
Methods for prediction of the binding of peptides to 

major histocompatibility complex (MHC) II receptors 

are examined, using literature values of IC50 as a 

benchmark. Two sets of IC50 data for closely structur-

ally related peptides based on hen egg lysozyme 

(HEL) and myelin basic protein (MBP) are reported 

first. This shows that methods based on both molecular 

mechanics and semi-empirical quantum mechanics can 

predict binding with good-to-reasonable accuracy, as 

long as a suitable method for estimation of solvation 

effects is included. A more diverse set of 22 peptides 

bound to HLA-DR1 provides a tougher test of such 

methods, especially since no crystal structure is avail-

able for these peptide-MHC complexes. We therefore 

use sequence based methods such as SYFPEITHI and 

SVMHC to generate possible binding poses, using a 

consensus approach to determine the most likely an-

chor residues, which are then mapped onto the crystal 

structure of an unrelated peptide bound to the same 

receptor. This analysis shows that the MM/GBVI 

method performs particularly well, as does the AM-

BER94 forcefield with Born solvation model. Indeed, 

MM/GBVI can be used as an alternative to sequence 

based methods in generating binding poses, leading to 

still better accuracy.  
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Prediction of Peptide Binding to Major Histocompatibility II Receptors 

with Molecular Mechanics and Semi-Empirical Quantum Mechanics 

Methods 

Introduction 

 
Major Histocompatibility Complex (MHC) molecules 

are an important class of receptor in the immune sys-

tem of all vertebrates: in humans they are termed hu-

man leukocyte antigens (HLA). Their role is to bind 

peptides presented to cell surfaces, hence allowing rec-

ognition of self or non-self and stimulating appropriate 

immune response in the case of non-self. MHC recep-

tors are generally separated into class I and class II. 

Both have a single peptide binding site, which in class 

I is made up of a single amino-acid chain, whereas in 

class II the active site is located at the junction be-

tween two chains (Mantzourani et al. 2005, Wearsch 

& Cresswell 2008). Incorrect recognition of self pep-

tides as being non-self is implicated in a number of 

auto-immune diseases such as multiple sclerosis and 

rheumatoid arthritis. The exact mechanism of this is 

not known but the concept of “molecular mimicry”, in 

which certain self-peptide sequences are sufficiently 

similar to non-self sequences to induce immune attack 

on the body, has been proposed. Prediction of the key 

binding event between peptide and MHC is therefore 

desirable, both in understanding the origin of these 

debilitating diseases and in design of new therapies to 

treat them. Figure 1 shows a peptide bound to MHC II, 

taken from PDB entry 1YMM. 

 In order to understand the way that a peptide 

or drug interacts with its receptor to affect the biologi-

cal system in the body's cells, we must concentrate on 

the interactions between the drug and the receptor 

(Mantzourani et al. 2008, Meyer et al. 2003, Zhao & 

Truhlar 2007). In most cases, the most significant in-

teractions between drugs and their biological receptors 

are non-covalent (Cerny & Hobza 2007). Although 

typically weaker than covalent interactions, collec-

tively they exert important influence in many proper-

ties of biomacromolecules, for example they are well 

known to affect the structure of proteins, DNA and 

RNA (Eistner et al. 2001, Grimme 2004, Jurecka et al. 

2006a, b).  

 Accurate and efficient theoretical description 

of non-covalent interactions is an intense and ongoing 

area of research (Hobza et al. 1997, McNamara & 

Abstract 

Journal of Molecular Biochemistry (2012) 1, 54-64 © The Author(s) 2012. Published by Lorem Ipsum Press. 



Hillier 2007, Sharma et al. 2008). Ab initio and density 

functional theory (DFT) methods can give quantitative 

accuracy, but are not generally applicable to large sys-

tems such as those of interest here. Semi-empirical 

methods offer speed and simplicity, making them ap-

propriate for study of large systems (Anisimov et al. 

