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Abstract. This paper is devoted to the problem of learning to predict ordinal (i.e., ordered

discrete) classes using classification and regression trees. We start with S-CART, a tree

induction algorithm, and study various ways of transforming it into a learner for ordinal

classification tasks. These algorithm variants are compared on a number of benchmark data

sets to verify the relative strengths and weaknesses of the strategies and to study the trade-off

between optimal categorical classification accuracy (hit rate) and minimum distance-based
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1. Introduction

Learning to predict discrete classes or numerical values from preclassified examples has long

been, and continues to be, a central research topic in Machine Learning (e.g., [Breiman et al.,

1984, Quinlan, 1992, Quinlan 1993]). A class of problems between classification and regression,

learning to predict ordinal classes, i.e., discrete classes with a linear ordering, has not received

much attention so far, which seems somewhat surprising, as there are many classification prob-

lems in the real world that fall into that category.

Given ordered classes, one is not only interested in maximizing the classification accuracy,

but also in minimizing the distances between the actual and the predicted classes. However,

the optimization of the classification accuracy does not imply the optimization of the numerical,

distance-based error, and vice versa. Rather, there seems to be a trade-off between these two

goals. One of the aims of this study is to investigate the trade-off between optimizing one or

the other quantity.

In this paper, we study ways of learning to predict ordinal classes using regression trees. We

will start with an algorithm for the induction of regression trees and turn it into an ordinal learner

by some simple modifications. This seems a natural strategy because regression algorithms by

definition have a notion of relative distance of target values, while classification algorithms

usually do not. More precisely, we start with the algorithm S-CART (Structural Classification

and Regression Trees) [Kramer 1996, Kramer 1999] and study several modifications of the basic

algorithm that turn it into a distance-sensitive classification learner. Several variants of this

algorithm are compared on a number of data sets to verify the relative strengths and weaknesses

of the strategies and to study the trade-off between optimal categorical classification accuracy

(hit rate) and minimum distance-based error.

This paper is organized as follows: The next section discusses related work. In section 3,

we describe S-CART, the algorithm for first-order classification and regression trees that we

build upon. In Section 4, we present the modifications that turn S-CART into an algorithm

for predicting ordinal classes. In the subsequent section, we report the performance of several

S-CART variants in five application domains. In the final section of the paper we discuss further

work and come to our conclusions.

2. Related Work

Though the problem of learning to predict ordinal variables seems ubiquitous, especially in

the social sciences, in information retrieval, and in other domains involving the prediction of

human preferences, there has been rather little work in the machine learning and data min-

ing area that specifically targets this problem. The field of statistics has developed several

approaches to the problem of predicting ordinal variables, such as Ordinal Logistic Regression

(e.g., [McCullagh, 1980, McCullagh & Nelder, 1983]). Some of these have also been studied in

the field of neural networks (e.g,. [Mathieson, 1996]). Machine Learning, on the other hand, has

started to look at the problem only recently.
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[Potharst & Bioch, 1999] present a tree-based algorithm for the prediction of ordinal classes.

They assume that the independent variables are ordered as well, which implies that the predic-

tions made should be consistent with the order of the attribute values in the decision nodes.

The authors present “repair strategies” for correcting inconsistent trees in case these consis-

tency constraints are violated, as well as an algorithm for constructing consistent trees in the

first place.

[Herbrich et al., 1999, Herbrich et al., 1999b] describe an algorithm based on the large mar-

gin idea known from data-dependent Structural Risk Minimization [Shawe-Taylor et al., 1996].

The algorithm is similar to Support Vector Machines [Cortes & Vapnik, 1995]. They demon-

strate good results on artificial data and on a (very small) ”real-world” information retrieval

dataset. Unfortunately, the induced models are not readily interpretable, as they do not provide

an intensional description of the learned concepts.

Other machine learning research that seems relevant to the problem of predicting ordinal

classes is work on cost-sensitive learning. In the domain of propositional learning, some induction

algorithms have been proposed that can take into account matrices of misclassification costs (e.g.,

[Schiffers, 1997, Turney, 1995]). Such cost matrices might be used to express relative distances

between classes.

