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Prediction of Multipactor Breakdown for

Multi-carrier Applications: The Quasi-stationary

Method
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V. E. Boria, Senior Member, IEEE, B. Gimeno, Member, IEEE, D. Raboso

Abstract—A new prediction algorithm for multipactor break-
down determination in multi-carrier signals is presented. This
new algorithm assumes a quasi-stationary model, based on the
nonstationary theory for single-carrier signals. It determines the
worst case, i.e the combination of signal phases that yields the
lowest breakdown level per carrier, using multipactor electron
growth models. It considers the Secondary Emission Yield prop-
erties of the material and the time-varying value of the multi-
carrier signal envelope.

Several test samples have been designed and manufactured
in order to assess the precision of the proposed method. The
experimental results show excellent agreement with the predicted
results. The quasi-stationary prediction technique yields, in
general, better accuracy and more relaxed breakdown levels than
the existing methods.

Index Terms—Vacuum breakdown, RF signals, Passive circuits.

I. INTRODUCTION

MULTIPACTOR, also known as multipactoring or multi-

paction, is an electron avalanche-like discharge occur-

ring in microwave devices operating at high power levels and

in vacuum or near vacuum condition [1]–[3]. When initially

discovered, it was studied as a beneficial effect for signal

amplification in cold-cathode tube for TV applications by P.

Farnsworth [4], who originally coined the name of multipactor.

Nowadays, multipactor is considered as a dangerous collateral

effect in high-power vacuum applications, which must be

avoided.

The phenomenon occurs when initial free electrons (pri-

mary) are accelerated by the RF fields, and impact against

the device walls with enough energy to extract more electrons

(secondary) from the surface. If the resulting electronic bunch

enters in resonance with the field, this process repeats itself
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until the electron density reaches a certain level to produce

noticeable disturbance of the signal, such as distortion, additive

noise or reflection, and ultimately produces a destructive

discharge that can even damage the device. Multipactor may

appear in many types of components, such as passive or active

high power devices in guided or microstrip technologies and

antennas. Thus, it affects different industry sectors such as

satellite communications [5] or particle accelerators [6].

The biggest effort of the multipactor research lines is

devoted to the study and characterization of the phenomenon

in order to predict under which conditions it will appear,

and thus design multipactor-free components. Traditionally,

multipactor has been studied for single-carrier signals. The

single-carrier prediction techniques are usually based on the

multipactor theory, for which there are abundant references

(see for example [1]–[3]), and 2D or 3D numerical Particle-

in-cell codes (PIC) [7]–[10], which combine electromagnetic

solvers and electron trackers. Given some input parameters,

such as the frequency of operation, device dimensions and

material Secondary Emission Yield (SEY) properties, these

single-carrier prediction methods provide the threshold for the

multipactor breakdown power. The predicted thresholds are

used by the industry to design and assess the margins of

operated power in the device to be multipactor-free.

Nevertheless, realistic satellite communication systems

combine more than one channel in a single output, what is

called a multi-carrier signal. The multi-carrier signal combines

the transmission power of the individual channels. Its ampli-

tude is time varying and depends on the relative amplitudes

and phases of the channel carriers. Therefore, in the multi-

carrier path of the spacecraft (after multiplexing the channels)

extremely high peak power levels may be attained, thus

increasing the risk of a multipactor discharge [11], [12].

By the time of speaking, the theory for multipactor and

multi-carrier signals is rather scarce. To the authors’ knowl-

edge, the only existing full theory for multi-carrier operation

is provided in [13]. Numerical solvers capable of handling

multi-carrier signals exist as well [8], [14], [15]. However, in

the multi-carrier case there are many more parameters involved

in the multipactor discharge than for the single-carrier case,

which include the carrier frequency spacing, the relative phases

among the carriers and the amplitude (or power) per carrier.

Therefore, the current multipactor theory and numerical soft-

ware for multi-carrier signals are able to determine if there is

multipactor discharge for a fixed configuration. However, they



FOR SUBMISSION TO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, DECEMBER 2011 2

do not provide the worst case, which is the combination of

all the variables of the problem that produces a multipactor

discharge with the minimum power per carrier. Thus, the

current multi-carrier theory/software do not predict the lowest

multipactor breakdown level.

The design rules that are currently being applied by the

space industry are based on simplifications that allow applying

the single-carrier predictions to the multi-carrier case. The

most restrictive one is the K2, K being the number of carriers,

which takes the peak power of the multi-carrier signal as the

CW power of an equivalent single-carrier signal. The multi-

pactor breakdown is then equal to Psc/K
2 per carrier, where

Psc is the single-carrier breakdown that can be calculated with

single-carrier predictors [16]. This design rule is known to be

very conservative and typically gives much lower breakdown

power predictions than measured ones. This poses unnecessary

constraints on the design, and usually forces to carry out

cumbersome tests campaigns to validate the components.

The first attempt for trying to reduce the margins is the

20-gap-crossing rule (20GCR) [16], [17], which establishes a

more relaxed criterion of multipactor: It can only appear when

the multi-carrier signal envelope is above the single-carrier

threshold for a time such that an electron crosses the gap 20

times. In other words, the 20GCR rule allows the multi-carrier

signal to be above the threshold for a short time, assuming

that the electron build-up will not be enough to produce a

discharge. Equivalently, the above K2 rule would be the zero-

gap-crossing rule, i.e. it does not allow any electron crossing

(impact) above the threshold. With respect to the K2 rule, the

20GCR predicts higher multipactor thresholds and reduces the

design constraints.

However, the 20GCR rule is based only on the study of

numerical simulations and measurements, and does not have a

solid physical basis. The question that naturally arises is why

20 and not another value, and why 20 should be a universal

value valid for all kind of signals and devices. This uncertainty

on the prediction rule implies large safety margins that are

imposed to the predicted values [16]. As a consequence, the

20-gap-crossing rule, although being more relaxed than the K2

rule, still yields very conservative predictions in most cases.

