnew and return majority voting;

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2020. ; https://doi.org/10.1101/2020.04.08.032201doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.032201
http://creativecommons.org/licenses/by-nc-nd/4.0/


In BCI, real-time MI related EEG signal classification is a challenging task.

Sometimes, the signals are biased with artifacts and noise due to the low con-

ductivity of the electrodes with the scalp [1]. Different areas of the brain are380

responsible for the individual task and each electrode on the scalp provides dis-

similar signals [19]. To ameliorate the performance of EEG signal classification

in real-time is a demanding job because of the high dimensionality of the data

and dynamic behavior of the electrodes [40]. If the training set is high dimen-

sional, it will be challenging to build a good model employing single classifiers385

like ANN, SVM, näıve Bayes, and Decision Tree [19, 20]. Ensemble learning

methodologies have been employed widely to grab these challenges. But exist-

ing ensemble methods generate sub-datasets by sampling the original dataset

with replacement technique [1]. By applying this technique, the same instance

can be repeated several times. The proposed clustering-based ensemble tech-390

nique is to overcome these problems and classifies MI related EEG signals in

real-time. It clustered the dataset based on the position of the electrodes so

that each cluster represents dissimilar information. It also selects the model

dynamically based on the electrode locations to classify real-time EEG data.

5. Experiments395

In this section, we will describe the experimental environments, results of

the proposed clustering-based ensemble method and present the developed brain

game that is controlled by real-time motor imagery hand movements data.

5.1. Experimental Setup

In this study, the experiments were conducted via a device with an Intel400

Core-i5 (2.60 GHz) processor, and 8 GB of RAM. We implement the proposed

method in Python programming language (version 3.7) and used the scikit-learn

(version 0.21.2) as a machine learning library. We have tested the performance

of the proposed method with some popular machine learning algorithms using

classification accuracy, precision, recall, and F-score. The accuracy is measured405
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by Eq. 15 where assess(xi) = 1 when xi is correctly classified or assess(xi) = 0

when xi is misclassified [32, 36]. The weighted average values of precision,

recall, and F-score are considered and the calculations are shown in Eq. 16

to 18 [36, 37]. We also represent decision boundaries using the area under the

ROC curve and AUC score. In the ROC curve, true positive rate (TPR) is410

plotted against false positive rate (FPR) and the calculations are defined in Eq.

19 and 20 [13]. The lowest threshold is considered through a line, y = x in au-

ROC curve where correctly classified data points represent 1 and misclassified

instances reveal as 0 [38].

Accuracy =

∑|X|
i=1 assess(xi)

|X| , xi ∈ X (15)

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)

F − score =
2× precision× recall

precision+ recall
(18)

TPR =
TP

TP + FN
(19)

FPR =
FP

FP + TN
(20)

Here TP, TN, FP, and FN indicate the number of positive samples correctly415

classified, negative samples correctly classified, negative samples incorrectly clas-

sified and positive samples incorrectly classified respectively [36, 37].

5.2. Results

Firstly, we evaluated the performances of the proposed method against ex-

isting ANN, SVM, näıve Bayes, Decision Tree, Random Forest, Bagging and420

AdaBoost Classifiers on training sets of motor imagery EEG datasets. We have
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tested the classifiers model using Python Scikit-learn machine learning libraries

supplying each of the testing EEG data.

The results in Table 3 point out that the proposed clustering-based ensemble

algorithm outperforms the existing classifiers on a binary-class motor imagery425

EEG dataset. The proposed method performed superior and reached 99% ac-

curacy on average for binary-class dataset. In this dataset, single classifiers are

failed to achieve more than 85% accuracy where existing ensemble approaches

can achieve 91% accuracy. The decision boundaries of the proposed method

with some existing classifiers for this dataset is shown in Fig. 6.430

Table 3: Performance comparison of the proposed clustering-based ensemble model with some

popular algorithms on binary-class EEG dataset.

Classifiers Accuracy Recall Precision F-score

(%)

ANN 84 0.84 0.86 0.84

SVM 78 0.77 0.80 0.79

NB Classifier 60 0.60 0.68 0.62

Decision Tree 85 0.87 0.85 0.85

Random Forest 90 0.90 0.91 0.90

Bagging 82 0.82 0.82 0.82

AdaBoost 91 0.91 0.91 0.91

Proposed EM 99 0.99 0.98 0.97

Moreover, in Table 4, the proposed clustering-based ensemble classifier also

outperforms some popular machine learning algorithms on ternary-class dataset.

