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Abstract. Recent advances in wireless sensors and position technology
provide us with unprecedent amount of moving object data. The volume
of geospatial data gathered from moving objects defies human ability to
analyze the stream of input data. Therefore, new methods for mining
and digesting of moving object data are urgently needed. One of the
popular services available for moving objects is the prediction of the
unknown location of an object. In this paper we present a new method
for predicting the location of a moving object. Our method uses the past
trajectory of the object and combines it with movement rules discovered
in the moving objects database. Our original contribution includes the
formulation of the location prediction model, the design of an efficient
algorithm for mining movement rules, the proposition of four strategies
for movement rule matching with respect to a given object trajectory,
and the experimental evaluation of the proposed model.

1 Introduction

Last years have witnessed a tremendous increase in the number of mobile devices
available on the market. Advances in position technology and the widespread
use of communication standards, such as GPRS, Bluetooth, Wi-Fi, or WiMAX
prompt manufacturers to offer mobile devices supplied with high resolution dis-
plays and positioning sensors. Global positioning systems (GPS) are becoming
affordable and accurate, thus enabling the deployment of position-aware appli-
cations. Examples of mobile devices that profit from location-based services and
applications include mobile phones, digital cameras, personal digital assistants,
vehicles, and many others.

Ongoing adoption of mobile devices results in an increasing demand for
location-based services and applications. Most of location-based services require
accurate or approximate position of a mobile client to provide functionality.
Examples of such services include management of traffic, navigational service,
way-finding, location-based advertising, or movement coordination. In a typical
scenario, a moving object periodically informs the positioning framework of its
current location. Between position disclosures the location of a mobile object
remains unknown. Due to the unreliable nature of portable mobile devices and



inherent global positioning systems limitations, such as congestions, existence
of urban canyons (areas not covered by positioning signals, e.g. subterranean
parking garages), or signal losses caused by natural phenomena, the location of
a mobile object is often not known for a longer period of time. In such case, an
efficient method for predicting possible location of a moving object is required.

Most location-based services demand a fast and reliable location prediction
method. The unceasing stream of data generated by positioning sensors, com-
bined with thousands of mobile devices communicating over a wireless channel,
make traditional prediction methods obsolete. Sophisticated methods using com-
plex models may yield accurate results, but are computationally unfeasible in
mobile environment. For instance, simulation is sometimes used for mimicking
the behavior of mobile objects. The quality of simulation depends on numerous
parameters governing the movement model. Often, the cost involved in the com-
putation of the model is prohibitively high. In addition, the environment in which
mobile objects reside can be dynamic and difficult to capture. For instance, a
simple two-dimensional model of a city may not adapt to frequent changes in
city topography caused by road construction. Another serious drawback of the
currently used location prediction techniques is the fact that most techniques
make little or no use of the huge amounts of historical data. Movement data
acquired from other moving objects hide valuable knowledge about moving ob-
ject behavior. In particular, patterns describing popular movement trajectories
can be discovered when mining historical data. Alas, data mining techniques are
usually (incorrectly) considered too slow and too computationally expensive for
real-time location prediction.

Many location-based services may sacrifice prediction accuracy for prediction
speed. We follow this paradigm by simplifying our model and resigning from ex-
act modeling of the topography of the movement environment. Instead, we mine
historical movement data to discover frequent trajectories traversed by moving
objects. These frequent trajectories are further used as an approximate model
of the topography. For each object, whose exact location is not known, we per-
form fast matching of object’s trajectory with appropriate frequent trajectories
to build a probabilistic model of object location. Our method is fast and effi-
cient, because expensive computations, e.g. mining for frequent trajectories, are
performed periodically and offline. Runtime location prediction consists only in
trajectory matching, which is a far less arduous task. Another advantage of our
approach is the fact that it is independent of a given topography of the move-
ment environment. Our original contribution includes using historical movement
data to build an approximate environment model, the design of the AprioriTraj

algorithm to discover frequent trajectories, the development of four trajectory
matching strategies, and the experimental evaluation of the proposal.