This work proposes a novel Quasi-Stationary (QS) predic-

tion technique for multipactor in multi-carrier signals, with

the aim of giving more accurate predictions in order to reduce

the safety margins, avoid unnecessary design constraints and

reduce the test campaigns as much as possible. Even if a

full multi-carrier theory is already available [13], the new

technique presented in this paper is still based on the single-

carrier theory, following a similar approach as the previous

ones. However, it takes more sophisticated simplifications on

the multi-carrier signal. By applying the single-carrier theory,

the number of parameters of the problem reduces significantly

and allows for more simple and intuitive solutions.

The QS prediction method is based on the non-stationary

theory for single-carrier signals [18], which belongs to the

family of statistical theories that introduce the randomness

of electron emission velocity and angle. In spite of their

complexity, the statistical theories have the advantage of

matching better the experimental results [18], [19]. Among

the statistical theories, the non-stationary one is able to model

both the electron growth and absorption, above and below

the multipactor threshold, and it considers both single-surface

and double-surface interactions. In addition, it gives analytical

expressions for the instantaneous SEY and multipactor order.

Therefore, the non-stationary theory becomes the most suitable

one for multipactor prediction with multi-carrier signals.

Within this work, a number of samples in waveguide

technology has been manufactured and tested in order to asses

the prediction accuracy of the new QS tool and the current

20GCR. In Section II some background on multipactor is

given including a review of the 20GCR. The QS model is

presented in Section III. Section IV gives some details on

the manufactured samples and the test set-up. The predictions

and experimental results are presented in Section VI. Finally,

Section VII offers some conclusions.

II. BACKGROUND

A. Multipactor in multi-carrier signal

A multi-carrier signal V (t), composed of K carriers with

amplitudes Vi, angular frequencies ωi, and phases φi, i =
1, ...,K , has the form

V (t) =

K
∑

i=1

Vi cos(ωit+ φi). (1)

According to [13], the expression above can be alternatively

expressed as a modulated signal with envelope

Ve(t) =

√

√

√

√

[

K
∑

i=1

Vi cos(ωit+ φi)

]2

+

[

K
∑

i=1

Vi sin(ωit+ φi)

]2

,

(2)

The envelope is periodic, and its period T can be computed

by finding the greatest common divisor (gcd) of the differences

between the signal frequencies (fi = ωi/2π) and the lowest

one (f1).

T = 1/f, f = gcd(f2 − f1, f3 − f1, ..., fK − f1) (3)

For a multi-carrier signal with a specific set of frequencies,

its envelope will have a fixed period, but its shape will vary in

accordance with the choice of the phase and amplitude of each

carrier. The shape may be seen as a set of periodic lobes. In

general, the height of such lobes is related to its width in such

a way that the higher the envelope is, the narrower the lobes

are. Theoretically, for equal amplitude, Vi = V0, ∀i, the multi-

carrier signal envelope is comprised between two limit values,

KV0 corresponding to the in-phase scheme (all carriers have

the same relative phase), and
√
KV0 for a totally uncorrelated

phase scheme (where the lobes spread and overlap to form a

flatter envelope). There are different boundary models which

relate the height and the width of the envelope, such as Wolk

[20] or Angevain [21] boundary functions. These provide the

voltage factor Fv , which relates the boundary level and the

level per carrier, for each envelope width, ∆T

Ve(∆T ) = Fv(∆T )V0 (4)
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Fig. 1. Multi-carrier signal envelopes for different phase schemes with K =
8 and Vi = V0 = 1, ∀i with a uniform frequency spacing ∆f = 40 MHz.

Angevain’s and Wolk’s boundary functions are also plotted. KV0 and
√
KV0

limits are represented by dotted horizontal lines.

Fig.1 shows an example for different phase schemes for a

signal with K = 8 and V0 = 1 with a uniform frequency

spacing ∆f = fi+1 − fi = 40 MHz, ∀i.
As it is explained in [13] the instantaneous frequency is

also periodic with the same period of the envelope, and with

an oscillating value around the mean frequency of all carriers.

Therefore, the frequency of the multi-carrier signal can be

approximated as a constant value equal to the mean frequency

of all carriers, i.e. fm.

The study of the multipactor phenomenon in multi-carrier

signals is rather more complicated than for the single-carrier

case. Conceptually, the process can be described as follows.

When the multi-carrier signal envelope, Ve(t), surpasses a

certain level, the electrons are accelerated with enough energy

to initiate a multipactor discharge and, thus, the electron

population increases. The value of such a threshold is not

well known. However, there are evidences that indicate that it

must be close to the breakdown threshold in the single-carrier

case, VSC , for a frequency equal to the mean frequency of all

carriers, fm, as [18] suggests. On the other hand, when Ve(t)
is below VSC , the electrons impact on the device walls with

low energies resulting in a SEY below one, and the electrons

being therefore absorbed.

The intervals in which Ve(t) is above VSC are called ”on”

intervals, and those where it is below are known as ”off”

intervals [22]. Since the envelope is periodic, ”on” and ”off”

intervals are intercalated indefinitely in time. Hence, there

will be a multipactor discharge in two cases: Either the ”on”

interval is long enough to make the electron population grow

to a detectable level in the first period of the envelope, which

is called a single-event discharge, or the electron growth

during the ”on” interval is higher than the electron absorption

during the ”off” interval. This makes the electron population

grow slowly, period after period, culminating in a long-term

multipactor discharge [22], [23]. Fig. 2 shows an example

of a long-term multipactor discharge with an in-phase multi-

carrier signal, extracted from [13]. The long-term discharge

build-up is typically in the range of few nanoseconds and
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Fig. 2. Example of electron growth in a long-term multipactor discharge
extracted from [13], corresponding to a K = 6 carrier signal with equal
amplitudes, zero phase (in-phase) and a uniform frequency spacing ∆f = 100
MHz. Shaded areas correspond to ”on” intervals. The single-carrier threshold,
VSC is marked with a horizontal dotted line.

the multipactor discharges are in general not self-sustained.

