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Abstract

Background: Study on long non-coding RNAs (lncRNAs) has been promoted by high-throughput RNA sequencing

(RNA-Seq). However, it is still not trivial to identify lncRNAs from the RNA-Seq data and it remains a challenge to

uncover their functions.

Results: We present a computational pipeline for detecting novel lncRNAs from the RNA-Seq data. First, the genome-

guided transcriptome reconstruction is used to generate initially assembled transcripts. The possible partial transcripts

and artefacts are filtered according to the quantified expression level. After that, novel lncRNAs are detected by further

filtering known transcripts and those with high protein coding potential, using a newly developed program called

lncRScan. We applied our pipeline to a mouse Klf1 knockout dataset, and discussed the plausible functions of the

novel lncRNAs we detected by differential expression analysis. We identified 308 novel lncRNA candidates, which have

shorter transcript length, fewer exons, shorter putative open reading frame, compared with known protein-coding

transcripts. Of the lncRNAs, 52 large intergenic ncRNAs (lincRNAs) show lower expression level than the protein-coding

ones and 13 lncRNAs represent significant differential expression between the wild-type and Klf1 knockout conditions.

Conclusions: Our method can predict a set of novel lncRNAs from the RNA-Seq data. Some of the lncRNAs are

showed differentially expressed between the wild-type and Klf1 knockout strains, suggested that those novel lncRNAs

can be given high priority in further functional studies.

Background
The category of long non-coding RNAs (lncRNAs) is com-

posed of non-coding RNAs (ncRNAs) with long transcript

length (> 200 nucleotides) [1]. The lncRNAs may carry

out a variety of functions, e.g. scaffolding multiple pro-

teins to form a complex, and regulating gene expression

[2-11], however, most lncRNAs’ functions remain to be

specified. During the past decade, a growing number of

newly detected lncRNAs have been reported thanks to

the development of relevant biotechnology and compu-

tational methods [4,12-16]. Early tiling microarrays were

used to detect the lncRNAs in the mammalian transcrip-

tome [4,5], however, they could not detect precise gene
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structures and exon linkages of the lncRNAs [14]. Sub-

sequently, this problem was tackled by high-throughput

RNA sequencing (RNA-Seq), which presented its advan-

tage of revealing the whole transcriptome [17], including

detailed gene structures and expression levels. So far, the

RNA-Seq has been the major biotechnology for lncRNA

study [13]. For example, by using RNA-Seq, Guttman et al.

[14] obtained detailed information of over a thousand

large intergenic ncRNAs (lincRNAs) in three mouse cell

types [14].

However, studying lncRNAs based on RNA-Seq

encounters several technical problems. First, the assem-

bled transcriptome may include partial transcripts and

artefacts caused by RNA-Seq problems, such as low

sequencing depth, sequencing biases [18] and short

read alignment errors [19]. For lowly expressed tran-

scripts, the sequencing biases may introduce undesired

gaps in the assembly, resulting in partially assembled
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transcripts [20], which may be mistakenly identified as

lncRNAs. The similar mistakes could also be introduced

by low sequencing depth for lowly expressed transcripts.

Moreover, the incomplete and erroneous assemblies

can affect downstream analysis [21,22]. Second, tran-

scriptome reconstruction [23] based on RNA-Seq reads

may produce a variety of transcripts, e.g. completely

assembled transcripts, intronic RNAs [24] and antisense

transcripts [16], which are classified by comparing to the

known gene annotations. Thus it is not trivial to identify

lncRNAs from such complex assemblies. Third, it is still

difficult to distinguish the lncRNAs from the protein-

coding mRNAs [1] or short peptides. A protein-coding

mRNA can be defined by open reading frame (ORF)

greater than 100 amino acids (aa) or 300 nucleotides

(nt) [25], but this is arbitrary and incorrect [26]. Here

we present a computational pipeline to address these

problems.

Although thousands of lncRNAs have been identified

[13,14,16], only a handful of them were functionally char-

acterized. Given the difficulty to experimentally charac-

terize the biological functions of the lncRNAs [7], and

given the growing body of genomics and epigenomics

data becoming available relevant to lncRNAs’ biological

functions, it is interesting to predict lncRNAs’ functions

computationally. We applied our computational method

to an RNA-Seq dataset derived from a Klf1 gene knock-

out study on mouse fetal liver tissue [27]. Previous studies

based on the Klf1 knockout study manifested that Klf1

is the founding member of a family of 17 transcription

factors in mammals [28]. Klf1 knockout mice die from

anemia by embryonic day 15 (E15), with severe defects

in differentiation, hemoglobinization, enucleation, and

membranecytoskeleton organization of red blood cells

[29]. However, very little is known of the lncRNAs reg-

ulated by Klf1 or that participate in the development of

erythroid cells. Here, we recruit the differential expression

analysis to explore the lncRNAs that may function in the

erythropoiesis.