The paper is organized as follows. Section 2 presents the related work on the
subject. In Section 3 we introduce basic definitions used throughout the paper.
The AprioriTraj algorithm and trajectory matching strategies are presented in
Section 4. The results of conducted experiments are reported in Section 5. We
conclude in Section 6 with a brief summary and the future work agenda.



2 Related Work

Significant research effort has been undertaken in both mobile computing and
spatial data mining domains. Research on tracking of moving objects resulted in
several proposals for predicting future object locations. The method presented
in [9] uses recent movement history of an object and combines it with recur-
sive motion functions for objects with unknown motion patterns. An interesting
proposal of using time-series analysis enriched with travel speed simulation to
predict future trajectory of a moving object is formulated in [12]. A complex
model that considers location prediction with accuracy guarantees is presented
in [11]. A simulation-based approach to future trajectory prediction based on a
non-linear movement model can be found in [10].

Since the advent of spatial data mining [6] many methods and algorithms
were developed [4]. However, the problem of mining trajectories of moving ob-
jects remained relatively unchallenged until recently. Advances in this field in-
clude the proposal to cluster similar trajectories [7] and to use periodic patterns
appearing in a single trajectory as the basis for location prediction [8]. A very
interesting algorithm for mining patterns from imprecise trajectories of moving
objects can be found in [13]. All these works extend the basic framework of pe-
riodic sequential patterns [5] and frequent sequential patterns [2]. Our work is
strongly influenced by the approach presented in [13]. However, [13] deals pri-
marily with uncertainty in moving object trajectories. The authors propose a
new match measure for uncertain trajectories and devise the TrajPattern algo-
rithm for mining sequential patterns that is not based on the Apriori algorithm.
On the other hand, the method presented in this paper follows the support-
based framework for discovering patterns and uses an Apriori-like algorithm to
discover simple movement rules.

3 Basic Definitions

Given a database of moving object locations, where the movement of objects is
constrained to a specified area. Let O = {o1, . . . , om} denote the set of objects.
Let the location of the j -th object during i-th measurement be denoted as lij =
(

xi
j , y

i
j

)

. The domain of location coordinates is continuous, but the smallest unit
of location measurement provides a natural discretization of the input data.
However, the level of granularity of this natural discretization is too detailed
when compared to the number of moving objects or the number of locations
registered for a single object. Therefore, any patterns discovered at the raw data
level cannot be generalized. To overcome this obstacle we superimpose a grid on
the movement area. The grid consists of square cells of the constant size, denoted
as grid size. Each edge can be traversed in two directions, vertical edges can be
traversed eastwards and westwards, whereas horizontal edges can be traversed
northwards and southwards.

An ordered list of consecutive location measurements for a given object con-
stitutes a trajectory of the object, denoted as tj =

〈

l0j , l
1
j , . . . , l

n
j

〉

. Alternatively,



the trajectory of an object can be represented as an ordered list of segments,
where each segment is defined by two consecutive location measurements of an
object, tj =

〈

s0
j , s

1
j , . . . , s

n−1

j

〉

, where si
j =

(

lij, l
i+1

j

)

. Note that each segment
can be replaced with an ordered list of edges traversed by that segment. This
replacement transforms the original continuous coordinates domain into a dis-
cretized domain of edges. Finally, we represent a moving object trajectory as an
ordered list of edges traversed by the trajectory. Let epq denote an edge. Then,

the trajectory of the j -th object is tj =
〈

(ep0q0
, d0)

j
, (ep1q1

, d1)
j
, . . .

〉

, where

di ∈ {ne, sw} denotes the direction in which the edge was traversed (north-east
and south-west, respectively).

Let E be the set of all edges. The cardinality of the set E is given by

|E| =

⌈

a

grid size

⌉

∗

(⌈

b

grid size

⌉
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)

+
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a

grid size
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∗
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b
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where a = maxij{x
i
j} − minij{x

i
j}, b = maxij{y

i
j} − minij{y

i
j}.