Therefore, in practice, both kind of discharges are indis-

tinguishable in laboratory. Nevertheless, each of them have

different implications for the multipactor breakdown level.

Long-term discharges are thought to be more restrictive than

single-event ones [14], [23].

There are infinite combinations of amplitude and phases that

lead to a multipactor discharge. Assuming that all carriers have

equal amplitude, the worst case is defined as the combination

of phases that causes a multipactor discharge with the mini-

mum amplitude (or power) per carrier. This worst case must

be the goal of any multipactor prediction method for multi-

carrier signals.

B. The 20-gap-crossing rule

The 20-gap-crossing rule (20GCR) is very simple. It sim-

plifies the multi-carrier envelope as a pulsed signal which

can only be above (”on”) or below (”off”) the single-carrier

threshold, Vsc. As its own name indicates, it establishes that

there will be a multipactor discharge when the ”on” interval

is long enough to ensure at least 20 electron impacts [16]. In

order to provide a larger margin, the 20GCR takes the lowest

frequency of the train of carriers, f1 (instead of fm), as the

reference frequency for the calculation of the single-carrier

breakdown threshold. For a multipactor discharge of order n
(the order of the multipactor discharge sets the number of

cycles between consecutive impacts for a single electron), the

”on” time is

T20 =
10n

f1
. (5)

The rule does not give any value for the worst case phases

or RF breakdown power. It just gives the length of the

”on” interval. In order to find such combination of phases

and power, it is necessary to conform the envelope to the

desired shape through numerical optimizers, such as simulated

annealing [24] or genetic algorithms [25], which search the

right combination of phase and amplitude for each carrier
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ensuring T20. Another possibility is to use boundary functions

for the envelope amplitude such as [20], [21], which only

estimates the breakdown power.

The main advantage of this rule, i.e. its simplicity, is at the

same time its main drawback. It is an empirical rule and the

criterion that leads to a number of 20 gap crossings it is not

clear, and why such a value is applicable to all situations. This

is, it does neither take into account how high the envelope with

respect to the single-carrier threshold is, nor the dependence

of the multipactor order with voltage, or the kind of material

in terms of the SEY curve.

The higher the envelope amplitude, the higher the impact

energy is, and thus, the higher the SEY [18]. Therefore,

it seems logical that for higher amplitudes the number of

necessary impacts to cause a detectable discharge gets lower.

For instance, for an amplitude equal to the single carrier

threshold, the secondary emission yield is nearly one, which

implies no electron growth (and no discharge) at all, no matter

how many electron impacts occur.

On the other hand, it also seems logical that the number of

gap crossings to create a discharge is different for materials

with different SEY curves. For example it would be expectable

that the number of gap crossings for gold would be higher than

for aluminium, since gold is known to typically have a much

lower secondary emission yield [16].

Furthermore, the 20GCR only takes into account single-

event discharges and completely disregards long-term dis-

charges.

C. Parallel-plate geometry

Although theories for more sophisticated geometries are

available in the literature, the parallel-plate geometry is the

simplest and most representative case for all of them, and will

be used for the present analysis.

The parallel-plate model assumes an homogeneous RF elec-

tric field between the plates, which allows for equivalent volt-

age definition. But in real microwave applications the circuit

and signal specifications are given in terms of signal power,

the fields along the structure varying strongly depending on

the particular geometry of the device.

In order to translate between both definitions, one may

isolate the critical part of the circuit in which multipactor is

expected to occur and compute the voltage at 1W, V1W , by

means of network theory (for simple structures) or by numer-

ical integration of the electric field along the gap employing

full-wave field solvers such as [8], [10], [26]. Therefore, the

voltage at the gap Vg , given an input power Pin is given by

Vg = V1W

√

Pin. (6)

Of course, this is an approximation that assumes that the

electric field is homogeneous along the gap, which does not

occur for most practical situations. However, this is the worst

case and it is still a valid and commonly used approximation

for a wide range of waveguide and coaxial structures [7], [16],

[17], [27].

III. QUASI-STATIONARY MODEL PREDICTION

The Quasi-Stationary (QS) model follows a completely

different approach than the 20GCR. It does not simplify

the multi-carrier envelope as a pulsed signal, but models

the electron growth considering its real time-varying shape

Ve(t). The worst case is computed searching the envelope that

triggers the multipactor discharge with the lowest breakdown

power per carrier among all possible shapes. Therefore, the

QS model does not employ the concept of ”gap-crossings” any

more, since it uses a more general and powerful definition of

the envelope.

A. Theory

The QS model is based on the single carrier non-stationary

theory [18]. It assumes that the multi-carrier envelope varies

slowly enough to consider that its amplitude, Ve(t), is constant

during an interval ∆t. Hence, the first step is to model the

electron growth and absorption during such interval by using

the single-carrier theory.

Contrarily to the classical multipactor theory, the QS model

uses a more sophisticated scenario which considers random

electron emission velocity and non-resonant electron trajecto-

ries. Therefore, the electrons follow different paths and impact

at different times, with different energies. This scenario is valid

for voltages above and below the multipactor threshold, which

implies electron growth and absorption, respectively. In this

scenario, the electron multiplication can be approximated by

[22]

Γ(t,∆t) =
N(t+∆t)

N(t)
≃ 1 + [σavg(t,∆t)− 1]Iacc(t,∆t),

(7)

where σavg(t,∆t) is the average SEY from t to t + ∆t.
Iacc(t,∆t) is the accumulated number of impacts given by

Iacc(t,∆t) =

∫ t+∆t

t

2fdt′

ni(t′)
, (8)

where ni(t) is the instantaneous multipactor order. Notice that

if ni(t) is constant, i.e. ni(t) = n, (8) becomes equal to the

classical theory expression

Iacc(∆t) =
2f∆t

n
. (9)

Note that this is a non-resonant process which may be non-

stationary as well. This implies that the above averages are

dependent on t.
The non-stationary multipactor theory of [18] provides

useful analytical definitions of the main parameters used for

constructing the above σavg(t,∆t) and Iacc(t,∆t). These are

summarized in Table I (see [18] for their complete mathemat-

ical development).

