
Mentel et al. BMC Oral Health          (2021) 21:500  

https://doi.org/10.1186/s12903-021-01862-z

RESEARCH

Prediction of oral squamous cell carcinoma 
based on machine learning of breath samples: 
a prospective controlled study
Sophia Mentel1, Kathleen Gallo2, Oliver Wagendorf1, Robert Preissner2, Susanne Nahles1, Max Heiland1 and 

Saskia Preissner1* 

Abstract 

Background: The aim of this study was to evaluate the possibility of breath testing as a method of cancer detection 

in patients with oral squamous cell carcinoma (OSCC).

Methods: Breath analysis was performed in 35 OSCC patients prior to surgery. In 22 patients, a subsequent breath 

test was carried out after surgery. Fifty healthy subjects were evaluated in the control group. Breath sampling was 

standardized regarding location and patient preparation. All analyses were performed using gas chromatography 

coupled with ion mobility spectrometry and machine learning.

Results: Differences in imaging as well as in pre- and postoperative findings of OSCC patients and healthy partici-

pants were observed. Specific volatile organic compound signatures were found in OSCC patients. Samples from 

patients and healthy individuals could be correctly assigned using machine learning with an average accuracy of 

86–90%.

Conclusions: Breath analysis to determine OSCC in patients is promising, and the identification of patterns and the 

implementation of machine learning require further assessment and optimization. Larger prospective studies are 

required to use the full potential of machine learning to identify disease signatures in breath volatiles.
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Background
Approximately 354,864 new cases of oral cancer are diag-

nosed annually, and the number, which was associated 

with 177,384 deaths in 2018, is steadily increasing [1]. 

About 90% of oral cancers diagnosed are oral squamous 

cell carcinomas (OSCCs), which result in malignancies 

in men at least twice as often as women [2]. In Germany, 

the 5-year survival rate of patients diagnosed with OSCC 

varies between 63% (female) and 47% (male) [3]. Mortal-

ity is associated with the high recurrence rate and metas-

tases of OSCC, and the delayed diagnosis of the disease 

[4, 5]. Only one-third of OSCC are discovered at an early 

stage (0–I) [6, 7]. �erefore, the development of tests 

that enhance our capacity to screen high-risk (e.g. heavy 

tobacco and alcohol abuse) [8] and post-therapy patients 

is of great interest.

Breath analysis is not burdensome to patients, and is 

a rapid, non-invasive and inexpensive cancer screening 

tool. Its use has already been determined to be a promis-

ing approach to detect and differentiate various diseases, 
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gastrointestinal conditions, and cancer types, such as 

lung, breast, colorectal cancer [9–12]. In every exhaled 

human breath, specific volatile organic compounds 

(VOC) that are byproducts of normal cell metabolism 

can be identified. �ese compounds are also present in 

biofluids such as blood, saliva, urine and feces [13, 14]. 

�e concentrations and types of VOCs present in the 

exhaled breath of cancer patients compared to healthy 

individuals may differ based on differences in levels of 

oxidative stress, which are enhanced in tumor tissues 

[15, 16]. Gas chromatography coupled with mass spec-

trometry (GC–MS) is considered the gold standard for 

VOC screening. However, the E-nose technique, which 

is based on breath analysis, has produced promising 

results in OSCC patients as well [17–19]. Schmutzhard 

et  al. [20] showed that a significant difference between 

VOC data from cancer patients relative to the two con-

trol groups could be detected using proton transfer-reac-

tion-mass spectrometry (PTR-MS). A study published 

by Hakim et  al. [21] revealed that data produced via 

GC–MS could be used to detect statistically significant 

differences between the breath compositions of three 

evaluated groups (OSCC/lung cancer/control). Fur-

ther, the authors were able to distinguish groups using a 

Nanoscale Artificial Nose. Gruber et al. [22] published a 

feasibility study comparing OSCC patients, benign tumor 

patients and healthy controls that identified three poten-

tial biomarkers of OSCC using GC–MS. Bouza et al. [23] 

concluded that aldehyde compounds had the capacity to 

function as OSCC biomarkers when detected using solid-

phase micro extraction followed by GC–MS. Further, 

Hartwig et  al. [24] published a pilot study that revealed 

the absence of three specific VOCs after curative surgery 

for OSCC when compared to a patient’s initial GC–MS 

spectrum, which indicated a correlation between OSCC 

and the specific VOCs identified.