Methods
Datasets

The RNA-Seq dataset for the Klf1 knockout experiment

on mouse embryonic day 14.5 (E14.5) fetal liver tissue

can be obtained from NCBI Gene Expression Omnibus

(GEO) [30] database with accession number GSE33979

[27], and it includes 6 replicates (3 for wild-type and 3

for Klf1 knockout) totalling 160 million 76-base single-

end reads generated by Illumina GAIIx sequencing on

polyadenylated selected (Poly-A+) RNAs. Bowtie [31]

index ofMus musculus genome (mm9), Ensembl [32] and

NCBI reference sequences (RefSeq) mouse gene anno-

tations [33] are all available on Cufflinks’ website [34].

University of California Santa Cruz (UCSC)mouse known

gene annotations [35] can be downloaded from the UCSC

genome browser [36].

Pipeline for predicting novel lncRNAs

There are two parts in our pipeline for predicting novel

lncRNAs from the RNA-Seq data (Figure 1).

Initial assembly

Initial assembly (Figure 1-a) represents a genome-guided

strategy for transcriptome reconstruction [23]. The raw

RNA-Seq reads were first mapped onto the mm9 genome

by Tophat 2.0.3 [19]. After that, the un-mapped reads were

trimmed to 50 nt before re-mapping. The final mapped

reads of each replicate include two parts, namely ‘Mapped

reads 1’ and ‘Mapped reads 2’. Moreover, the ‘-G’ option

of Tophat together with the Gene Transfer Format (GTF)

file of the Ensembl gene annotation was used for read

mapping. With the read alignments, we calculated the

overlap ratio (OR) between the replicates of each condi-

tion (Additional file 1). To increase the read coverage, we

merged the read alignments of all six replicates into one

Binary version of Sequence Alingment/Map (BAM) using

Samtools 0.1.18 [37]. Then the mapped reads were assem-

bled by Cufflinks 2.0.2 [21]. In the transcriptome assembly,

we performed Reference Annotation Based Transcript

(RABT) assembly [38] with the RefSeq gene annota-

tion to compensate incompletely assembled transcripts

caused by read coverage gaps in the regions of RefSeq

genes.

Novel lncRNAs detection

Novel lncRNAs detection (Figure 1-b) is aimed at detect-

ing novel lncRNAs from the initial assemblies. Specifi-

cally, the initial assemblies were first compared to a set

of combined gene annotations (See below) using cuff-

compare [22]. As a result, not only the assemblies that

completely match the annotations will be detected, but

also the novel transcripts can be categorized into differ-

ent categories according to their locations compared with

the reference genes. Notably, only multi-exon transcripts

were retained for the comparison and downstream pro-

cessing. Then low-quality assemblies were filtered accord-

ing to the optimum Fragments Per Kilobases of exon

per Million fragments mapped (FPKM) [21] threshold

(2.12, see below). After that, we used a newly-developed

program called lncRScan (See below) to detect novel

lncRNAs.

Combined gene annotations of RefSeq, Ensembl and UCSC

mouse known genes

The cuffcompare program [22] was used to merge the

RefSeq, Ensembl and UCSC mouse known genes into

one set of gene annotation for comparing with the

assembled transcripts.
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Figure 1 Pipeline for predicting novel lncRNAs. (a) Initial assembly. Raw reads are first mapped onto the reference mouse genome. The

un-mapped reads are trimmed before re-mapping. Merging the read alignments of all 6 replicates is to increase the read coverage. At the assembly

stage, RABT generates synthetic reads from the RefSeq gene annotation to compensate the read coverage gaps over transcripts; (b) Novel lncRNAs

detection. The initial assemblies are categorized by cuffcompare, compared with the combined gene annotations. The low-quality transcripts are

then filtered according to the optimum FPKM (2.12). The lncRScan program is performed to detect the novel lncRNAs from the remaining

high-quality assemblies according to multiple criteria.