According to [18], the value of instantaneous SEY, σi(t),
becomes stable in time for every voltage above and below the

breakdown level. Therefore, it is possible to define a constant

σavg , independent of t and ∆t, as the weighted average of

σi(t) with respect to I(t)

σavg(t,∆t) ≃ σavg =

∫

∞

0
σi(t)I(t)dt

∫

∞

0
I(t)dt

. (10)
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TABLE I
DEFINITIONS OF MULTIPACTOR NON-STATIONARY THEORY [18]

Number of electrons N(t)
Impact rate (electrons /second) I(t)
Instantaneous SEY σi(t)
Instantaneous order ni(t)
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Fig. 3. Fitting of multipactor order. Frequency=3.82 GHz. d = 1.3 mm,
silver plating and V = 50 V (Vsc around 361 V). The result is α = 6.5 ×
1015s−2 and β =18.43

Similarly, the value of the instantaneous order ni(t) is stable

for voltages above the breakdown level and, therefore, ni(t)
can be approximated as a constant value equal to its weighted

average with respect to I(t).

ni(t) ≃ navg =

∫

∞

0
ni(t)I(t)dt

∫

∞

0
I(t)dt

. (11)

But this is not the case for voltages below breakdown, since

the multipactor order diverges increasing indefinitely in time

[18]. Since an analytical expression is necessary to derive the

rest of the theory, in this work we propose a simple parabolic

shape approximation of the form

ni(t) ≃ αt2 + β, (12)

which provides a reasonable resemblance with the real behav-

ior. The values of α and β can be obtained straightforwardly

by numerical fitting of the curve. The expression given by (12)

is also valid for the region above breakdown (”on” interval),

setting α = 0 and β = navg . Fig. 3 shows an example of

such fitting process. Figs. 4, 5 and 6 show detailed maps of

the σavg , α and β parameters, respectively, for ECSS silver

[16].

Once the electron multiplication is modeled for a single in-

terval ∆t, the next step is to model the electron multiplication

in the whole period of the multi-carrier envelope.

Note that, in this case the above quantities depend also on

the envelope amplitude,

σavg → σavg(Ve(t)), α → α(Ve(t)), β → β(Ve(t)).

From now and on Ve(t) will be omitted from the formulation

but its dependence is implied in this model.

100 10
1

f × d (GHz mm)

100

10
1

102

10
3

10
4

V
o
lt
a
g
e
(V

)

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

Fig. 4. Multipactor map for average SEY σavg for ECSS silver [16]

10
0

10
1

f × d (GHz mm)

10
0

101

102

10
3

104

V
o
lt
a
g
e
(V

)

0

6

12

18

24

30

36

42

48

54

Fig. 5. Multipactor map for β for ECSS silver [16]

10
0

10
1

f × d (GHz mm)

10
0

101

102

10
3

104

V
o
lt
a
g
e
(V

)

0.00

0.38

0.75

1.12

1.50

1.88

2.25

2.62

3.00

×
1
0
1
8
s−

2

Fig. 6. Multipactor map for α for ECSS silver [16]

Under such assumptions, the electron multiplication during

∆t is

Γ(t,∆t) = 1 + [σavg − 1]Iacc(t
′,∆t), (13)

The variable Iacc(t
′,∆t) stands for the accumulated elec-

tron impacts at time t′ and during an interval ∆t, given by
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(8). Iacc(t
′,∆t) is dependent on time only during the ”off”

intervals, where the resonance is lost. Therefore, the reference

time t′ corresponds to the time elapsed since the beginning of

the last ”off” interval.

As stated in (12), the instantaneous order of a multipactor

discharge can be considered a constant value in time during the

”on” intervals (α = 0), and it increases parabolic-like during

”off” intervals (α 6= 0).

Substituting (12) in (8) and solving the integral

Iacc(t,∆t) =
2f√
βα

arctan

[

√

α

β

∆t

1 + α
β
t(t+∆t)

]

. (14)

Note that during the ”on” interval α = 0, β = navg. Then

the expression (14) reduces to

Iacc(t,∆t) =
2f∆t

navg

. (15)

Hence, only in the ”off” intervals α 6= 0, implying that

Iacc(t
′,∆t) depends on t′, the time elapsed since the beginning

of a particular interval. For an arbitrary multipactor envelope

with k ”off” intervals where ts,i is the starting time, and te,i
is the ending time for each of them (1 ≤ i ≤ k), the reference

time t′ is defined in terms of the absolute time t as

t′ =















t− ts,1, ts,1 ≤ t < te,1
t− ts,2, ts,2 ≤ t < te,2
...
t− ts,k, ts,k ≤ t < te,k

(16)

Considering a period of the envelope T with l divisions

such that ∆t = T/l, the total electron multiplication for the

whole period is

Γ(T ) =
N(T )

N(0)
=

i=l−1
∏

i=0

Γ(i∆t,∆t). (17)

Finally, the criterion of multipactor is based on a long-term

discharge

Γ(T ) ≥ 1. (18)

The QS model can compute Γ(T ) for any multi-carrier enve-

lope.

B. Procedure for threshold determination

A specific example has been chosen to illustrate the proce-

dure for the threshold determination using the QS model. The

example is based on a 6-carrier signal centered at 3.82 GHz

with a frequency spacing of ∆f = 100 MHz and a gap of

d = 1.31 mm. The SEY parameters of the Vaughan’s model

[7] have been chosen as W1 = 29 eV, Wmax = 399 eV,

σmax = 2 and σ0 = 0.5, for the first cross-over energy, the

energy of maximum SEY, the maximum SEY, and the SEY

for low electron impact energies, respectively. Fig. 7 shows a

diagram with the work-flow of this procedure.