Machine learning is a computational branch that emu-

lates human intelligence by learning from big data, and is 

applied in various fields, such as finances, entertainment 

or biological and medical applications to detect pat-

terns which are hard or impossible to see for the human 

eye [25]. During the last years, a wide range of machine 

learning approaches were developed for the early diag-

nosis of different kinds of cancer from images. �ese 

include breast cancer detection by analyzing digitized 

images of fine needle aspirates of breast masses [26], lung 

cancer prediction from computed tomography images 

[27, 28] and brain cancer detection using magnetic reso-

nance imaging [29]. Recent developments even include 

mobile applications for the detection of skin diseases via 

user-provided images, which are widely applicable and 

easy to use [30].

�e aim of this study was to evaluate breath samples 

before and after surgery in a larger cohort using machine 

learning to compare OSCC patients with healthy smok-

ers to optimize the identification of signatures of OSCC 

using a recently introduced gas chromatography–ion 

mobility spectrometry (GC–IMS)-based method. Fur-

ther, we aim to enhance the applicability of the test by 

improving the detection of OSCC specific IMS signals 

that may be used to determine a VOC signature in future 

studies.

Patients and methods
Study population

In this prospective controlled study we collected breath 

samples from 55 patients with potential OSCC, as well 

as 50 breath samples from healthy controls. �e Eth-

ics committee of the University formally approved the 

study (EA1/203/19). Written informed consent for study 

participation was obtained from study participants. All 

methods were carried out in accordance with relevant 

guidelines and regulations.

Patients between the age of 18 and 85 with OSCC in the 

oral cavity and oropharynx with surgical therapy pending 

were included in the study. Exclusion criteria included a 

diagnosis of other severe internal accompanying diseases, 

HIV infection and a Karnofsky performance status scale 

of less than 50%. All participants in the control group 

were required to be daily smokers, at least 18  years old 

and lack known malignant pre-existing conditions.

Sampling

Standardization of sampling in terms of location and 

patient instruction was known to be crucial from the lit-

erature and our pre-tests. Patients were instructed to fast 

at least 6  h before sampling and refrain from cleaning 

their teeth with toothpaste or mouthwash. Samples were 

also taken in a healthy control group under the same 

conditions and instructions. Patients were instructed to 

breathe a few times through the slightly opened mouth. 

Air from each participant’s breath was collected using 

a 5  mL Luer syringe directly from the mouth. During 

transport, each syringe was closed with a stopper to pre-

vent contamination. �e procedure was repeated twice. 

All samples were analyzed within 20  min. Additionally, 

two syringes filled with room air were analyzed.

If analysis within 20 min was not possible (n = 2), the 

sample was transferred to a single use mylar bag (Quin-

Tron, Milwaukee, WI, USA), stored at room temperature 

and analyzed within 24 h [31]. During analysis we made 

sure that these samples did not differ significantly from 

the other samples. Sampling always took place the morn-

ing before surgery or panendoscopy.
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Gas chromatography/ion mass spectrometry (GC/IMS)

Breath sample analysis was executed using BreathSpec® 

(GAS Dortmund, Germany). �e device facilitated two-

fold separation via GC combined with IMS to detect gas-

eous compounds in a mixture of analytes. VOCs were 

pre-separated based on their retention times via GC and 

detected using an IMS electrometer based on specific 

drift times needed to travel a fixed distance (drift tube) in 

a defined electric field.