2011, Eistner et al. 2001, McNamara & Hillier 2007, 

MRocha et al. 2006, Tuttle & Thiel 2008), but typi-

cally perform poorly for non-covalent interactions, 

especially stacking (Eistner et al. 2001). Addition of a 

dispersion correction term improves performance: 

AM1-D and PM3-D give errors of 1.1 and 1.2 kcal/

mol, respectively, across a wide range of interactions 

(McNamara & Hillier 2007).  More recent develop-

ments in semi-empirical methods include RM1 (Puzyn 

et al. 2008, Rocha et al. 2006, Stewart 2007) and PM6 

(Stewart 2007), which encompasses many more ele-

ments within self-consistent set of parameters, and per-

forms well for many classes of compound. PM6-DH2 

is a further development of PM6 to include corrections 

for the dispersion and H-bond interactions (Korth et al. 

2010b, Rezac et al. 2009). This method  succeeds in 

calculating hydrogen bond energies with accuracy 

close to DFT-D approach, but is three orders of magni-

tude faster (Korth 2010, Korth et al. 2010a).  The ap-

plicability of semi-empirical methods to large systems 

is further enhanced by the MOZYME method, using 

localized molecular orbital instead of the standard SCF 

procedure, implemented in current versions of MO-

PAC (http:/OpenMOPAC.net). By using the MO-

ZYME method, studying large systems such as entire 

drug-receptor complexes is feasible. 

 Atomistic force field, or molecular mechanics 

(MM), methods are widely used in simulation of bio-

logical systems by reducing the essentials of systems 

of interest to simple mathematical forms. Non-covalent 

interactions are typically treated by a combination of 

point charges, to account for electrostatics, and Len-

nard-Jones potentials, for dispersive and repulsive in-

teractions. More than a decade ago, Hobza et al. (1997) 

showed that the force field of Cornell et al (often re-

ferred to as AMBER) best reproduced ab initio data for 

interaction of DNA base pairs. More recently, Paton 

and Goodman showed that the OPLS-AA force field 

performs well for binding energy prediction of both 

hydrogen bonding and dispersion-bound complexes 

(Paton & Goodman 2009). 

 Because peptide-receptor interactions always 

occur in biological solvent (Klamt 1994), and in order 

to estimate the interaction energies for these complexes 

in appropriate ways, solvent must be considered in cal-

culations.  Calculating interaction energies for large 

biological complexes in solvent by computational 

methods is a challenging task (Klamt 1994). Many ap-

proaches have been tested to estimate the effect of the 

solvent in these interactions (Klamt 1994).  Conductor-

like Screening Model (COSMO) is widely used to 

model solvents, especially water (Anisimov & Cava-

sotto 2011, Klamt 1994, Klamt & Schuurmann 1993). 

This method depends on generation of a conducting 

surface at vdW distance in order to calculate the di-

electric screening charges and energies (Klamt 1994). 

 The generalized Born model/surface area ap-

proach (GB/SA) is another method used to calculate 

binding free energy, developed by Still et al (Labute 

2008a, Qiu et al. 1997, Still, et al. 1990), and is widely 

used in calculating free energy of binding for ligand-

receptor complexes (Anisimov & Cavasotto 2011, 

Zoete et al. 2010, Zoete and Michielin 2007). In this 

method, cavitation energy depends on molecular sur-

face area, while relative solvation of separated ligand 

and receptor compared to their complex is estimated 

from a generalization of the Born model. When com-

bined with MM methods for calculation of electrostatic 

and van der Waals interactions, these are referred to as 

MM-GB/SA methods. The GB/VI (generalized Born/
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Figure 1. Two views of an epitope of myelin basic protein bound to an HLA receptor. P1 and P4 are the main “anchor” resi-

dues, while P3 and P5 are contacts to T-cell receptors. 