In the ternary-class dataset, left and right-hand movements classification were

challenging because both tasks are engendered from the motor cortex and sam-

ples are associated. This time our proposed method achieved better than the435

existing four single classifiers and three ensemble methods. Fig. 5 illustrates

the decision boundaries of the classifiers via ROC analysis and AUC scores for

the ternary-class dataset.

Besides, we used the EEG eye state dataset to experience our proposed

clustering-based ensemble method. For this dataset, we have also significant440

upgrading of our proposed algorithm and achieved 90% accuracy on average.
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Figure 5: ROC and AUC analysis of the proposed method with some existing algorithms on

ternary-class motor imagery EEG dataset.

Table 4: Performance comparison of the proposed clustering-based ensemble model with some

popular algorithms on the ternary-class EEG dataset.

Classifiers Accuracy Recall Precision F-score

(%)

ANN 53 0.53 0.55 0.54

SVM 57 0.55 0.57 0.56

NB Classifier 60 0.60 0.64 0.59

Decision Tree 54 0.54 0.55 0.54

Random Forest 62 0.62 0.64 0.61

Bagging 57 0.57 0.59 0.57

AdaBoost 61 0.62 0.63 0.59

Proposed EM 79 0.79 0.80 0.79

Decision Tree performs average and reached 83% accuracy where existing en-

semble approaches achieved 89% accuracy. The comparison of accuracy, preci-

sion, recall and F-score analysis using 10-fold cross-validation for EEG eye state

dataset are tabulated in Table 5. Fig. 7 reveals the ROC analysis and AUC445

scores of the proposed method for the EEG eye state dataset.

Overall, algorithm 2 is performed better than several traditional data mining

algorithms as well as achieved high accuracy and AUC score on average on three
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Figure 6: ROC and AUC analysis of the proposed procedure with some popular algorithms

on binary-class MI-EEG dataset.

Table 5: Performance comparison of proposed clustering-based ensemble model with some

popular algorithms on EEG eye state dataset.

Classifiers Accuracy Recall Precision F-score

(%)

ANN 44 0.43 0.44 0.43

SVM 64 0.63 0.63 0.63

NB Classifier 54 0.55 0.55 0.42

Decision Tree 83 0.84 0.84 0.84

Random Forest 88 0.89 0.90 0.90

Bagging 89 0.90 0.90 0.90

AdaBoost 75 0.75 0.75 0.75

Proposed EM 90 0.90 0.91 0.90

EEG datasets. The proposed method delivered an enhancement of roughly 10 to

20% accuracy parallel to single classifiers. It also ameliorated the classification450

accuracy of approximately 5 to 15% compared to existing ensemble approaches.

Although the proposed clustering-based ensemble method outperforms other

existing classifiers, there are limitations to be considered. Sometimes, the input

signal is influenced by artifacts and noise due to the short conductivity of the

neurons with the scalp. For these reasons, the classifier failed to correctly classify455
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Figure 7: ROC and AUC analysis of the proposed ensemble technique with some existing

methods on EEG eye state dataset.

data points in real-time and the performance of the classifier is abated.

5.3. Developing Brain Game

We used our proposed clustering-based ensemble model and Java-Swing tech-

nology to develop our targeted application (game) system. We also used the

emotiv community SDK in our Java program to acquire live brain signals. This460

game takes average band power of different frequency bands from F3, FC5, FC6

and F4 electrodes as input commands. Then these commands are classified by

the proposed model based on the position of the electrodes and provide some

actions as prediction. The input commands are coming from F3, FC5, FC6,

F4 electrodes and select the model dynamically based on the position of the465

electrodes. We have exposed some actions via animated balls according to the

predictions and percentage of different classified class. The real brain data clas-

sification through the developed model and prediction tabulation via animated

balls in real-time is controlled via threads. The final prediction is taken from

the dynamic number of instances votes to control the game more precisely. We470

have developed two versions of this game and they can identify binary as well
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as ternary actions of motor imagery task without any necessity of conventional

input devices. It also increased the classification accuracy of real-time EEG

signals of motor imagery tasks. The animated balls in Fig. 8 are presenting the

movement and steady correspondingly. This application system can be used for475

rehabilitation as well as upgrading of user well-being. The user can exercise his

concentration to recover from attention deficiency and boost his attentions via

playing this brain game. It can also be used for gaming and entertainment pur-

poses. The source code of brain game is available via open repository at: https:

//github.com/mrzResearchArena/MI-EEG/tree/master/Brain-Game.480

Figure 8: Classify real-time motor imagery tasks via developed brain game, presenting move-

ments and steady correspondingly.