FPKM threshold for classifying complete and partial

transcripts

Based on the merged read alignments, we conducted an

experiment to evaluate the performance of FPKM in clas-

sifying complete and partial transcripts. Specifically, we

first ran cufflinks on the merged read alignments with

default options. Then the output assemblies with FPKM

values estimated were categorized using cuffcompare,

compared with the combined gene annotations. With the

results, we evaluated the performance of different FPKM

thresholds in classifying the complete and partial tran-

scripts by ReceiverOperating Characteristic (ROC) [39].

Calculating optimum FPKM threshold

The optimum FPKM threshold for classifying the com-
plete and partial transcripts were calculated by train-
ing the FPKM values estimated from the experiment
above. The index of the optimum FPKM threshold can
be obtained by optimizing the sensitivity and specificity
in classifying the complete and partial transcripts with
formula 1.

i∗ =arg min
i∈I

{

√

(1 − sensitivities[ i] )2+(1 − specificities[ i] )2
}

(1)

where i∗ represents the index of the optimum FPKM

threshold. On the right of formula 1, sensitivities[ i] and

specificities[ i] respectively denote the ith sensitivities and

specificities, given an index i. The i is enumerated in I,

ranging from 1 to the size of a FPKM threshold set. Then

we can get the optimum FPKM threshold using formula 2.

t∗ = T[ i∗] (2)

where t∗ denotes the optimum FPKM threshold. The

FPKM threshold set T were generated by pROC [39],

given the FPKM values of the complete and partial tran-

scripts.

lncRScan

To detect novel lncRNAs from a set of high-quality

assemblies, a five-step program named long non-coding

RNA Scan (lncRScan) was designed (Figure 2). Step 1

‘extract category’ is used to extract five candidate cate-

gories of transcripts, including ‘i’, ‘j’, ‘o’, ‘u’ and ‘x’, which

may contain novel lncRNAs. Specifically, the ‘i’ cate-

gory may contain the lncRNAs falling entirely within an

intron of known genes. And the ‘j’ category may include

alternative long non-coding isoforms of known genes

as they share at least one spliced site with reference

transcripts. The ‘u’ category may involve the intergenic

lncRNAs (lincRNAs). The ‘o’ category may contain the

lncRNAs having generic exonic overlap with a known

transcript while the ‘x’ transcripts also have exonic overlap
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Figure 2 Steps of lncRScan. (1) ‘extract category’ extracts five

candidate categories of assemblies (Transcripts-1), including ‘i’, ‘j’, ‘o’,

‘u’ and ‘x’; (2) ‘extract length’ is used to extract the transcripts with

length > 200 nt (Transcripts-2); (3) ‘extract ORF’ selects the transcripts

with maximum putative ORF < 300 nt (Transcripts-3); (4)

‘extract PhyloCSF’ extracts the transcripts with PhyloCSF score < 0 or

test failure due to ORF < 25 aa (Transcripts-4); (5) ’extract Pfam’

searches the remaining transcripts in the Pfam database and excludes

the transcripts with significant protein domain hits. Towards the end

of lncRScan, the remaining 308 transcripts (Transcripts-5) are defined

as the novel lncRNAs.

with reference but on the opposite strand. Therefore, the

five categories defined here may include novel lncRNAs

potentially. On the other hand, all categories of tran-

scripts extracted have not been annotated by either of

RefSeq, Ensembl and UCSC known genes, so the pre-

dicted lncRNAs can be ‘novel’. Step 2 ‘extract length’ is

used to extract the transcripts having long exonic length

(> 200 nt) according to the lncRNA’s definition. Step 3

‘extract ORF’ is set to exclude the assemblies that have

long (≥ 300 nt) putative ORF. Then steps 4 and 5 are

used to exclude the transcripts of protein-coding poten-

tial. In Step 4 ‘extract PhyloCSF’, Phylogenetic Codon

Substitution Frequency (PhyloCSF) [40] is recruited to

filter the transcripts of protein-coding potential from an

evolutionary view. Briefly, PhyloCSF conducts a com-

parative genomics method for classifying protein-coding

and non-coding sequences [40]. Since the sequence align-

ments are required for running PhyloCSF, we used Galaxy

[41-43] to ‘stitch’ 29 mammalian alignments according to

the input transcripts. In Step 5 ‘extract Pfam’, the amino

acid sequences of the remaining transcripts are searched

in Pfam [44] (both Pfam-A and Pfam-B) for comparing to

known proteins or protein domains, and the transcripts

with significant domain hits are excluded.