volume integral) model, implemented in recent ver-

sions of MOE software (http://www.chemcomp.com), 

is similar to GB/SA in most respects, but calculates the  

cavitation energy in as an integral over molecular vol-

ume rather than surface area (Labute 2008a, b). MM/

GB-VI is a fast and promising method to calculate the 

interaction energy in solvent. There are many advan-

tages of using this method, the dielectric constant of 

the solvent is estimated based on the atoms (http://

www.chemcomp.com/) present in the specific complex 

under study, rather than on an idealised values. In ad-

dition, this method yields an estimate of binding free 

energy, unlike all other methods used here that give 

only interaction energies. The change in entropy on 

binding is not explicitly included in MM/GB-VI: it has 

previously been shown that although entropy is essen-

tial in calculating absolute binding free energy (Zoete 

& Michielin 2007) it is not essential for estimating the 

relative binding free energy (Gohlke et al. 2003; Wang 

& Kollman 2000), a conclusion we would like to test 

for the flexible peptide ligands used in this study. 

 In a previous study (Aldulaijan & Platts 2010), 

several approximate methods were tested against cor-

related ab initio calculations for their ability to predict 

the energy of interaction between amino acids, focus-

sing on the interaction of a MBP peptide with its MHC

-II receptor. It was found that the semi-empirical RM1 

approach with additional correction for dispersion ef-

fects gives the best reproduction of ab initio data, with 

a mean unsigned error of a little more than 1 kcal/mol 

over almost 50 interactions after optimisation of the 

global scaling factor. Performance is similar for sev-

eral other parameterisations of semi-empirical theory, 

with RM1 chosen for its slightly better results. The 

atomistic forcefield OLPS-AA also shows promise, 

with a mean error slightly greater than 2 kcal/mol.  

 The speed of semi-empirical methods allows 

examination of the interaction energies of larger mod-

els of the peptide than single amino acids, especially 

when coupled with the MOZYME method. Therefore, 

we sought biological data to compare against the com-

putational methods, in order to choose the most suit-

able method for predicting peptide-receptor interac-

tions. IC50 data, i.e. the concentration required to in-

hibit 50% of binding of natural peptide in competitive 

binding, are widely used in such cases (Harrison et al. 

1997). Although it is possible to convert IC50 to inhibi-

tion constant (Ki), which is directly related to binding 

free energy, using the Cheng-Prusoff equation (Cheng 

& Prusoff 1973), we were not able to perform this con-

version for the peptide-MHC II complexes under 

study, due to lack of information about ligand and re-

ceptor concentrations in literature data. IC50 values are 

sensitive to conditions such as the temperature and 

solvent (www.bdbiosciences.com; Tajkhorshid 1998), 

it is therefore preferable to choose sets of IC50 data 

measured in a consistent manner in the same labora-

tory. We have therefore concentrated on several sets of 

peptide-MHCII receptor complexes with IC50 values 

measured in the same conditions, and with related X-

ray structures published, and used these as tests of pos-

sible methods for prediction of peptide-MHCII binding 

using a variety of statistical techniques. We employed 

many of the methods discussed above (molecular me-

chanics methods OPLS-AA, AMBER94, and MM/GB-

VI and semi-empirical RM1-D and PM6-DH2) to ex-

amine in detail the interaction of three sets of peptides 

with Major Histocompatibility Complex (MHC) class 

II receptor, and to compare calculated binding energies 

to available IC50 data. 

 

Data Sets and Computational Methods 

 
The first set studied is derived from hen egg lysozyme 

(HEL), and is based on the complex of  12 amino acids 

(MKRHGLDNYRGY) with MHC class II mouse I-

Ag7 (Harrison et al. 1997). The X-ray structure of the 

peptide-receptor complex was taken from PDB entry 

1F3J. IC50 data has been reported for analogues of the 

HEL peptide, in which one or more N-terminal and/or 

C-terminal residues are truncated to reveal the key 

residues for binding. IC50 values of 1000nM or more 

are denoted non-binders, and IC50 less than 1000nM 

are binders (Harrison et al. 1997). This set therefore 

contains 5 binders and 5 non-binders. 