Our goal was to provide a general algorithm that induces interpretable, symbolic mod-

els. Our algorithm makes no ordering assumptions regarding the independent variables, as in

[Potharst & Bioch, 1999]. In relation to neural network and support vector machine approaches,

its big advantage is the interpretability of the learned models (trees). Moreover, every regression

tree algorithm (e.g., M5’ [Wang & Witten, 1997] ) can easily be turned into an ordinal learner

by our method. And finally, it should be noted that the tree learning algorithm S-CART, which

forms the basis of our ordinal learners, can be applied to both propositional and relational do-

mains – it is a full-fledged Inductive Logic Programming (ILP) algorithm. Indeed, both the

Biodegradability and the Mesh datasets used in our experiments are of a relational nature. We

have thus also provided a natural solution to ordinal prediction learning in ILP.

3. The Basic Learning Algorithm: S-CART (Structural Classi-

fication and Regression Trees)

Structural Classification and Regression Trees (S-CART) [Kramer 1996, Kramer 1999] is an

algorithm that learns a first-order theory for the prediction of either discrete classes or nu-

merical values from examples and relational background knowledge. The algorithm constructs

a tree containing a positive literal or a conjunction of literals in each node, and assigns

a discrete class or a numeric value to each leaf. S-CART is a full-fledged relational ver-

sion of CART [Breiman et al., 1984]. After the tree growing phase, the tree is pruned using

so-called error-complexity pruning for regression or cost-complexity pruning for classification

[Breiman et al., 1984]. These types of pruning are based on a separate “prune set” of examples

or on cross-validation.
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For the construction of a tree, S-CART follows the general procedure of top-down de-

cision tree induction algorithms [Quinlan, 1993]. It recursively builds a binary tree, se-

lecting a positive literal or a conjunction of literals (as defined by user-defined schemata

[Silverstein & Pazzani, 1991]) in each node of the tree until a stopping criterion is fulfilled.

The algorithm keeps track of the examples in each node and the positive literals or conjunctions

of literals in each path leading to the respective nodes. This information can be turned into a

clausal theory (i.e., a set of first-order classification or regression rules).

As a regression algorithm, S-CART is designed to predict a numeric (real) value in each

node and, in particular, in each leaf. In the original version of the algorithm the target value

predicted in a node (let us call this the center value from now on) is simply the mean of the

numeric class values of the instances covered by the node. A natural choice for the evaluation

measure for rating candidate splits during tree construction is then the Mean Squared Error

(MSE) of the example values relative to the means in the two new nodes created by the split:

MSE =
1

n1 + n2

2
∑

i=1

ni
∑

j=1

(yij − ȳi)
2 (1)

where ni is the number of instances covered by branch i, yij is the value of the dependent

variable of training instance ej in branch i, and ȳi is the mean of the target values of all training

instances in branch i.

In constructing a single tree, the simplest possible stopping criterion is used to decide whether

the tree should be further refined: S-CART stops extending the tree given some node when no

literal(s) can be found that produce(s) two partitions of the training instances in the node with

a required minimum cardinality. The post-pruning strategy then takes care of reducing the tree

to an appropriate size.

S-CART has been shown to be competitive with other regression algorithms. Its main

advantages are that it offers the full power and flexibility of first-order (Horn clause) logic,

provides a rich vocabulary for the user to explicitly represent a suitable language bias (e.g.

through the provision of schemata), and produces trees that are interpretable as well as good

predictors.

As our goal is to predict discrete ordered classes, S-CART cannot be used directly for this

task. We will, however, include results with standard S-CART in the experimental section to

find out how paying attention to ordinal classes influences the mean squared error achievable by

a learner.

4. Inducing Trees for the Prediction of Ordinal Classes

In the following, we describe a few simple modifications that turn S-CART into a learning

algorithm for ordinal classification problems. In section 4.2, we consider some pre-processing

methods that also might improve the results.
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4.1. Adapting S-CART to Ordinal Class Prediction

The most straightforward way of adapting a regression algorithm like S-CART to classification

tasks is to simply run the algorithm on the given data as if the ordinal classes (represented by

integers) were real values, and then to apply some sort of post-processing to the resulting rules

or regression tree that translates real-valued predictions into discrete class labels.