To evaluate the performance of lncRScan in identify-

ing lncRNAs or filtering mRNAs, we ran the steps 3-5 of

lncRScan on four datasets respectively. The first dataset

(D-1) contains 1615 multi-exon RefSeq ncRNAs with

length > 200nt and the second one (D-2) records 1615

mRNAs randomly sampled from 26368 RefSeq mRNAs.

The other two datasets (D-3 and D-4) include 3230 and

4845 mRNAs sampled from the RefSeq mRNAs respec-

tively. The numbers of the retained and filtered transcripts

through the steps 3-5 of lncRScan are summarized in

Table 1. We can see that 771 (47.74%) lncRNAs of D-1

were retained after the steps 3-5. In contrast, most (99.6%-

99.7%) of the mRNAs (D-2, D-3 and D-4) were filtered

by the steps 3-5. The result indicates that the filters of

lncRScan can dramatically reduce the number of mRNAs.

Notably, the step 3 adopting the ORF threshold can filter

a large proportion of mRNAs thereby alleviating the over-

load of PhyloCSF and Pfam calculation. However, some

true lncRNAs were filtered through the pipeline, which

made the final lncRNAs prediction much stringent.

In addition, lncRScan is available to the scientific com-

munity and it can be obtained by svn checkout http://

lncrscan.googlecode.com/svn/trunk/lncrscan-read-only.

Other details about lncRScan can be found on http://

code.google.com/p/lncrscan/ .

Differential expression analysis

The cuffdiff [22] program was performed to conduct

differential expression (DE) tests between the wild-type

(WT) and Klf1 knockout (Klf1 KO) samples (Figure 3).

The fold changes were calculated via log2
FPKMWT

FPKM Klf 1KO . A

transcript will be reported DE significant if the test gives

that the FDR-adjusted p-value after Benjamini-Hochberg

correction [45] for multiple-testing represent statistical

significant (q-value < 0.05) [46].

Comparisons of transcript length, exon number, ORF

length and expression level

The novel lncRNAs we detected were compared to 26368

RefSeq protein-coding transcripts (‘NM’ prefix) and 2843

RefSeq non-coding transcripts (‘NR’ prefix) in terms of

transcript length, exon number and ORF length. Since a

real ncRNA does not have an ORF, a putative ORF of

the ncRNA candidate is defined by the longest consecu-

tive codon chain of the ncRNA candidate for comparing

with the protein-coding genes. Moreover, for both of the

WT and Klf1 KO conditions, we compared the quanti-

fied expression levels (FPKM) of the novel lncRNAs to

that of the known protein-coding transcripts, which were

extracted from the RefSeq and Ensembl gene annotations.

The novel lncRNAs and protein-coding transcripts used

for FPKM comparison all have enough expression levels

(FPKM ≥ 2.12).

Results
Initially assembled transcripts

We started our analysis with short read mapping

(Figure 1-a), and approximately 138 million reads were

http://lncrscan.googlecode.com/svn/trunk/
http://lncrscan.googlecode.com/svn/trunk/
http://code.google.com/p/lncrscan/
http://code.google.com/p/lncrscan/
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Table 1 Numbers of retained and filtered transcripts through steps 3-5 of lncRScan

Test data extract ORF(Step 3) extract PhyloCSF(Step 4) extract Pfam(Step 5)

Retained Filtered Retained Filtered Retained Filtered

D-1 (1615 lncRNAs) 952(58.95%) 663 813(50.34%) 139 771(47.74%) 42

D-2 (1615 mRNAs) 33(2%) 1582 12(0.74%) 21 6(0.37%) 6

D-3 (3230 mRNAs) 89(2.76%) 3141 45(1.44%) 44 10(0.31%) 35

D-4 (4845 mRNAs) 112(2.31%) 3733 50(1.03%) 62 18(0.37%) 32

successfully mapped onto the mm9 genome (Table 2).

With the merged alignments of six replicates, 34053

multi-exon transcripts (26212 annotated, 701 contained

by annotations and 7140 novel potentially) were assem-

bled in total, compared with 88434 transcripts of the

combined gene annotations. Then we obtained the cat-

egories of the initial assemblies by comparing to the

combined gene annotations (Table 3). It is notable that

the initial assemblies include several categories of tran-

scripts, e.g. transcripts that have complete match intron

chain compared with known genes (‘=’ classcode) and

those contained by known genes (‘c’ classcode). Of the

initial assemblies, 26212 (76.97%) transcripts have been

annotated by either of RefSeq, Ensembl and UCSC known

genes.