Let D denote the set of all trajectories, D = {t1, t2, . . . , tn}. The support
of an edge epq is the number of trajectories that traverse the edge in a given
direction. Note that each edge has two values of support, northeastward and
southwestward. An edge epq is frequent, if its support exceeds the user-defined
threshold of minsup. Given a trajectory tj . The length of the trajectory, denoted
as length (tj), is the number of edges constituting the trajectory tj . Given two
trajectories ti and tj . The trajectory ti is a sub-trajectory of tj (the trajectory
tj contains the trajectory ti, denoted tj ⊇ ti) if the list of edges constituting ti
is a continuous sublist of the list of edges in tj and the directions of traversal of
edges in ti are the same as the directions of traversal of corresponding edges in
tj . Trajectories ti and tj are adjacent if there exists a trajectory tk, such that
length (tk) = 2 and (epmaxqmax

, dmax)
i

= (ep0q0
, d0)

k
∧ (ep0q0

, d0)
j

= (ep1q1
, d1)

k

(i.e., the last element of the trajectory ti is the same as the first element of the
trajectory tk and the first element of the trajectory tj is the same as the second el-
ement of the trajectory tk). The concatenation of trajectories ti‖tj is a trajectory

tl =
〈

(ep0q0
, d0)

i
, . . . , (epmaxqmax

, dmax)
i
, (ep0q0

, d0)
j
, . . . , (epmaxqmax

, dmax)
j

〉

.

The support of the trajectory tj is the number of trajectories in D that
contain tj . A given trajectory tj is frequent if the support of tj exceeds the user-
defined threshold of minsup. The set of all frequent trajectories is denoted as L.
Obviously, a frequent trajectory must consist of frequent edges only, furthermore,
each sub-trajectory of a frequent trajectory is also frequent.

A movement rule is an expression of the form ti ⇒ tj where ti, tj ∈ L, ti and
tj are adjacent trajectories and ti‖tj is a frequent trajectory. The trajectory ti
is called the antecedent of the rule, the trajectory tj is called the consequent of
the rule. Contrary to the original formulation of association rule mining we do
not require the antecedent and the consequent of a rule to be disjunctive.

The support of the movement rule ti ⇒ tj is defined as the support of ti‖tj,

support (ti ⇒ tj) =
|tk ∈ D : tk ⊇ (ti‖tj)|

|D|



The confidence of the movement rule ti ⇒ tj is the conditional probability
of tj given ti,

confidence (ti ⇒ tj) = P (tj |ti) =
support (ti‖tj)

support (ti)

The problem of prediction of location of moving objects based on frequent
trajectories can be decomposed into two subproblems:

– generate all movement rules with support and confidence greater than user-
defined thresholds of minsup and minconf, respectively,

– match discovered movement rules with the trajectory of a moving object for
which the current location is to be determined.

4 Prediction of Location

To solve the problem of generating movement rules we use a modified version of
the well-known Apriori algorithm [1]. The outline of our AprioriTraj algorithm
is depicted in Figure 1. First, we find all frequent trajectories of the length 1 (i.e.,
all frequent edges). Next, we concatenate adjacent frequent edges to form candi-
date trajectories of the length 2. We perform a full database scan to determine
actual support counts for candidate trajectories and we determine L2, the set
of frequent trajectories of the length 2. Next, we iteratively find sets of frequent
trajectories of the length k based on frequent trajectories of the length (k − 1)
found so far. In each iteration we form a set of k-element candidate trajecto-
ries by combining overlapping frequent trajectories. We consider two trajectories
ti and tj to be overlapping, if the trajectory resulting from removing the first
edge from ti is the same as the trajectory resulting from removing the last edge
from tj (e.g., trajectories 〈A, B, C, D〉 and 〈B, C, D, E〉 are overlapping, whereas
trajectories 〈A, C, D, E〉 and 〈B, C, D, E〉 are not). Two overlapping trajectories
ti and tj are used to generate a candidate trajectory tij by concatenating the
last edge of tj to ti (e.g., the concatenation of 〈A, B, C, D〉 and 〈B, C, D, E〉
yields 〈A, B, C, D, E〉). Contrary to the Apriori algorithm, we do not have to
verify candidate trajectories for the containment of infrequent sub-trajectories,
because the above generation procedure does not produce any superfluous can-
didate trajectories.