6. Conclusions & Future Work

In our research, we have used Emotiv Epoc+ EEG neuroheadset after ana-

lyzing several BMI devices like Emotiv Epoc+, Muse Headband, Aurora Dream,

and MindWave. To obtain MI-EEG brain signals, we built an application pro-

gram manipulating Emotiv SDK with Java technology. We have constructed485

several classifiers using ANN, SVM, näıve Bayes, Decision Tree, Random Forest,

Bagging, AdaBoost and compared the performance of these existing approaches
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with the proposed clustering-based ensemble technique. The ensemble method

we suggested, produced better performance than the above-mentioned classi-

fiers. Then, the suggested method was used to develop the aimed application490

system. The game that we developed is capable of controlling the movements

of the balls utilizing the real-time MI-EEG brain signals. It offers the user to

enhance the quality of attention, which boosts productivity as well as upgrades

the standard of works. It also assists people who are physically impaired or

disabled and carries the potentials for human functionality enhancement. We495

designed the game to be a single-player game and to recognize three actions.

In the future, more actions and more players can be added to make the game

more advanced and challenging. The finding of this research can be applied to

manipulate and enhance the control as well as movements of robots. It also

brings new potentials in the health and rehabilitation industry.500

[1] H. Raza, D. Rathee, S.-M. Zhou, H. Cecotti, G. Prasad, Covariate shift

estimation based adaptive ensemble learning for handling non-stationarity

in motor imagery related eeg-based brain-computer interface, Neurocom-

puting 343 (2019) 154–166.

[2] M.-A. Li, Y.-F. Wang, S.-M. Jia, Y.-J. Sun, J.-F. Yang, Decoding of motor505

imagery eeg based on brain source estimation, Neurocomputing 339 (2019)

182–193.

[3] Z. Qiu, J. Jin, H.-K. Lam, Y. Zhang, X. Wang, A. Cichocki, Improved sffs

method for channel selection in motor imagery based bci, Neurocomputing

207 (2016) 519–527.510

[4] R. Ameri, A. Pouyan, V. Abolghasemi, Projective dictionary pair learn-

ing for eeg signal classification in brain computer interface applications,

Neurocomputing 218 (2016) 382–389.

[5] H. Meisheri, N. Ramrao, S. Mitra, Multiclass common spatial pattern for

eeg based brain computer interface with adaptive learning classifier, Pattern515

Recognition Letters.

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2020. ; https://doi.org/10.1101/2020.04.08.032201doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.032201
http://creativecommons.org/licenses/by-nc-nd/4.0/


[6] Y. Zhang, Y. Wang, G. Zhou, J. Jin, B. Wang, X. Wang, A. Cichocki, Multi-

kernel extreme learning machine for eeg classification in brain-computer

interfaces, Expert Systems with Applications 96 (2018) 302–310.

[7] R. Ramirez, J. Planas, N. Escude, J. Mercade, C. Farriols, Eeg-based anal-520

ysis of the emotional effect of music therapy on palliative care cancer pa-

tients, Frontiers in psychology 9 (2018) 254.

[8] A. G. Trofimov, S. L. Shishkin, B. L. Kozyrskiy, B. M. Velichkovsky, A

greedy feature selection algorithm for brain-computer interface classifica-

tion committees, Procedia computer science 123 (2018) 488–493.525

[9] Y. Li, M.-L. Luo, K. Li, A multiwavelet-based time-varying model identifi-

cation approach for time–frequency analysis of eeg signals, Neurocomputing

193 (2016) 106–114.

[10] Y. Yang, S. Boling, A. J. Mason, A hardware-efficient scalable spike sorting

neural signal processor module for implantable high-channel-count brain530

machine interfaces, IEEE transactions on biomedical circuits and systems

11 (4) (2017) 743–754.

[11] R. Chatterjee, T. Bandyopadhyay, D. K. Sanyal, D. Guha, Comparative

analysis of feature extraction techniques in motor imagery eeg signal clas-

sification, in: Proceedings of First International Conference on Smart Sys-535

tem, Innovations and Computing, Springer, 2018, pp. 73–83.

[12] A. Hassan, M. N. Huda, F. Sarker, K. A. Mamun, An overview of brain

machine interface research in developing countries: Opportunities and chal-

lenges, in: 5th International Conference on Informatics, Electronics and

Vision (ICIEV), IEEE, 2016, pp. 396–401.540

[13] M. O. Miah, S. S. Khan, S. Shatabda, K. A. A. Mamun, D. M. Farid, Real-

time eeg classification of voluntary hand movement directions using brain

machine interface, in: The IEEE Region 10 Symposium (TENSYMP 2019)

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2020. ; https://doi.org/10.1101/2020.04.08.032201doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.032201
http://creativecommons.org/licenses/by-nc-nd/4.0/


Symposium Theme: Technological Innovation for Humanity, Kolkata, In-

dia, 2019, pp. 534–539.545

[14] S. R. Sreeja, D. Samanta, Classification of multiclass motor imagery eeg

signal using sparsity approach, Neurocomputing.