An obvious post-processing method is rounding. S-CART is run on the training data, pro-

ducing a regular regression tree. The real values predicted in the leaves of the tree are then

simply rounded to the nearest of the ordinal classes (not to the nearest integer, as the classes

may be discontiguous; after pre-processing, they might indeed be non-integers — see section 4.2

below).

More complex methods for mapping predicted real values to symbolic (ordinal) class labels

are conceivable. In fact, we did perform experiments with an algorithm that greedily searches

for a mapping, within a defined class of functions, that minimizes the mean squared error of the

resulting (mapped) predictions on the training set. Initial experiments were rather inconclusive;

in fact, there were indications of the algorithm overfitting the training data. However, more

sophisticated methods might turn out to be useful. This is one of the goals of our future

research.

An alternative to post-processing is to modify the way S-CART computes the target values

in the nodes of the tree during tree construction. We can force S-CART to always predict integer

values (or more generally: a valid class from the given set of ordinal classes) in any node of the

tree. The leaf values will thus automatically be valid classes, and no post-processing is necessary.

It is a simple matter to modify S-CART so that instead of the mean of the class values of

instances covered by a node (which will in general not be a valid class value), it chooses one

of the class values represented in the examples covered by the node as the center value that

is predicted by the node, and relative to which the node evaluation measure (e.g., the mean

squared error, see Section 3 above) is computed. Note that in this way, we modify S-CART’s

evaluation heuristic and thus its bias.

There are many possible ways of choosing a center value; we have implemented three: the

median, the rounded mean, and the mode, i.e., the most frequent class. Let E i be the set of

training examples covered by node Ni during tree construction and Ci the multiset of the class

labels of the examples in Ei, with |Ei| = |Ci| = n. In the Median strategy, S-CART selects

the class ĉi as center value that is the median of the class labels in C i; in other words, if we

assume that the example set Ei is sorted with respect to the class values of the examples,

Median chooses the class of the (n/2)th example.1 In contrast, the RoundedMeanToClass

strategy chooses the class closest to the (real-valued) mean c of the class values in C i. Finally,

in the Mode strategy the center value ĉi for node Ni is chosen to be the class with the highest

frequency in Ci.

Table 1 summarizes the variants of S-CART that will be put to the test in Section 5 below.

1In this case the Mean Absolute Deviation (MAD) is used as distance metric instead of the Mean Squared

Error, because the former measure is the one that is known to be minimized by the median.
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Name Formula

Postproc. Round ĉi = mean of the cij ∈ Ci;

real values in leaves of learned tree are rounded

to nearest class in Ci

Median ĉi = median of class labels in multiset C i

RoundedMeanToClass c = mean of the cij ∈ Ci,

ĉi = c rounded to nearest class cij ∈ Ci

Mode ĉi = most frequent class in Ci

Table 1. Variants of S-CART for learning ordinal classes.

4.2. Pre-processing

The results of regression algorithms can often be improved by applying various transfor-

mations to the raw input data before learning. The basic idea underlying different data

transformations is that numbers may represent fundamentally different types of measure-

ments. [Mosteller & Tukey, 1977] distinguish, among others, the broad classes of amounts

and counts (which cannot be negative), ranks (e.g., 1 = smallest, 2 = next-to-smallest, . . .),

and grades (ordered labels, as in A, B, C, D, E). They suggest the following types of pre-

processing transformations: for amounts and counts, translate value v to tv = log(v + c); for

ranks, tv = log((v − 1/3)/(N − v + 2/3)), where N is the maximum rank; and for grades,

tv = (φ(P ) − φ(p))/(P − p), where P is the fraction of observed values that are at least as big

as v, p is the fraction of values > v, and φ(x) = x log x + (1 − x) log(1 − x). We have tenta-

tively implemented these three pre-processing methods in our experimental system and applied

the appropriate transformation to the respective learning problem in our experiments. Table 2

summarizes them in succinct form, in the notational frame of our learning problem.