Samples were injected using a 5  mL-Luer-syringe via 

a Luer-Lock-Adapter into the BreathSpec® (GAS Dort-

mund, Germany). Samples were heated to 60  °C while 

passing through the first transfer line and were pumped 

into the sample loop (40  °C). A carrier gas transported 

the sample gas in the loop to the GC column (60  °C). 

During the first separation, different VOCs pass through 

the GC capillary column (30  m × 0.53  mm, 0.5  μm) at 

various speeds due to their different retention times. 

Next, when passing through the second transfer line 

(60 °C), separated compounds consecutively are fed into 

the IMS ionization chamber (45 °C). �e first separation 

reduces levels of competition between analytes for reac-

tant ions and enhances the sensitivity of IMS detection. 

VOCs are softly chemical-ionized initiated by a low-radi-

ation tritium (H3) source. �e collision between fast elec-

trons emitted from the β-radiator (H3) with an inserted 

Fig. 1 CONSORT flow diagram
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reagent gas, which is followed by a cascade of reactions, 

generates reactant ions. �is forms the so-called reac-

tion ion peak (RIP), which represents the number of ions 

available. �e chemical ionization of analytes by reactant 

ions creates specific analyte ions, as long as the affinity 

of the analyte to the reactant ion is greater than its affin-

ity to water, which is typical for all heteroatom-organic 

compounds. Specific analyte ions travel at atmospheric 

Table 1 Characteristics of OSCC patients: Age, sex (m: male, f: female), smoking habits (+: smoker, −: non-smoker, +a: former smoker), 

ICD 10 code (*: recurrence), TNM classification

Patient no Age Sex Smoker ICD 10 Location TNM

1 76 M − C03.1 Lower gum T4a N0 M0

2 52 M + C03.1 Lower gum T4a N1 M0

3 61 M + C02.1 Border of tongue T2 N0 M0

4 59 M + C04.0 Anterior floor of mouth T1 N0 M0

5 62 M + C04.1 Lateral floor of mouth T3 N3b M0

6 53 M +a C02.1 Border of tongue T1 N0 M0

7 80 F + C03.0 Upper gum T4a N2c M0

8 60 F − C02.1 Border of tongue T1 N0 M0

9 76 F + C04.0 Anterior floor of mouth T1 N0

10 86 F +a C02.1 Border of tongue T3 N3b M1

11 74 F + C04.0 Anterior floor of mouth T1 N0 M0

12 89 M + C05.0* Hard palate T4a N0 M0

13 81 M − C03.0 Upper gum T4a N0 M0

14 63 M + C02.1 Border of tongue T3 N3b M0

15 76 M + C04.8 Overlapping lesion of floor of mouth T3 N1 M0

16 61 M +a C03.1 Lower gum T4a N0 M0

17 63 F + C14.8 Overlapping lip, oral cavity T4a N1 M0

18 75 M − C05.1 Soft palate T1 N1

19 71 M − C06.0 Cheek mucosa T1 N0 M0

20 72 M + C03.1 Lower gum T4a N3b M0

21 49 M + C03.1 Lower gum T4a N0 M0

22 58 F − C02.1 Border of tongue T1 N0 M0

23 62 M + C06.0 Cheek mucosa T4 N2 M0

24 83 M + C02.0 Dorsal surface of tongue T2 N0 M0

25 63 F + C04.8 Overlapping lesion of floor of mouth T4b N2 M0

26 63 F + C05.0 Hard palate T3 N2c

27 88 M +a C03.1 Lower gum T4b N2 M0

28 43 M + C02.0* Dorsal surface of tongue T4 N0 M0

29 81 F − C06.0 Cheek mucosa T4a N0 M0

30 44 M + C05.0 Hard palate T4a N2 M0

31 83 M + C04.9 Floor of mouth T2 N0 M0

32 58 M − C04.8* Overlapping lesion of floor of mouth T3 N0 M1

33 62 M − C02.1 Border of tongue T1 N0 M0

34 65 M + C04.0 Anterior floor of mouth T2 N0 M0

35 61 F − C03.1 Lower gum T1 N0 M0

Table 2 Summary table of the cohort

Male Female Smoker Non-smoker Former smoker T1/2 T3/4

Before surgery 24 11 21 10 4 14 21

After surgery 15 7 13 6 3 9 13
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pressure versus a flow of inert drift gas in the drift tube, 

and the resulting ion current is measured using an elec-

trometer (drift length: 98  mm, electrical field strength: 