Filtering low-quality assemblies with optimum FPKM

threshold

FPKM can unbiasedly represent quantified expression

level of an assembled transcript, and it can be estimated

bymaximum likelihood estimation (MLE) under a statisti-

cal model of cufflinks [21], which also corrects sequencing

biases [18] in the estimation. Figure 4 shows the FPKM

distributions [47] of the complete (‘=’ classcode) and par-

tial (‘c’ classcode) transcripts assembled from the exper-

iment of FPKM threshold (See Methods) while Figure 5

shows the corresponding ROC curve. Notably, the com-

plete transcripts represent much larger FPKM than the

partial ones on average (∼29.67 vs∼4.86, P < 2.2×10−16,

Figure 3 Differential expression tests. The cuffdiff program

performs differential expression tests between the WT and Klf1 KO

samples based on the read alignments (BAM) of the six replicates and

high-quality assemblies (GTF).

Welch Two Sample t-test). According to the significant

difference of FPKM distributions of complete and partial

assemblies, we calculated the optimum FPKM threshold

(2.12) based on our data (See Methods). We assumed that

the artificial transcripts represent either similar FPKM

distribution to the partial transcripts or lower FPKM than

the partial ones, thus the optimum threshold can be used

to filter both of the partial assemblies and artefacts from

the 7140 novel assemblies.

Identification of high-quality assemblies

We pooled a set of high-quality assemblies (Additional

file 2) for downstream analysis. The high-quality assem-

blies consist of two categories. One category contains the

26212 initial assemblies that completely match the com-

bined gene annotations (‘=’ classcode). The other category

refers to the 3288 transcripts extracted from the 7140

novel assemblies (!{‘=’,‘c’}), which satisfy the expression

criterion (FPKM ≥ 2.12).

Novel mouse embryonic lncRNAs

We applied our newly developed lncRNAs detector

lncRScan to the high-quality assemblies and detected 308

novel mouse embryonic lncRNAs (Additional file 3). The

novel lncRNAs were further classified into 5 categories

by comparing with the known gene annotations (Table 4).

Specifically, 52 lncRNAs were assigned the ‘u’ classcode

since they were located in the intergenic regions. And

26 lncRNAs with the ‘i’ classcode fall entirely within

the intron of known genes. The other lncRNAs all have

exon overlap with known genes. Specifically, 44 lncRNAs

with the ‘o’ classcode have generic exonic overlap with

Table 2 Readmapping summary

Replicate Raw reads Un-mapped Mapped

KO 1 25153995 5713351 (22.7%) 19440644 (77.3%)

KO 2 26269828 3294901 (12.5%) 22974927 (87.5%)

KO 3 25988788 6032342 (23.2%) 19956446 (76.8%)

WT 1 20034326 2006957 (10.0%) 18027369 (90.0%)

WT 2 22221706 4486281 (20.2%) 17735425 (79.8%)

WT 3 45034903 4678496 (10.4%) 40356407 (89.6%)

total 164703546 26212328 (15.9%) 138491218 (84.1%)
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Table 3 Categories of initial assemblies

Class code Transcript number Percentage Description

= 26212 76.97% Complete match of intron chain

c 701 2.06% Contained by a reference transcript

j 6207 18.23% At least one splice junction is shared with a reference transcript

i 155 0.46% A transfrag falling entirely within a reference intron

o 187 0.55% Generic exonic overlap with a reference transcript

u 492 1.44% Unknown, intergenic transcript

x 98 0.29% Exonic overlap with reference on the opposite strand

s 1 0.00% An intron of the transfrag overlaps a reference intron on the oppo-
site strand

total 34053 100% Total

known genes and 6 ‘x’ lncRNAs also have exonic over-

lap with known genes but on the opposite strand. The

180 lncRNAs with ‘j’ can be long non-coding isoforms

of known genes. In addition, the 308 novel lncRNAs we

predicted were compared with 36991 ones annotated by

NONCODE 3.0 [48]. Of the 308 novel lncRNAs, 5 (1.62%)

ones have the same structure as NONCODE lncRNAs

(Additional file 1) and another 75 (24.35%) ones partially

overlap the NONCODE lncRNAs (Figure 6). By excluding

the 80 lncRNAs that overlap the NONCODE annotation,

we can get a more stringent set of novel lncRNAs.