Note that these transformations do not by themselves contribute to the goal of learning rules

Name Formula

Raw No pre-processing (tc = c)

Counts tc = log(c + 1 − min(Classes))

Ranks tc = log((c − 1/3)/(N − c + 2/3)), where

N = max(Classes)

Grades tc = (φ(P ) − φ(p))/(P − p), where

φ(x) = x log x + (1 − x) log(1 − x),

P = fraction of observed class values ≥ c,

p = fraction of observed class values > c

Table 2. Pre-processing types (c = original class value; tc = transformed class value)
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for ordinal classes. Rather, they should be viewed as possible enhancements to the methods

described above. In fact, pre-processing usually transforms the original ordinal classes into real

numbers. That is no problem as the number of distinct values remains unchanged. Thus, the

transformed values can still be treated as discrete class values without changing the learning

algorithms.

In principle, one could combine any pre-processing technique with any method for predicting

ordinal classes described above. For practical reasons, however, we only tested one type of pre-

processing together with one of the methods in the experiments. Firstly, we applied only the

one type of pre-processing that we considered suitable for the dependent variable of the given

learning problem. As it turned out, the dependent variable was a “grade” in four of the five

application domains, and a “count” in the remaining domain. So, due to the nature of the data,

we actually used only two of the transformations in the experiments. Secondly, we actually

applied this type of preprocessing together with Postproc. Round. So, in effect, we rounded

to the next class in the “transformed space” and mapped this prediction back.

5. Experiments

5.1. Algorithms compared

In the following, we experimentally compare the S-CART variants and preprocessing methods

on several benchmark datasets. Three quantities will be measured:

1. Classification Accuracy as the percentage of exact class hits,

2. the Root Mean Squared Error (RMSE)
√

1/n
∑n

i=1
(ci − ĉ)2 of the predictions on the test

set, as a measure of the average distance of the algorithms’ predictions from the true class,

and

3. the Spearman rank correlation coefficient with a correction for ties, which is a measure for

the concordance of actual and predicted ranks.

As ordinal class prediction is somewhere “between” classification and regression, we addition-

ally include two “extreme” algorithms in the experimental comparison. One, S-CART class,

is a variant of S-CART designed for categorical classification. S-CART class chooses the most

frequent class in a node as center value and uses the Gini index of diversity [Breiman et al., 1984]

as evaluation measure; it does not pay attention to the distance between classes. The other ex-

treme, called S-CART regress, is simply the original S-CART as a regression algorithm that

acts as if the task were to predict real values; we are interested in finding out how much paying

attention to the discreteness of the classes costs in terms of achievable RMSE. (Of course, the

percentage of exact class hits achieved by S-CART regress cannot be expected to be high.)

Finally, we will also list the Default or Baseline Accuracy for each algorithm on each data set

and the corresponding Baseline RMSE.
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5.2. Data sets

The algorithms were compared on five datasets that are characterized by a clear linear ordering

among the classes. Three of the data sets were taken from the UCI repository: Balance, Cars

and Nursery.

The fourth dataset, the Biodegradability dataset [Džeroski et al., 1999], describes 328 chem-

ical substances in the familiar “atoms and bonds” representation [Srinivasan et al., 1995]. The

task is to predict the half-rate of surface water aerobic aqueous biodegradation in hours. For

previous experiments, we had already discretized this quantity and mapped it to the four classes

fast, moderate, slow, and resistant, represented as 1, 2, 3, and 4.

The fifth dataset is the Mesh dataset [Doľsak et al., 1998], one of the by now classical bench-

mark problems in the area of ILP. The problem consists in predicting the optimal granularity of

a finite element (FE) model of a given physical structure. More precisely, the task is to predict

the appropriate number of FEs along a given edge. In the widely used data set first described in

[Doľsak & Muggleton, 1992], there are 13 classes (1, . . ., 12 and 17 FEs). It seems obvious that

in this domain, classification error should be regarded as a gradual phenomenon. Prescribing 1

FE for an edge that should have 12 is a worse mistake than predicting class 4 when the correct

class is 5.

5.3. Results

In Tables 3 to 7, we summarize the results (classification accuracy, RMSE and Spearman rank

correlation coefficient) on these datasets. For Balace, Car and Biodegradability, these are the

results of 10-fold stratified cross-validation. For the Nursery dataset, we used 2/3 of the data

for training and 1/3 for testing due to the sufficient size of the dataset. In the Mesh domain,

we performed 5-fold cross-validation, where each of the 5 Mesh structures was held-out in turn.