500 V/cm). IMS measurements are extremely fast (30 ms/

spectrum). �e mass and geometric structure of an ion 

determines the drift time of each substance. �erefore, 

IMS can differentiate isomeric molecules.

To perform analyses, two breath samples and two 

room air samples were taken from each participant. One 

sample of the patient’s breath and one of the surround-

ing air was analyzed using the positive drift voltage IMS 

mode and one of each of the breath and air samples were 

assessed using the negative drift voltage mode. �e total 

processing time for one sample was 10 min.

VOC analysis

For visualization and analysis of data, a software pro-

vided by the manufacturer was used (VOCal, Dortmund, 

Germany). GC separation of VOCs divided compounds 

based on their retention times in the capillary, which 

resulted in an offset feed into IMS and generated coor-

dinates on the y-axis of the pictorial representation. IMS 

was used to separate compounds according to their spe-

cific drift times in an electric field, which have been dis-

played as coordinates on the x-axis. �ese data produce 

a two-dimensional visualization scheme. �e quanti-

fication of compounds was performed down to the low 

parts per billion (ppb) level, and data were used to create 

a z-axis in the software. Signal intensity was correlated 

with the analyte concentration of a sample. For analy-

sis, individual signals were marked manually, and signal 

intensity changes and the presence of recurring patterns 

were identified using tools in the software.

Machine learning

To work with the 2-dimensional images, which were 

produced using the manufacturer’s software, they were 

first transformed into integer arrays. To achieve this, the 

“Image module” from the Python library pillow (https:// 

pillow. readt hedocs. io/ en/ stable/ refer ence/ Image. html) 

was used to load the images. After successfully transfer-

ring the images into the Python script, they were subse-

quently converted to numpy arrays (https:// numpy. org/), 

using the function “asarray”. �e resulting array consists 

of integer values specifying the color of each pixel in RGB 

format (https:// htmlc olorc odes. com/), so for each pixel 

in the original image, three color values are produced 

that represent its respective amount of red, green and 

blue. Furthermore, to assure all images were of the same 

size, all images were reshaped to a standard format 

of 200 × 200 pixels using the numpy function “resize”, 

since even a difference in size by one pixel could poten-

tially influence the results. As a last step, to ensure an 

equal importance of each feature, the multidimensional 

array representing the color values was collapsed into a 

1-dimensional array using the numpy function “ravel”.

To identify the best performing classifier, a number 

of different models were evaluated, including random 

forest [32], logistic regression [33], K nearest neighbors 

[34], and linear discriminant analysis [35]. All meth-

ods are implemented in the Python library Scikit-Learn 

(https:// scikit- learn. org/ stable/), and used with the 

respective recommended initial parameters. To build 

each model, depending on the comparison in question, 

the images were separated into the two categories of 

“true” and “false” respectively. To train and evaluate the 

performance of each model, the data was split into train-

ing and test set. �e training set was used as input for 

the machine learning model, while the test set was hold 

back so it remained completely unknown to the machine 

learning model. After finishing the training, each image 

in the test set was then predicted by the machine learn-

ing model to be “true” or “false” and it was assessed if the 

model did the correct prediction. �e prediction accu-

racy of each model was analyzed multiple times with 

varying sizes of training and test set. Initially, a tenfold 

cross-validation was performed [36], where the data set 

is split into 10 equally sized parts. Each of the 10 subsets 

is then used once as test set, with the remaining 9 parts 

being the training set for this specific case.