For the specific mean frequency of the multi-carrier signal

(fm) and sample gap size of the problem, the f×d of operation

is derived, for which the SEY , α and β curves versus signal

amplitude are obtained. These curves can be interpolated

from precomputed single-carrier maps for the specific SEY

fi, d
σ, α, β
maps

min. search

Goal function

Vi, Φi

Input

Quasi-stationary

Model

Output

Optimization

Fig. 7. Quasi-stationary model prediction flow chart.
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Fig. 8. Curve of SEY versus envelope amplitude, Von. for f × d =
5.002 GHz·mm.

parameters of the sample (such as those of Figs. 4-6), or can

be ad-hoc computed using the single-carrier non-stationary

theory. Figs. 8 and 9 show the α and β curves for this example.

See that α= 0 above the breakdown level (located at 371 V).

With this input data, the QS model is able to approximate

the electron growth for any phase distribution and amplitude

of the signal carriers. For example, in Fig. 10 the electron

growth for a triangular phase scheme and three different values

of the amplitude per carrier (equal for all carriers) is shown.

These curves are computed with (17) and it is clear that there

is electron accumulation (Γ > 1), and therefore multipactor

discharge, for V0= 142 V, no discharge (Γ < 1) for V0= 125 V.

The breakdown limit (Γ = 1) is obtained for V0= 132 V.

The QS prediction technique uses a global optimizer to

search the combination of phases and amplitudes in order

to minimize a goal function. Such a goal function must
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Fig. 10. Electron growth (bottom) according to QS model for different am-
plitude envelopes of a multi-carrier signal (top). The single-carrier threshold
is marked with a horizontal dotted line.

ensure that its minimum corresponds to the worst case. In

this example the goal function is

G = f(Γ) + V0, (19)

where equal amplitude of carriers, V0, has been assumed (this

method would be also valid for unequal amplitudes). Γ is given

by (17), and

f(Γ) =

{

w|Γ− 1|, Γ < 1
0, Γ ≥ 1

, (20)

defines a constraint on the solution, penalizing regions where

there is no multipactor (Γ < 1). No universal values can be

provided for the weight w, which can be tuned to speed up

the optimizer or to improve the accuracy of the solution.

The solution of the optimizer (minimizing G) is already

the worst case for this signal, consisting of the combination

of phases that ensures a multipactor discharge for the lowest

TABLE II
KU-BAND FREQUENCY SCHEME.

Channels Carrier combination
# freq. BW contiguous non contiguous

(GHz) (MHz) 6 ch. 8 ch. 6 ch. 8 ch.

1 11.7440 34 x
2 11.8206 34 x x
3 11.8589 34 x
4 11.8972 34 x x x x
5 11.9355 34 x x
6 11.9738 34 x x x x
7 12.0121 34 x x
8 12.0504 34 x x x x
9 12.0887 34 x x

10 12.1270 34 x x x
11 12.2036 72 x x
12 12.2802 72 x

fm (GHz) 11.992 12.012
∆f (MHz) 38.3 76.6

carrier amplitude. However, keep in mind that the QS model

is able to compute other breakdown levels than the lowest one,

for any phase and amplitude distribution.

IV. TESTING

The objective of the test campaign is to provide meaningful

data for different types of situations, such as different gap

sizes, number of carriers and carrier phasing, with the aim of

demonstrating the correct behavior of the new prediction tool.

In order to do so, specific hardware has been manufactured.

A. Frequency plans and tests

The frequency plan has been chosen to be in the Ku-band. In

order to use different frequency schemes, 4 different signals

have been tested: 6 carriers and 8 carriers with contiguous

and non-contiguous schemes. A 15-channel Ku-band manifold

output multiplexer has been selected for this purpose. The

frequency plan of this multiplexer is given in Table II.

8 power amplifiers were available, providing an equivalent

peak power level of about 19000 W.

B. Sample Design

A total number of 7 Ku-Band waveguide samples have

been designed and manufactured with WR 75 interfaces (see

Table III).

The gaps of the samples have been selected in order to

guarantee that the multipactor mode order is relatively low, and

that no change of mode order will occur over the bandwidth

of the sample.

The samples have been designed to be as simple as possible,

and to avoid effects that may lead to a distortion of the results

(e.g. no screws have been used for filter tuning and fringing

field effects have been minimized).

Three different kinds of samples have been selected:

• Waveguide with reduced height and transformers on both

ends (TF).

• Corrugated lowpass filter (LP).

• Narrow-band bandpass filter with inductive irises and

reduced height (BP).
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TABLE III
SAMPLES FOR KU-BAND TESTS.

Type Gap V1W freq. fm f × d n
(mm) (V) scheme (GHz) (GHz·mm)

TF

0.14 3.89
cont. 11.99 1.68 1

non cont. 12.01 1.68 1

0.42 8.88
cont. 11.99 5.04 3

non cont. 12.01 5.05 3

0.64 10.38
cont. 11.99 7.67 5

non cont. 12.01 7.69 5

LP

0.14 6.35
cont. 11.99 1.68 1

non cont. 12.01 1.68 1

0.42 9.14
cont. 11.99 5.04 3

non cont. 12.01 5.05 3

0.64 11.5
cont. 11.99 7.67 5

non cont. 12.01 7.69 5

BP 1.31 32.1
cont. 11.99 15.71 7

non cont. 12.01 15.74 7

Fig. 11. Ku-band transformer sample.

All samples have been built up in a two-shell configuration.

The units are provided with silver plated surfaces. Fig. 11

shows a picture of a Ku-band transformer sample.