The reason for this is that we wanted to avoid dependencies between the training and the test

sets. In the experiments, we used default settings of S-CART and did not make any attempts

to optimize the learning parameters.

Figures 1 and 2 illustrate the results in the tables graphically. These plots depict the trade-off

between the predictive (classification) error and the RMSE. Note that in the figures we present

the misclassification rate rather than the accuracy (as in the tables).

The first and most fundamental obervation we make is that the learners improve upon the

baseline values in almost all cases, both in terms of RMSE and in terms of classification accuracy.

In other words, they really learn something.

As expected, there seems to be a fundamental tradeoff between the two goals of error min-

imization and accuracy maximization. This tradeoff shows most clearly in the results of the

“extreme” algorithms S-CART regress and S-CART class: S-CART class, which solely

seeks to optimize the hit rate during tree construction but has no notion of class distance, is

among the best class predictors in all five domains, but among the worst in terms of RMSE.

S-CART regress, on the other hand, is rather successful as a minimizer of the RMSE, but



S. Kramer et al. / Prediction of Ordinal Classes Using Regression Trees 9

Approach Accuracy RMSE Spearman

Baseline 46.1% 1.39 -

S-CART class 79.8% 0.75 0.707

S-CART regress 4.3% 0.68 0.697

Preproc. Grades 77.8% 0.69 0.736

Postproc. Round 76.0% 0.71 0.723

Median 77.9% 0.75 0.707

RoundedMeanToClass 72.8% 0.68 0.731

Mode 79.8% 0.73 0.725

Table 3. Results from 10-fold cross-validation for Balance (625 examples, 4 attributes)

Approach Accuracy RMSE Spearman

Baseline 70.0% 0.84 -

S-CART class 95.4% 0.27 0.943

S-CART regress 78.9% 0.23 0.945

Preproc. Grades 95.2% 0.25 0.952

Postproc. Round 94.7% 0.26 0.939

Median 92.0% 0.32 0.875

RoundedMeanToClass 92.1% 0.30 0.892

Mode 88.7% 0.41 0.810

Table 4. Results from 10-fold cross-validation for Cars (1278 examples, 6 attributes)

unusable as a classifier.

Interestingly, neither of the two solves its particular problem optimally: some ordinal learn-

ers beat S-CART class in terms of accuracy, and some beat the regression “specialist” S-

CART regress in terms of the RMSE.

For Balance and for Cars, both the pre-processing and the simple post-processing method

are able to achieve good predictive accuracy while at the same time keeping an eye on the class-

distance-weighted error. The pre-processing method seems to perform particularly well in this

trade-off. Both the pre-processing and the post-processing methods also perform favorably in

terms of the Spearman rank correlation coefficient. Note that in the Balance domain, predicting

the mode improves over pure classification in terms of the RMSE and the Spearman rank

correlation coefficient.

In the Nursery domain, all the variants fail to show a favorable performance compared to the

classification and regression “specialists”. This is the only domain in our experiments, where

none of the variants are able to achieve an interesting result in terms of the trade-off between

classification accuracy and distance-based error.
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Figure 1 Illustration of the trade-off between predictive (classification) error and RMSE;

b ... Baseline, c ... S-CART class, r ... S-CART regress, g ... Preproc. Grades,

p ... Postproc. Round, m ... Median, t ... RoundedMeanToClass, o ... Mode
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Approach Accuracy RMSE Spearman

Baseline 33.3% 2.84 -

S-CART class 97.6% 0.15 0.985

S-CART regress 75.7% 0.14 0.975

Preproc. Grades 97.0% 0.17 0.985

Postproc. Round 97.6% 0.16 0.985

Median 92.8% 0.27 0.962

RoundedMeanToClass 91.6% 0.29 0.955

Mode 93.1% 0.26 0.965

Table 5 Results for Nursery (12961 examples, 8 attributes); 2/3 of the examples were used for

training, 1/3 for testing

Approach Accuracy RMSE Spearman

Baseline 36.6% 1.01 -

S-CART class 57.9% 0.84 0.561

S-CART regress 1.2% 0.76 0.537

Preproc. Grades 43.3% 0.84 0.436

Postproc. Round 48.8% 0.82 0.489

Median 50.3% 0.79 0.538

RoundedMeanToClass 47.3% 0.80 0.510

Mode 50.3% 0.82 0.506

Table 6. Results from 10-fold cross-validation for Biodegradability (328 examples)