Novel lncRNAs have shorter transcript length, fewer exons

and shorter putative ORF than protein-coding transcripts

Previous studies in mammals have shown that lncR-

NAs are shorter in length and fewer in exon number

than are protein-coding transcripts [13,14,16]. To deter-

mine whether the embryonic lncRNAs we detected have

the same features, we compared the 308 novel lncRNAs

to not only 26368 protein-coding transcripts, but also

2843 known non-coding ones, annotated by RefSeq (See

Methods). As shown in Figure 7, the novel lncRNAs

represent much shorter transcript length on average

than either RefSeq protein-coding (∼1.2kb vs ∼3.1kb,

P < 2.2 × 10−16, Welch Two Sample t-test) or non-coding

transcripts (∼1.2kb vs ∼1.9kb, P = 6.027 × 10−14) while

the lncRNAs also show fewer exons than either of the Ref-

Seq protein-coding (∼2.8 vs ∼10.0, P < 2.2 × 10−16) and

non-coding transcripts (∼2.8 vs ∼3.3, P = 5.096 × 10−8),

agreed with a previous report [13]. In addition, we also

compared the putative ORF lengths of the lncRNAs to

that of the RefSeq genes (both protein-coding and non-

coding). As a result, the novel lncRNAs represent shorter

putative ORF length than either RefSeq protein-coding

RNAs (∼0.17 kb vs ∼1.6 kb, P < 2.2 × 10−16) or

ncRNAs (∼0.17 kb vs ∼0.30 kb, P < 2.2 × 10−16),

FPKM value(log10)

d
e
n
s
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y

0.0

0.2

0.4

0.6

0.8

10−1 100 101 102 103

class_code

=

c

Figure 4 FPKM distributions of complete and partial transcripts. The ‘=’ classcode is originally assigned to the transcripts that have complete

match intron chain with a reference transcript and they can be treated as complete transcripts while the ‘c’ classcode is attached to the transcripts

contained by reference and they are defined as partial assemblies. The complete (‘=’, red curve) and partial (‘c’, blue curve) transcripts assembled

from the read alignments represent distinguishable FPKM distributions from each other (∼29.67 vs ∼4.86).
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Specificity
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Figure 5 Performance of FPKM in distinguishing between

complete and partial transcripts. An assembled transcript will be

classified into the category of complete assemblies (‘=’ classcode) if

its FPKM is larger than a given threshold, otherwise it will be put into

the partial category (‘c’ classcode). The blue ROC curve [39] represents

the performance of FPKM in classifying the complete and partial

transcripts. The corresponding Area Under Curve (AOC) is 0.7825.

consistent with a previous report on zebrafish embry-

onic lncRNAs [16]. Although the novel lncRNAs candi-

dates are to be ncRNAs, they can differ from the RefSeq

ncRNAs used for comparison in some features due to

several reasons as follows. First, the RefSeq ncRNAs do

not only include lncRNAs, but also other categories of

ncRNAs, e.g. microRNAs and small nucleolar RNAs. Sec-

ond, the lncRNAs can be further classified according to

their biological functions, thus the features of different

categories of lncRNAs may differ from each other. The

lncRNAs we detected may not come from the same cate-

gory as that annotated by RefSeq. Third, the unbalanced

population sizes can affect the comparison between the

two categories of ncRNAs. Last, the putative ORF length

of the lncRNAs we predicted were limited (< 300 nt),

which can affect the ORF comparison. Therefore it is

reasonable to see that the two categories of ncRNAs repre-

sent slight statistical difference, which is far less than that

between the mRNAs and ncRNAs.

Novel lincRNAs have lower expression level than

protein-coding transcripts

Previous studies also showed that lncRNAs are expressed

at significantly lower levels than are protein-coding tran-

scripts [13,14,16]. To determine whether the embryonic

lncRNAs we detected have the same expression feature,

we compared the quantified expression levels (FPKM) of

the 308 novel lncRNAs to that of the known protein-

coding transcripts (Figure 8). In the WT condition

(Figure 8-a), the protein-coding transcripts represents

slightly higher expression than the novel lncRNAs on

average (∼50.92 vs ∼44.54, P = 0.554, Welch Two Sam-

ple t-test). Similarly, in the Klf1 KO condition (Figure 8-b),

the protein-coding transcripts also show slightly higher

expression than the lncRNAs on average (∼37.63 vs

∼34.06, P = 0.6986). The comparison result indicates

that the total novel lncRNAs do not show significant

lower expression than the protein-coding ones. Moreover,

we extracted the 52 lincRNAs (‘u’ classcode) from the

308 lncRNAs for the expression comparison. The result

manifests that the lincRNAs we predicted represents sig-

nificant lower expression than the protein-coding ones

in either WT or Klf1 KO condition (∼11.29 vs ∼50.93,

P < 2.2 × 10−16, and ∼9.38 vs ∼37.63, P < 2.2 × 10−16,

respectively).