C. Description of the test bed

The schematic of the test set-up is shown in Fig. 12.

The tests have been performed at ambient temperature

(24◦C). The chamber pressure was below 1 mPa, before

starting the multipactor tests.

For the multi-carrier test signal generation, the power of 6 to

8 amplified channels have been combined with a multiplexer.

For a steady multi-carrier signal, the phase relation between

the single channels has been monitored and adjusted by a

phase control unit (computer controlled unit).

Different techniques have been used to detect the occurrence

of multipaction:

1) Input reflection nulling.

2) Near band noise.

3) Fast diode detector for near band noise.

4) 3rd harmonic.

TABLE IV
SEY PARAMETERS FOR THE KU-BAND SAMPLES. THE FIGURES W1 ,

Wmax , σmax AND σ0 , STAND FOR THE FIRST CROSS-OVER ENERGY, THE

ENERGY FOR MAXIMUM SEY, THE MAXIMUM SEY AND THE SEY FOR

LOW ELECTRON IMPACT ENERGIES, RESPECTIVELY.

Type Gap W1 Wmax σmax σ0

(mm) (eV) (eV)

TF
0.14 38 369 1.84 0.5
0.42 36 378 1.9 0.5
0.64 30 356 2.23 0.5

LP
0.14 47 403 1.73 0.5
0.42 32 370 2.1 0.5
0.64 25 325 2.2 0.5

BP 1.3 25 309 2.2 0.5

5) Fast diode detector for 3rd harmonic.

An electron gun and a remote controlled radioactive source

have been used to provide a sufficient amount of free electrons

to start the multipacting discharge.

A picture of the vaccum chamber and the test set-up for a

Ku-band sample is shown in Fig. 13.

D. SEY measurements

In order to properly characterize the coating material and

obtain good multipactor predictions, it was also necessary to

measure the SEY of the different devices.

Since the dimensions of the devices were too large to fit

inside the vacuum chamber of the SEY test, the measurements

were done for silver-plated aluminium alloy samples of 50×
20×1 mm which were plated in the same bath used with each

of the Ku-band manufactured devices.

The measured SEY parameters are given in Table IV. The

SEY measurement is done over a spot of only 2 mm diameter

and two measurements have been done for each sample. The

manufacturing and plating process is identical for all of them,

but significant differences can be appreciated. This is probably

due to inhomogeneities in the surface which causes local SEY

variations, thus implying a relative dependence of the results

on the measurement point.

V. SIMULATION SOFTWARE

The 20GCR and the QS prediction techniques described in

sections II-B and III, respectively, have been used to calculate

the worst cases of the samples detailed in Section IV-B.

The procedure for the threshold determination described in

Section III-B has been followed. No extra margins have been

applied to any of the prediction methods. The differential

evolution algorithm [25] has been employed for the QS

optimization and for the 20GCR signal phase conforming.

All worst case signals, predicted by the QS method, have

been simulated with FEST3D [8], a software for full-wave

electromagnetic analysis and design of passive microwave

passive circuits in waveguide technology, which also includes

a RF high power module for multipactor analysis under multi-

carrier operation.
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Fig. 12. Schematic for Ku-band test set-up.

a

b

c

d

Fig. 13. Ku-band test set-up: Gap sample (a), radioactive source (b), electron
gun (c) and coupler for detection of the phase and envelope (d) installed inside
the thermal vacuum chamber.

VI. PREDICTIONS AND TEST RESULTS

A. Error definition

In our case, the output of the prediction, for a certain multi-

carrier signal, is the couple consisting of phase distribution

and power per carrier. The purpose of the prediction is to find

the worst case, i.e. the combination of phases with the lowest

breakdown power. We define:

• Local error: It is defined as the difference between the

simulated breakdown power and the experimental one

measured when applying the computed phase distribution.

This error gives an idea of the accuracy of the predictor

to correlate the carrier phases and the breakdown power.

• Global error: The global prediction error is defined as the

difference between the simulated breakdown power and

the lowest breakdown power of all the tests made with

the available phase conditions. This error measures the

capability of predicting the lowest breakdown power.

A predictor that yields a low local error and a high global

error, means that it is good to predict the breakdown power

of a particular phase distribution, but the optimization of the

phases fails to find the lowest breakdown power.

A low global error and high local error means that the pre-

dictor apparently is able to find the lowest breakdown power,
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but the worst case phase distribution does not correspond to

the predicted one. This may happen for some specific cases,

but it is unlikely that such a predictor is able to find the lowest

breakdown power in a general case.

Finally, a good predictor is one that keeps both errors low.

B. Phase configurations

Three phase configurations have been used for each test,

belonging to the following list:

• In phase (IP): All phases are set to zero.

• QS model (QS): The phases are optimized using the QS

method of Section III-B.

• 20-gap-crossing rule (20g): The phases are optimized to

comply with the 20-gap-crossing rule worst case phasing,

following Section II-B.

The IP phasing has been tested in all samples. In the case

that any of the predictions (QS or 20GCR) were equal to the

IP phasing, such phase configuration was changed to “free

running” phases (FR). In this situation the local oscillators

of the amplifiers are left unlocked to the common reference

and, hence, their relative phases change randomly. According

to the authors’ experience, this kind of test usually yields the

lowest breakdown power. Therefore, even if it does not give

any information on the envelope or phases, it may be a good

reference for computing the global error (see Section VI-A).

Sometimes, not only one but both prediction methods,

QS and 20GCR, yielded a solution similar to the IP case.

In this case the two phase configurations were changed to

FR condition and a non-optimum QS prediction (QSn), i.e.,

another phase configuration which is not the worst case but

for which the QS model can compute a breakdown prediction.

This is useful in order to check the QS model prediction local

error.

C. RF breakdown prediction and measurements

Table V shows the predicted worst cases for the two

different analytical methods. Labels ”c” and ”n” stand for

contiguous and non-contiguous frequency schemes. Break-

down levels are given in power per carrier. For the 20GCR

prediction, a phase optimization has been run to make the

envelope match with the desired number of gap crossings.