When all frequent trajectories have been found, the task of generating move-
ment rules is straightforward. Each frequent trajectory ti of the length l can be
used to generate movement rules by splitting the trajectory ti into (l − 1) pairs of
sub-trajectories (t′i, t

′′
i ), such that for each pair t′i‖t

′′
i = ti and the splitting point

is chosen after i-th (i = 1, 2, . . . , l−1) element of the trajectory ti. For each pair
(t′i‖t

′′
i ) we have to verify that confidence (t′i ⇒ t′′i ) = support (ti) /support (t′i) ≥

minconf , otherwise we reject the rule t′i ⇒ t′′i .
Let us now focus on the problem of matching discovered movement rules with

the trajectory of a moving object. Given a moving object q with a trajectory tq.
We are searching for movement rules ti ⇒ tj such that:



Require: L1, the set of all frequent trajectories of the length 1
1: C2 = {ti‖tj : ti ∈ L1 ∧ tj ∈ L1 ∧ ti, tj are adjacent}
2: for all trajectories t ∈ D do

3: for all candidate trajectories c ∈ C2 do

4: if t ⊇ c then

5: c.count ++;
6: end if

7: end for

8: end for

9: L2 = {t ∈ C2 : support (t) ≥ minsup}
10: for k = 3; Lk−1 6= ∅; k + + do

11: for all trajectories ti ∈ Lk−1 do

12: for all trajectories tj ∈ Lk−1 do

13: if ∀n ∈ 〈1, k − 1〉 (epnqn , dn)i =
(

epn−1qn−1
, dn−1

)

j
then

14: Ck = Ck ∪ tij , where tij = ti‖ (epmaxqmax , dmax)
j
;

15: end if

16: end for

17: end for

18: for all trajectories t ∈ D do

19: for all candidate trajectories c ∈ Ck do

20: if t ⊆ c then

21: c.count ++;
22: end if

23: end for

24: end for

25: Lk = {t ∈ Ck : support (t) ≥ minsup}
26: end for

27: Answer =
⋃k

i=1
Li

Fig. 1. AprioriTraj algorithm

– ti ⊇ tq and the last edge in both ti and tq is the same,

– tq ⊇ ti and the last edge in both ti and tq is the same,

– ti and tq are the same.

In all above cases the consequent tj is used as a prediction of the location
of the moving object q in subsequent moments of time. Unfortunately, for a
given trajectory tq too many movement rules can be matched for making an
informed decision about possible location of q. A naive approach of ranking
matched movement rules based solely on confidence fails, because it does not
consider lengths of the rules, thus prefers very short rules that are often useless
for predicting the location of a moving object. Furthermore, this approach does
not consider the coverage of matched rules with the trajectory tq. This motivates
us to devise new strategies of matched movement rule selection, presented briefly
below.



4.1 Simple strategy

arg max
ti⇒tj

|ti|

|tq|
∗ confidence (ti ⇒ tj)

The drawback of the simple strategy is the fact that it does not consider the
length of the consequent of the movement rule. Also, the simple strategy treats
the length of the consequent linearly, which may lead to the situation where a
long covering movement rule with low confidence is preferred to a shorter but
more credible movement rule. Nevertheless, when the trajectory tq is very short
(the history of movement of the object q is almost unknown), then the simple
strategy is appropriate.

4.2 Polynomial strategy

arg max
ti⇒tj

1

2

(
√

|ti|

|c1|
+

√

|tj |

|c2|

)

∗ confidence (ti ⇒ tj)

where c1 and c2 are the lengths of the longest antecedent and consequent
in the rule set, respectively. This strategy is fair and balanced, it represents a
reasonable compromise between the simplicity of the simple strategy and the
complexity of the logarithmic strategy presented next.