Differentially expressed lncRNAs

Using cuffdiff, we conducted the differential expression

(DE) tests between the WT and Klf1 KO samples for

analysing the function of the novel lncRNAs. At the gene

level (Figure 9-a), Klf1 represents like an activator since

more assembled genes are significantly repressed (334)

after Klf1 is knocked out than the activated ones (250). At

the transcript level (Figure 9-b), Klf1 also behaves like an

activator sincemore transcripts are significantly repressed

(262) after Klf1 is knocked out than the activated ones

(147). Moreover, we detected 13 (Additional file 4) novel

lncRNAs with DE significant. Notably, Klf1 still functions

like an activator for the 13 lncRNAs (10 repressed vs 3

activated after Klf1 is knocked out, Figure 9-c). Thus it

Table 4 Categories of novel lncRNAs

Class code Transcript number Percentage Description

j 180 58.44% At least one splice junction is shared with a reference transcript

i 26 8.44% A transfrag falling entirely within a reference intron

o 44 14.29% Generic exonic overlap with a reference transcript

u 52 16.88% Unknown, intergenic transcript

x 6 1.95% Exonic overlap with reference on the opposite strand

total 308 100% Total
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Figure 6 Comparison between novel lncRNAs and NONCODE lncRNAs. There are 36991 lncRNAs annotated by NONCODE 3.0 and 308 lncRNAs

predicted by our method. Of the 80 (25.97% of our prediction) overlapped lncRNAs, 5 ones have been exactly annotated by NONCODE 3.0.

is obvious that Klf1 can function as an activator globally,

regulating the expression of a number of genes or tran-

scripts including the lncRNAs we detected. The detailed

categories of the 13 lncRNAs of DE significant can be seen

from Table 5.

However, cuffdiff does a length correction that has a ten-

dency to inflate the FPKM counts for small transcripts,

which can interfere the differential expression analysis. To

alleviate this problem, we re-ran the DE tests with the “–

no-effective-length-correction”parameter. As a result, we
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Figure 7 Comparisons of transcript length, exon number and ORF length. (a) Comparison of transcript length. The novel lncRNAs show

shorter length (∼1.2kb) on average than either RefSeq protein-coding (∼3.1kb) or non-coding transcripts (∼1.9kb); (b) Comparison of exon

number. The lncRNAs represent fewer exons (∼2.8) than the other two categories of transcripts (∼10.0 and ∼3.3, respectively) on average; (c)

Comparison of ORF length. The novel lncRNAs show shorter putative ORF length (∼0.17kb) than either of the two RefSeq gene categories (∼1.6kb

and ∼0.3kb, respectively) on average. All means are marked by red points.
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Figure 8 Comparison of expression level between protein-coding transcripts and novel lncRNAs. (a) In the WT condition, the protein-coding

transcripts (∼50.92) represent slightly higher expression level than the novel lncRNAs (∼44.54), but significantly higher expression than the lincRNAs

(∼11.29) extracted from the lncRNAs; (b) In the Klf1 KO condition, the protein-coding transcripts (∼37.63) also show slightly higher expression level

than the lncRNAs (∼34.06), but significantly higher expression than the lincRNAs (∼9.6). In addition, the protein-coding transcripts and the novel

lncRNAs represent similar median expression in either WT (10.29 vs 9.509) or Klf1 KO (9.421 vs 7.722) condition. All means are marked by red points.

obtained the same results as that without the parameter,

which represent the robustness of our predictions.

Discussion
RNA-Seq has been revolutionizing the transcriptome

study as it can effectively capture the whole transcrip-

tome of various cell types under different conditions.