For Balance, Cars and Nursery, methods modifying the center value during tree construction

(Median, RoundedMeanToClass and Mode) do not seem to perform well. An exception

is the performance of Mode in the Balance domain, which represents an improvement over

S-CART class.

Results for Biodegradability are different from the other results. The biodegradability domain

is different from other domains in this study in several respects: It has fewer examples, it is

known to have class noise and it is essentially relational. Here, methods modifying the center

value during tree construction perform better, but not good enough to be competitive with either

the classification or the regression method. Still, it should be noted that the RMSE of these

methods is between the RMSE of the classification “specialist” and the one of the regression

“specialist”.

Finally, the results in the Mesh domain suggest it is possible for ordinal learners to beat

both the classification and the regression “specialists” at the same time. The clear “winner”

in this domain is Postproc. Round, which achieves a higher classification accuracy than
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Figure 2 Illustration of the trade-off between predictive (classification) error and RMSE (ctd.);

b ... Baseline, c ... S-CART class, r ... S-CART regress, g ... Preproc. Counts,

p ... Postproc. Round, m ... Median, t ... RoundedMeanToClass, o ... Mode

Approach Accuracy RMSE Spearman

Baseline 26.3% 4.51 -

S-CART class 34.0% 3.18 0.683

S-CART regress 11.0% 2.89 0.731

Preproc. Counts 34.9% 3.45 0.675

Postproc. Round 35.3% 2.85 0.795

Median 26.6% 2.75 0.780

RoundedMeanToClass 30.2% 2.94 0.779

Mode 29.9% 2.96 0.687

Table 7. Results from 5-fold cross-validation for Mesh (278 examples)
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S-CART class and at the same time a lower RMSE than S-CART regress. This result is

most motivating; it shows that it is possible to develop learners that achieve good predictive

accuracy while at the same time keeping the numeric (class-distance-weighted) error low.

Summing up, the results of the experiments are quite encouraging: In three of the five

domains, S-CART variants predicting ordinal classes positioned themselves favorably in the

trade-off between optimizing classification accuracy and optimizing distance-based error. In one

domain (Nursery), all variants apparently failed to do so, and in one domain (Mesh), one of the

ordinal learning algorithms was able to “beat” both the classification and the regression variants

of S-CART. Also, it seems like pre-processing or post-processing methods are to be preferred

over methods enforcing “legal” values during tree construction.

Drawing more general conclusions from these limited experimental data seems unwarranted.

Our results so far show that tree learning algorithms for predicting ordinal classes can be natu-

rally derived from regression tree algorithms, but more extensive experiments with larger data

sets from diverse areas will be needed to establish the precise capabilities and relative advantages

of these algorithms.

6. Further Work and Conclusion

Further work will be to perform experiments including the other, third transformation (for ranks)

suggested by Mosteller and Tukey. Another direction of further work could be to combine the

pre-processing methods with the other methods presented in this paper: In fact, almost all

combinations make sense and could be tested.

It also would be interesting to build tree induction algorithms that do not enforce the pre-

diction of “legal” classes during tree construction, but deal with this problem in the pruning

phase. However, it is not yet clear which measure should be optimized in the pruning phase.

An initial attempt optimizing the Spearman rank correlation coefficient in the pruning phase

failed to produce interesting results in terms of the trade-off addressed in this paper.

In summary, we have taken first steps towards effective methods for learning to predict ordinal

classes using regression trees. We have shown how algorithms for learning ordered discrete classes

can be derived by simple modifications to a basic regression tree algorithm. Experiments in five

benchmark domains have shown that, in some cases, the resulting algorithms are able to achieve

good predictive accuracy while at the same time keeping the class-distance-weighted error low.
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