Additionally, the recall was evaluated using the leave-

one-out methodology [37]. In this case, the test set con-

sists only of a single data sample, while all remaining 

samples were used as a training set to build the model. 

Here, each image was used once as a test sample and 

therefore left out while training the model. Subsequently, 

the left-out test sample was predicted and the prediction 

was determined to be either true or false.

Results
Manual VOC evaluation

�e study population consisted of 55 patients with sus-

pected OSCC before surgery and 50 healthy control sub-

jects. After applying exclusion criteria, some patients 

could not be included in the final data analysis (Fig. 1).

(See figure on next page.)

Fig. 2 Comparison of pre- and postoperative measurements. The heat map shows 25 areas of interest revealed using 44 measurements of 22 

patients before and after surgery in negative drift mode. Certain VOCs are present in all samples (areas 1, 2, 5, 9), and display different signal intensity 

(concentration), others are inconsistently observed (e.g. areas 6, 12, 14, 17, 20), and some VOCs are present in exclusively pre- or postoperative 

samples (e.g. areas 24 and 25)

https://pillow.readthedocs.io/en/stable/reference/Image.html
https://pillow.readthedocs.io/en/stable/reference/Image.html
https://numpy.org/
https://htmlcolorcodes.com/
https://scikit-learn.org/stable/
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Fig. 2 (See legend on previous page.)
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�e preoperative analysis consisted of 35 patients (24 

men and 11 women) with an average age of 67.2  years. 

According to their medical history, 21 participants were 

smokers (60%), four were former smokers, ten were non-

smokers (28.6%) (Tables 1 and 2).

Postoperative sampling was carried out in 22 patients 

(some were lost during follow-up, Fig. 1). Breath samples 

were taken approximately 12 days after surgery. �e con-

trol group included 50 healthy smokers (25 men and 25 

women), with an average age of 55 years.

To compare the occurrence of different VOC areas in 

the population and between preoperative and postop-

erative patients, signals in the visual representation that 

corresponded to substances in analyzed air were manu-

ally marked in all measurements. Data from one patient 

were placed in chronological order and compared using 

marked signal areas. It was revealed that certain sub-

stances occurred in almost all patients (areas 1, 2, 5, 9), 

while others appeared regularly, but not in every sample. 

Others were found very sporadically (areas 6, 12, 14, 17, 

20) and some areas were exclusively present in pre- or 

postoperative samples (areas 24, 25). (Fig.  2, Table  3). 

Some areas were overlapped by VOCs of disinfectants 

(e.g. ethanol) and were therefore excluded from further 

analysis.

Signal intensity changes were also assessed. Many sig-

nals differed in intensity depending on whether the anal-

ysis was preoperative or postoperative, and an increased 

intensity was associated with an elevated concentration 

of the respective substance in a sample. In general, sig-

nals detected within postoperative samples tended to be 

elevated relative to preoperative samples. A comparison 

of OSCC patients and the control group showed that the 

number and intensity of signals in healthy participants 

was elevated relative to OSCC patients (Fig. 3). In some 

cases, the precise evaluation of the control group was 

difficult due to the presence of overlap between strongly 

pronounced signals.

Machine learning

In the tenfold cross-validation process, pre- and post-

operative samples in positive drift mode could only be 

distinguished with a highest average accuracy of 0.65 

(Fig. 4a). For samples in negative drift mode, however, a 

highest average accuracy of 0.89 was obtained (Fig. 4b). 

Additionally, differentiating between preoperative tumor 

samples and healthy smoker samples using positive and 

negative drift mode could be done with a highest average 

accuracy of 0.90 and 0.86, respectively (Fig. 4c, d).