The QS method has been used in order to find the phases that

ensures a multipactor discharge with the minimum input power

(worst case). The QS method does not employ the number of

gap crossings in the optimization procedure. It gives directly

the phase distribution. However, the number of gap crossings

has been also computed and included in order to compare with

the 20GCR.

The predicted breakdown power may be better seen in

Fig. 14, where the boundaries for the breakdown powers are

also plotted according to the K and K2 rules, Psc/K and

Psc/K
2, respectively, where K is the number of carriers

and Psc is the single carrier breakdown power determined

by the single-carrier nonstationary theory of [18]. FEST3D

simulations are also included and labeled with ”Num” tag.

TABLE V
WORST CASE PREDICTION FOR KU-BAND SAMPLES. BREAKDOWN

LEVELS ARE GIVEN IN POWER PER CARRIER.

Type Gap Sig. 20GCR QS FEST3D
(mm) (W) ngc (W) ngc (W)

TF

0.14

6c 28.3 20 42.7 75 47.5
6n 29.2 20 53.0 44 52.5
8c 16.0 20 36.7 75 29.38
8n 16.9 20 36.3 38 32.5

0.42

6c 65.7 20 178.3 47 580
6n 82.2 20 231.2 37 460
8c 39.5 20 159.3 52 330
8n 57.2 20 174.8 38 215

0.64

6c 106.8 20 296.2 25 390
6n 176.5 20 300.6 13 400
8c 70.7 20 181.4 19 240
8n 131.7 20 183.0 10 255

LP

0.14

6c 10.6 20 19.3 18 23.13
6n 11.0 20 27.2 57 61.25
8c 6.0 20 18.0 107 20
8n 6.4 20 19.9 60 67.5

0.42

6c 56.2 20 154.0 38 480
6n 70.2 20 173.4 27 285
8c 33.8 20 43.4 37 300
8n 48.8 20 137.8 31 310

0.64

6c 67.0 20 201.9 26 340
6n 110.7 20 202.6 14 355
8c 42.6 20 128.1 20 235
8n 82.6 20 128.4 10 245

BP 1.31

6c 66.4 20 96.7 11 220
6n 124.5 20 95.6 6 235
8c 48.9 20 132.1 14 162.5
8n 92.2 20 66.1 7 175

As it can be seen, the predicted breakdown power levels

computed by the 20GCR are significantly lower (around 3 dB)

than the QS method, which is closer to the K power curve.

The number of gap crossings is shown in Fig. 15. Whereas

the number of gap crossings is obviously fixed to 20 for the

20GCR, the QS method yields a number of gap crossings that

is different for each particular sample and signal having a

great variation between cases. This is because each sample has

a different SEY curve and work at a different f × d product,

and it is also expected that a different number of gap crossings

is needed to produce a discharge.

The number of gap crossings predicted by the QS method

start at a high value (100-200) for the 0.14 mm gap samples,

and follow a decreasing trend as the gap increases, finishing

below 20 for the largest gaps, i.e. for 0.64 mm and 1.31 mm.

Please note that a number of gap crossings of 100-200 for

some of the results corresponding to the 0.14 mm gap samples,

is not as excessive as it may appear. The frequency spacing

yields a period of the envelope of 26.11 ns and 13.05 ns for the

contiguous and non-contiguous channel frequency schemes,

respectively. For a center frequency of around 12 GHz, this

implies a number of cycles of 627 and 313, in one period of the

envelope, for each of the two frequency schemes. Therefore,

the 0.14 mm gap samples, working at a nominal multipactor

order of n = 1, have a total of 627 and 313 gap crossings

within a period of the envelope. In this case, a number of gap

crossings of 100-200 implies only a TON of around a 16-32%

and 32-64% of the total period T , respectively, for the two

frequency schemes. Contrarily, 20 gap crossings yield a TON
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Fig. 14. Summary of breakdown threshold predictions and test results for
Ku-band samples. FEST3D simulations are labeled with ”Num” tag. Labels
”c” and ”n” stand for contiguous and non-contiguous frequency schemes.
Breakdown levels are given in power per carrier. The minimum breakdown
power of all tested phase configurations has been plotted with label ”Meas”.
The maximum applied power for the cases where no multipactor has been
observed has been also included with label ”Meas∗”.

of only 3-6% of the total envelope (approximately), which

does in fact seem unrealistically low.

On the other hand, the 0.64 mm and 1.31 mm gap samples

work at a nominal multipactor order of 5 and 7, respectively.

In this case, a number of gap crossings of 10, for instance,

implies around a 8-22% of the total envelope.

Table VI and Fig. 14 show the experimental results for some

of the samples and frequency schemes of the project. Break-

down levels are given in power per carrier. Two measurements

have been carried out for every phase condition. Numerical

results computed with FEST3D (marked as F3 in the table)

have been also included. There is missing data for some of

the samples, either because they have not been tested yet or

because no multipactor has been detected up to the maximum

available power (around 300 W per channel) in the set up

(marked as ”ND” in the table). More testing is envisaged in the
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Fig. 15. Summary of the number of gap crossings of predictions for Ku-band
samples.

future in order to have more comparison data. In Fig. 14, the

minimum breakdown power of all tested phase configurations

has been plotted with label ”Meas” (corresponding to the

definition of global error of Section VI-A). The maximum

applied power for the cases where no multipactor has been

observed has been also included with label ”Meas∗”.

It is worth noting that the experimental results are much

closer to the QS predictions and to the FEST3D calculations

than to the 20GCR predictions. The latter are in all cases

much lower than the experimental results (around 3dB). As

stated before, no extra margins have been applied to the

predictions. This reveals that in fact the 20GCR seems to be

very conservative, at least in the cases tested in this work.