Here we predicted 308 novel mouse embryonic lncRNAs

from the RNA-Seq data of WT and Klf1 KO samples

using a computational pipeline. The novel lncRNAs we

detected represent shorter transcript length, fewer exons

and shorter putative ORF length, and the 52 lincRNAs of

the lncRNAs show lower expression level, compared with

known protein-coding transcripts. Moreover, we iden-

tified 13 differentially expressed novel lncRNAs, which

may be regulated by Klf1 and play functional roles in the

development of erythroid cells potentially. Notably, two

lncRNAs (IDs: 2 00016377 and 2 00016378) we predicted

(a) (b) (c)

Figure 9 Differential expression of transcripts betweenWT and Klf1 KO. The three volcano plots illustrate the differential expression (DE)

between the WT and Klf1 KO samples at either gene or transcript level: (a) DE of all genes. At the gene level, Klf1 globally appears to be an activator

since more genes are significantly repressed (334, red points over the positive x-axis) than the activated ones (250, red points over the negative

x-axis) after Klf1 is knocked out; (b) DE of all transcripts. At the transcript/isoform level, Klf1 also behaves like an activator since more transcripts are

significantly repressed (262) than activated ones (147) after Klf1 is knocked out; (c) DE of the novel lncRNAs. For the 13 DE significant lncRNA

transcripts, Klf1 still functions like an activator since 10 lncRNAs are repressed and 3 ones are activated after Klf1 is knocked out. The DE significant

transcripts are all represented by red points.
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Table 5 Categories of novel lncRNAs of differential expression significant

Class code Transcript number Percentage Description

j 5 38.46% At least one splice junction is shared with a reference transcript

i 1 7.69% A transfrag falling entirely within a reference intron

o 2 15.38% Generic exonic overlap with a reference transcript

u 4 30.77% Unknown, intergenic transcript

x 1 7.69% Exonic overlap with reference on the opposite strand

total 13 100% Total

represent almost the same structures as another two

lncRNAs predicted by Tallack et al. [27] based on the

same dataset. Specifically, most exons of 2 00016377

and 2 00016378 match that of their ‘lincred1-giant’ and

‘lincred1-dwarf ’ lncRNAs respectively. The slight differ-

ence may be caused by both of the strategies of transcrip-

tome reconstruction and program versions used. Despite

of that, the differential expression of the two lncRNAs

we detected can be explained by Tallack et al.’s valida-

tion using Real-time Quantitative PCR (qRT-PCR) [49]

on their ‘lincred1’ lncRNAs.

On the other hand, our pipeline followed a similar strat-

egy for predicting human lincRNAs [13], but we differ in

three aspects. First, we used FPKM as a feature for fil-

tering low quality assemblies instead of the read coverage

[13] due to the fact that FPKM can unbiasedly represent

the expression level of a transcript and the read coverage

does not show better performance than FPKM in classi-

fying the complete and partial transcripts assembled from

our data (AUCs are equal). Second, we excluded the tran-

scripts having long putative ORF length (≥ 300 nt), which

was previously used by the FANTOM consortium [50].

This arbitrary cutoff makes our predictions more strin-

gent, but it must omit the lncRNAs having long putative

ORF (≥ 300 nt). Last, we detected several DE signif-

icant lncRNAs, which composed a subset of the total

lncRNAs we detected and they are more worth being

investigated by loss and gain of function studies than the

other novel lncRNAs in our scenario. Consequently, our

computational methods can effectively alleviate further

experimental work for studying the lncRNAs that may

participate in the development of erythroid cells.

Although our method presented its ability in detect-

ing novel lncRNA candidates, its prediction accuracy can

be improved from several aspects, such as using more

reliable reads generated by high-quality deep sequencing,

paired-end sequencing and strand-specific sequencing.

And recent single-molecule sequencing technologies can

provide more unbiased ways to capture the transcrip-

tome [51]. The sensitivity of transcriptome reconstruc-

tion can also be improved by using various strategies,

such as integrating assembly results from Scripture [14].

In addition, the novel lncRNAs predicted from our

computational pipeline should be validated by biological

experiments, such as cloning and PCR-based techniques

[22] as several ones have been tested in the original

study by Tallack et al. [27]. Furthermore, additional

genetic and/or epigenetic data sources, e.g. Chromatin

Immunoprecipitation-Sequencing (ChIP-Seq) on chro-

matin signatures, can be valuable sources providing use-

ful information for characterizing functions of the novel

lncRNAs. And the loss and gain of function studies can

be conducted for exploring regulatory mechanisms of the

lncRNAs.

Conclusions
We predicted a set of novel lncRNAs using our computa-

tional pipeline from the RNA-Seq data of Klf1 knockout

study, and the DE significant lncRNAs are worth being

further studied with regard to their biological functions.
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