�e estimated accuracy of the models was further con-

firmed using leave-one-out cross-validation, where logis-

tic regression was determined to be the best performing 

method overall. For pre- and postoperative samples 

assessed in positive drift mode, 35 of 61 images (57%) 

were classified correctly (Additional file 1: Table S1). For 

samples assessed using negative drift mode this ratio 

improved to 43 of 58 (74%, Additional file  1: Table  S2). 

Samples collected from preoperative tumor patients and 

healthy smokers were better differentiated. In samples 

assessed using positive drift mode, 60 of 72 samples (83%) 

were classified correctly (Additional file 1: Table S3), and 

in negative drift mode, 61 of 72 (85%) were predicted cor-

rectly (Additional file 1: Table S4). Additionally, we cre-

ated sub-groups matching patients with either T1/2 (18 

of 23) or T3/4 (28 of 33) tumors, female or male patients 

(16 of 35) and smoker or non-smoker (24/31) resulting in 

lower accuracies.

Table 3 Intensity changes in IMS signals between pre- and 

postoperative measurements: Area no. 1–25 (see Fig. 2), 

preoperative and postoperative signal count (n of 22 patients 

with IMS signal in measurement), ∆ of IMS signal intensity (0: no 

or little changes, +: increased signal, −: decreased signal)

Area no Preoperative signal 
count

Postoperative signal 
count

Δ of 
IMS 
signal

1 21/22 20/22 0

2 21/22 19/22 0

3 20/22 17/22 +

4 21/22 17/22 −

5 20/22 18/22 +

6 13/22 19/22 +

7 20/22 14/22 0

8 16/22 13/22 0

9 22/22 22/22 0

10 16/22 13/22 0

11 20/22 15/22 −

12 12/22 15/22 +

13 15/22 12/22 −

14 13/22 13/22 0

15 21/22 16/22 −

16 20/22 11/22 −

17 7/22 11/22 0

18 11/22 14/22 +

19 10/22 12/22 +

20 4/22 13/22 +

21 17/22 17/22 0

22 9/22 9/22 0

23 19/22 18/22 0

24 0/22 2/22 0

25 1/22 0/22 0
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Discussion and conclusion
�is study showed that sampling exhaled air from the 

oral cavity using disposable syringes and subsequent 

processing is possible by following a standardized pro-

tocol. �is eliminates the time-consuming intermedi-

ate step of storing samples before analyzing that has 

been used frequently to date [9, 38]. Sampling was a 

quick procedure that was easy to carry out and to learn 

for the practitioner. Since it is a non-invasive method, 

patient acceptance was very high. In this study, no patient 

refused to participate. Data analysis, however, was more 

complicated and required a trained user with current 

knowledge of the method. �e targeted, pre-selection of 

relevant substances and automated analysis of specific 

patterns is needed to make breath testing user-friendly, 

error-free and widely applied in the future. A critical 

Fig. 3 Comparison of preoperative OSCC patients with healthy controls. The heat map shows 25 areas of interest in 10 patients with OSCC (a), 10 

healthy controls (c) and correlations with the room air of OSCC patients (b) in positive drift mode. Area 6 is significantly more pronounced in OSCC 

patients than room air, therefore, the endogenous origin of analytes can be assumed and may be associated with OSCC. In contrast, the signal 

observed in Area 8 is significantly increased in room air samples, an external origin of analytes is likely. The greatest signal intensity within Area 13 

was observed for samples taken from the healthy control group
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point in the study design was to define the healthy vol-

unteers as smokers. �e design aimed to make sure that 

signals from smoking habits would not mislead to the 

conclusion that by-products, from smoking are associ-

ated with OSCC, as also low-nicotine cigarettes lead 

to distortions in exhaled breath [39]. As some OSCC 

patients were self-reported non-smokers or former 

smokers, a control group should have been divided into 

smokers and non-smokers.