[15] D. Dvorak, A. Shang, S. Abdel-Baki, W. Suzuki, A. A. Fenton, Cognitive

behavior classification from scalp eeg signals, IEEE transactions on neural

systems and rehabilitation engineering 26 (4) (2018) 729–739.550

[16] G. Li, W.-Y. Chung, Combined eeg-gyroscope-tdcs brain machine interface

system for early management of driver drowsiness, IEEE Transactions on

Human-Machine Systems 48 (1) (2017) 50–62.

[17] M. O. Miah, A. M. Hassan, K. A. A. Mamun, D. M. Farid, Brain–machine

interface for developing virtual-ball movement controlling game, in: M. S.555

Uddin, J. C. Bansal (Eds.), Proceedings of International Joint Conference

on Computational Intelligence, Springer Singapore, Singapore, 2020, pp.

607–616.

[18] K. A. Mamun, M. Mace, M. Lutman, J. Stein, X. Liu, T. Aziz,

R. Vaidyanathan, S. Wang, Movement decoding using neural synchroniza-560

tion and inter-hemispheric connectivity from deep brain local field poten-

tials, Journal of neural engineering 12 (5) (2015) 56011.

[19] S. Sun, C. Zhang, D. Zhang, An experimental evaluation of ensemble meth-

ods for eeg signal classification, Pattern Recognition Letters 28 (15) (2007)

2157–2163.565

[20] R. Mahajan, D. Bansal, Real time eeg based cognitive brain computer in-

terface for control applications via arduino interfacing, Procedia computer

science 115 (2017) 812–820.

[21] P. K. Pattnaik, J. Sarraf, Brain computer interface issues on hand move-

ment, Journal of King Saud University-Computer and Information Sciences570

30 (1) (2018) 18–24.

30

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2020. ; https://doi.org/10.1101/2020.04.08.032201doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.032201
http://creativecommons.org/licenses/by-nc-nd/4.0/


[22] J. Lu, K. A. Mamun, T. Chau, Pattern classification to optimize the per-

formance of transcranial doppler ultrasonography-based brain machine in-

terface, Pattern Recognition Letters 66 (2015) 135–143.

[23] M. M. Shanechi, Brain-machine interface control algorithms, IEEE Trans-575

actions on Neural Systems and Rehabilitation Engineering 25 (10) (2017)

1725–1734.

[24] R. M. Mehmood, R. Du, H. J. Lee, Optimal feature selection and deep

learning ensembles method for emotion recognition from human brain eeg

sensors, IEEE Access 5 (2017) 14797–14806.580

[25] M. A. Lebedev, M. A. Nicolelis, Brain-machine interfaces: past, present

and future, TRENDS in Neurosciences 29 (9) (2006) 536–546.

[26] J.-A. Martinez-Leon, J.-M. Cano-Izquierdo, J. Ibarrola, Are low cost brain

computer interface headsets ready for motor imagery applications?, Expert

Systems with Applications 49 (2016) 136–144.585

[27] D. D. Chakladar, S. Chakraborty, Feature extraction and classification in

brain-computer interfacing: Future research issues and challenges, in: Nat-

ural Computing for Unsupervised Learning, Springer, 2019, pp. 101–131.

[28] A. Jackson, T. M. Hall, Decoding local field potentials for neural inter-

faces, IEEE Transactions on Neural Systems and Rehabilitation Engineer-590

ing 25 (10) (2016) 1705–1714.

[29] D. S. Benitez, S. Toscano, A. Silva, On the use of the emotiv epoc neu-

roheadset as a low cost alternative for eeg signal acquisition, in: IEEE

Colombian Conference on Communications and Computing (COLCOM),

IEEE, 2016, pp. 1–6.595

[30] J. Andreu-Perez, F. Cao, H. Hagras, G.-Z. Yang, A self-adaptive online

brain-machine interface of a humanoid robot through a general type-2 fuzzy

inference system, IEEE Transactions on Fuzzy Systems 26 (1) (2016) 101–

116.

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2020. ; https://doi.org/10.1101/2020.04.08.032201doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.08.032201
http://creativecommons.org/licenses/by-nc-nd/4.0/


[31] P. Sotnikov, K. Finagin, S. Vidunova, Selection of optimal frequency bands600

of the electroencephalogram signal in eye-brain-computer interface, Proce-

dia Computer Science 103 (2017) 168–175.

[32] D. M. Farid, L. Zhang, C. M. Rahman, M. H. R. Strachan, Hybrid decision
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