4.3 Logarithmic strategy

arg max
ti⇒tj

(

w1 + w2 ∗ log|c1| |ti| + w3 ∗ log|c2| |tj |
)

∗ confidence (ti ⇒ tj)

where w1 + w2 + w3 = 1. Weights w1, w2, w3 are used to shift emphasis on
the confidence factor, the relative length of the antecedent, or the relative length
of the consequent of the movement rule. The use of the logarithm smooths the
differences between long movement rules and, at the same time, accentuates the
differences between short movement rules.

4.4 Aggregate strategy

Often, discovered movement rules can be grouped into sets of similar rules. In
particular, rules sharing the same antecedent can be regarded as a family of rules
that predict the movement in a given direction with the confidence of prediction
diminishing with the length of the consequent. Let us assume that all movement
rules have been grouped according to their antecedent. The aggregate strategy
selects the following movement rule

arg max
ti⇒tj

|ti|

|tq|
∗
|tj |

|c2|
∗

∑

tx⇒ty∈G |ty| ∗ confidence (tx ⇒ ty)
∑

tx⇒ty∈G |ty|



where G denotes the group to which belongs the rule ti ⇒ tj and c2 denotes
the length of the longest consequent in the rule set. The aggregate strategy
considers the coverage factor, the relative length of the antecedent, and the
predictive power of the group of related movement rules. The main drawback
of this strategy is the computational cost involved in grouping of the movement
rules. It is worth emphasizing that the four strategies of movement rule selection
presented above are complementary and can be used simultaneously depending
on the nature of the trajectory tq.

5 Experimental Results

The data used in our experiments have been generated by the Network-based
Generator of Moving Objects [3]. Maximum velocity has been set to 150 and
the number of time units has been set to 100. For each distinct number of
moving objects 30 different instances of the database have been generated. All
experiments were conducted on a Pentium Centrino 1.8 GHz computer with 1GB
RAM running Windows XP.
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Fig. 3. rules vs. grid size

Figures 2 and 3 present the execution time and the number of discovered
rules when varying the grid size parameter in the range 〈25 ÷ 250〉 for a fixed
number of 300 moving objects and minsup = 0.03. As can be easily seen, low
values of the grid size parameter produce large numbers of movement rules.
We also observe a significant variation in the averaged results over 30 database
instances. For small values of grid size discovered rules are too detailed and do
not generalize well for prediction of movement of other objects. Interestingly, the
execution time and the number of discovered movement rules drop significantly
for larger values of grid size.

The impact of the number of moving objects on the execution time and the
number of discovered movement rules is depicted in Figures 4 and 5 (grid size =
250, minsup = 0.01). A linear dependence of the execution time on the number of
moving objects guarantees scalability of the proposed solution. The decrease of
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Fig. 5. rules vs. number of objects

the number of discovered movement rules is caused by the increase in the absolute
value of minsup, because adding new moving objects increases the minimum
number of objects that have to traverse an edge to make it frequent. New objects
are spread over the movement area uniformly, effectively decreasing support
counts of most edges.
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The influence of the varying minsup parameter on the execution time and the
number of discovered movement rules is presented in Figures 6 and 7 (grid size =
250, 4800 moving objects). Starting from minsup = 0.025 the execution time
remains almost constant, because the number of discovered movement rules falls
below 50 for larger values of minsup.

We have also conducted experiments on predicting the location of an object
for different movement rule matching strategies. We refrain from presenting the
results of these experiments due to their unreliable nature. The results were
skewed by the properties of the synthetic data. The uniform distribution of
moving objects across the examined area caused no evident differences between
employed matching strategies.



6 Conclusions

In this paper we have presented a new model of movement rules discovered from
moving object data. Movement rules provide a simplification and generalization
of a large set of moving objects and allow for predicting the location of a moving
object. This paper intends to open the research in the field of mining movement
rules. Our future work agenda includes experimental verification and comparison
of the proposed movement rule matching strategies using a real world dataset,
extending movement rule framework to handle temporal aspects, and combining
movement rules with spatial data (location of gas stations, shops, advertisement
billboards) to make informed decisions based on the intensity of traffic.
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