Especially for large gaps, some FEST3D simulations yield

a prediction above the theoretical K rule bound. This in

principle may seem unrealistic, but remember that both the K2

and K bounds are computed assuming parallel-plates, which

is indeed the worst case. In real structures, the effect of the

non-homogeneous fields, finite geometry and high order modes

contribute to increase the breakdown power with respect to the
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TABLE VI
EXPERIMENTAL RESULTS FOR THE KU-BAND SAMPLES. BREAKDOWN

LEVELS ARE GIVEN IN POWER PER CARRIER.

Type Gap Sg. Cd. Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 F3 M1 M2
(mm) (deg) (W) (W) (W)

TF

0.14

6c
IP x 0 0 0 0 0 0 x 47.5 59.6 58.6
QSn x 0 0 180 180 0 0 x 170 78 73
FR - - - - - - - - - 55.5 60

6n
IP x 0 0 0 0 0 0 x 52.5 53.5 51.8
QSn x 0 0 180 180 0 0 x 78.8 89.5 89.5
FR - - - - - - - - - 49 48.5

8c
IP 0 0 0 0 0 0 0 0 29.4 30 30
QSn 0 350 331 299 299 331 350 0 39.4 61.5 59.5
FR - - - - - - - - - 32 32

8n
IP 0 0 0 0 0 0 0 0 32.5 29 29
QSn 0 180 180 0 0 180 180 0 48.1 47.5 47.5
FR - - - - - - - - - 30.5 29.7

0.42

6c
IP x 0 0 0 0 0 0 x 580 ND ND
QS x 0 180 0 0 180 0 x 700 ND ND
FR - - - - - - - - - 205 201

6n
IP x 0 0 0 0 0 0 x 500 ND ND
QS x 0 119 14 14 119 0 x 860 ND ND
20g x 0 252 255 255 252 0 x 460 ND ND

8c
IP 0 0 0 0 0 0 0 0 330 ND ND
QS 0 107 275 109 109 275 107 0 640 238 238
FR - - - - - - - - - 164 162

8n
IP 0 0 0 0 0 0 0 0 315 ND ND
20g 0 127 133 132 132 133 127 0 490 ND ND
QS 0 109 256 56 56 256 109 0 215 ND ND

LP 0.64

6c
IP x 0 0 0 0 0 0 x 340 - -
QSn x 0 0 180 180 0 0 x 450 - -
FR - - - - - - - - - ND ND

6n
IP x 0 0 0 0 0 0 x 355 - -
QSn x 0 0 180 180 0 0 x 470 - -
20g x 0 249 238 238 249 0 x 450 - -

8c

IP 0 0 0 0 0 0 0 0 235 - -
QSn 0 180 180 0 0 180 180 0 315 ND ND
20g 0 238 237 238 238 237 238 0 355 - -
FR - - - - - - - - - 243 242

8n
IP 0 0 0 0 0 0 0 0 245 - -
QSn 0 180 180 0 0 180 180 0 320 - -
20g 0 69 127 142 142 127 69 0 375 - -

BP 1.31

6c

IP x 0 0 0 0 0 0 x 220 - -
QSn x 0 0 180 180 0 0 x 230 - -
20g x 0 105 123 123 105 0 x 225 - -
FR - - - - - - - - - ND ND

6n
IP x 0 0 0 0 0 0 x 275 - -
QSn x 0 0 180 180 0 0 x 245 - -
20g x 0 62 136 136 62 0 x 235 - -

8c

IP x 0 0 0 0 0 0 x 190 - -
QSn 0 12 35 67 67 35 12 0 150 259 253
20g 0 56 125 141 141 125 56 0 163 - -
FR - - - - - - - - - 233 234

8n
IP 0 0 0 0 0 0 0 0 203 - -
QSn 0 180 0 180 180 0 180 0 185 - -
20g 0 88 253 307 307 253 88 0 175 - -

parallel-plate approximation [28]. FEST3D takes into account

all the previous effects, and that is the reason why some

of the predictions for large gaps lie above the theoretical

upper bound. In fact, this may be also the reason why, in the

laboratory, some of the samples did not exhibit a multipactor

discharge up to the maximum available power, even if the K
bound lay below such maximum power.

D. Analysis of results

The average prediction error is presented in Table VII. The

local error of the FEST3D numerical tool is also included for

comparison.

TABLE VII
AVERAGE PREDICTION ERROR FOR THE PREDICTION METHODS ON THE

KU-BAND SAMPLES

20GCR QS FEST3D

Local error (dB) 2.68 1.2 1.42
Global error (dB) 4.47 1.18 -

The analysis of the errors indicates that the 20GCR shows

a considerable higher local and global error with respect to

the QS method. The latter shows very good figures for both

of them. This indicates that the QS method shows the best

prediction performance and, again, that the 20GCR is very

conservative (more than 4 dB).

The local error of the FEST3D simulations show similar

values than for the QS method. This is because the designed

samples are waveguides with long irises in order to resem-

ble the parallel plate case as much as possible. With other

more complicated geometries involving fringing field effects,

numerical full-wave EM solvers such as FEST3D are expected

to give more realistic results.

VII. CONCLUSIONS

It is clear from the experimental results that the new QS

prediction technique offers better predictions than the 20GCR.

This fact was expected since the former uses a more sophis-

ticated theoretical background based on multipactor physics.

Moreover, for the prediction the QS method considers the

frequency scheme and the SEY curve of the coating material

for each specific case, offering more accuracy and versatility

with respect to the 20GCR.

Besides being more precise, the predicted breakdown power

levels of the QS technique are significantly higher than the

ones provided by the 20GCR. This is an important factor for

the industry because this would allow increasing the operating

power of the devices, thus reducing the designs constraints and

increasing the margins.

Finally, the QS method may use pre-calculated multipactor

maps, in order to predict the worst case without having to

implement any multipactor theory or use any multipactor

numerical software.
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