Various factors significantly influence the measure-

ment data including food supply, oral hygiene, oral 

flora, the existence of other severe pre-existing malig-

nant conditions, and the composition of air within the 

room [40–42]. To minimize these factors, samples from 

OSCC patients were consistently taken in the morning 

to observe a sobriety phase of at least 6  h. In addition, 

patients were asked to refrain from cleaning their teeth 

with toothpaste or mouthwash before sampling. Other 

pre-existing malignant conditions were an exclusion cri-

terion for study participation. Even with these precau-

tions, substances were present that were believed to be 

caused by food and oral hygiene products. A longer fast-

ing episode may be necessary for completely eliminating 

these types of by-products. Two breath samples had to 

be stored in Mylar bags according to a widely accepted 

standard and we double-checked these samples prior to 

analysis, but ome compounds/signals may have been not 

stable until GC/IMS [31, 43]. It was difficult to ensure 

the sobriety of participants in the control group and pre-

vent their use of oral hygiene products. �is may have 

explained the enhanced intensity of signals observed for 

the group [44]. Also, substances from inhaled room air 

Fig. 4 Comparison of the prediction accuracy of different machine learning models using tenfold cross-validation. a Pre- and post-operative 

samples in positive drift mode, b pre- and post-operative samples in negative drift mode, c pre-operative tumor samples and healthy smokers in 

positive drift mode, d pre-operative tumor samples and healthy smokers in negative drift mode are compared. LR logistic regression, LDA linear 

discriminant analysis, KNN k-nearest neighbors, DT decision tree, GNB gaussian naive bayes, SVM support vector machine, RF random forest
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were recognizable in breath samples. Since these were 

hospital rooms, specific substances such as disinfectants 

were present in high quantities.

A comparison between OSCC patients and healthy 

smokers showed that certain substances were more 

prevalent in OSCC patients than healthy smok-

ers (Fig.  3). For example, area 11 was significantly 

more pronounced in healthy participants than OSCC 

patients. Since area 11 was present in the lowest quan-

tities in room air, it seems to be an endogenous human 

substance, which may be reduced as a result of OSCC. 

�e structure of the compound should be evaluated 

in subsequent studies. A comparison between pre- 

and postoperative data revealed some substances that 

showed similar changes, e.g. the IMS signals of areas 

4, 11, 13, 15, and 16 decreased postoperatively (Fig. 2, 

Table 3).

Our results showed that a detailed breakdown of single 

substances within samples is complex, and that patient 

compliance with detailed instructions is extremely 

important. �e identification of purely endogenous 

substances associated with OSCC is difficult [45]. An 

increased intensity of signals in postoperative samples 

may be explained by worsened oral hygiene after surgery 

as a result of intraoral wounds [46].

Machine learning was able to distinguish between 

the OSCC patients and healthy volunteers. With an 

increased amount of data, the differentiation between 

pre- and postoperative patients might be possible as 

well to find out signals that may be emitted exclusively 

by tumor tissues. �is is supported by the encouraging 

tenfold cross-validation result for samples in negative 

drift mode, where an average accuracy of 0.89 could be 

attained. �is accuracy needs to be further evaluated 

with a larger patient cohort. In a larger cohort, a sub-

group analysis of different tumor sizes, sex and smok-

ing status will be interesting as well. Furthermore, it has 

to be noted, that the models are currently optimized to 

achieve an optimal overall accuracy.

At this stage, the testing of high-risk patients for 

OSCC is not yet feasible. Further studies focussing on 

(1) pattern recognition using machine learning in a 

larger cohort and (2) in  vitro studies of tumor tissues 

using GC/MS to find out about specific VOCs with the 

help of libraries [47] must be carried out. �e present 

study showed that breath sampling using GC/IMS was 

user-friendly and revealed results for the determina-

tion of OSCC in breath samples using machine learning 

with the highest achieved average accuracy of 86–90% 

when compared to healthy individuals. It also showed 

that breath sampling remains prone to interferences by 

by-products, so that further studies with much larger 

cohorts are necessary to remove interferences before 

going on with the development of an e-Nose that may 

be usable for early detection of OSCC.
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