 The second set studied is based on a complex 

of myelin basic protein (MBP)-derived peptide with 

HLA DRB1*1501(Harrison et al. 1997, Krogsgaard et 

al. 2000). It contains fourteen amino acids 

(ENPVVHFFKNIVTP; Harrison et al. 1997, Krogs-

gaard et al. 2000), and the relevant X-ray structure was 

taken from PDB entry 1BX2.  In this set, each amino 

acid is replaced in turn by Ala and values of IC50 

measured (Krogsgaard et al. 2000). In this set, all the 

IC50 values show stable interactions according to the 

1000 nM cutoff used above, and many interactions 

have the same value of IC50. However, two peptides 

have rather higher IC50 values, in which Val89 and 

Phe92 are replaced by Ala. Both amino acids are 

known to form strong interactions, in pocket 1 and 

pocket 4 of the binding site, respectively (Aldulaijan & 

Platts 2010, Harrison et al. 1997; Krogsgaard et al. 

2000) and by replacing these amino acids with Ala, the 

binding affinity of the peptides decreased (Krogsgaard 

et al. 2000). 

 A third was taken from Southwood et al’s 

study (1998), and contains 22 peptides with much 

more diverse sequences than the first two sets interact-
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ing with HLA DRB1*0101. In this case, X-ray struc-

tures of complexes are not available. Instead, manual 

docking was performed by mutating amino acids to the 

relevant sequence in MOE, using the X-ray structure 

of human class II MHC protein HLa-DR1 in complex 

with the tight binding peptide A2 103-117, PDB code 

1AQD (Murthy & Stern 1997)  as a template. In order 

to guide this procedure, possible amino acids that 

could act as “anchors” within binding pockets were 

identified by means of sequence-based prediction 

methods SYFPEITHI and SVMHC, as well as the al-

gorithm set out by Southwood et al. (1998). 

 SYFPEITHI is a databank and prediction algo-

rithm for peptide-MHC binding, and contains a large 

range of ligands and peptide motifs, used to predict the 

peptide binding with MHC receptor (http:/

alkaid001.atspace.com; Jalkanen, et al. 2004, Rom-

mensee et al. 1999) based on published motifs of 

amino acids and anchor positions. It calculates a score 

to identify the amino acid as anchor, auxiliary anchor, 

preferred residues or if the amino acid has “negative 

effect on the binding ability” (Jalkanen et al. 2004).  

SVMHC is a prediction server for MHC class I and II, 

used to test the ability of peptides to bind with differ-

ent MHC alleles, and to find the best “binders in a pro-

tein sequence” (Donnes & Kohlbacher 2006).  Accord-

ing to Donnes and Elofsson, the performance of 

SVMHC and SYFPEITHI for six MHC types common 

between these methods are compared (Donnes & 

Kohlbacher 2006), with SVMHC giving 95% correct 

predictions and 91% for SYFPEITHI (Donnes & 

Elofsson 2002).  The final sequence-based prediction 

method used is the algorithm set out by Southwood et 

al. (1998), which is specific for the DRB1*0101 allele 

MHC class II. Each residue has value based on its po-

sition on the receptor, encoded into an in-house awk 

program to evaluate the most likely binding sites of the 

peptide based on these values.   

 The X-ray crystallographic coordinates were 

obtained from PDB entry 1BX2 for MBP peptide and 

1F3J for HEL peptide (http://www.chemcomp.com; 

Harrison et al. 1997, Labute 2008a; MOE). For the 

Southwood data set, three prediction methods 

(SYFPEITHI, SVMHC and Southwood) were used to 

identify the best peptide anchors that fit in the receptor 

pockets. We choose the best alignment of peptide in 

the receptor as a consensus of these methods, and only 

this alignment was used in further study. 

 Coordinates were loaded into MOE, and proto-

nated according to typical protonation states. All hy-

drogen positions were optimised using the AMBER94 

forcefield, with heavy atoms fixed at their X-ray posi-

tions. MOE program was used to calculate interaction 

energies using OPLSAA and AMBER94 force fields 
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with dielectric constant 1 (vacuum), 4, 20 and 78.4 

(water) (Krogsgaard et al. 2000, Mantzourani et al. 

2005). MOE was used to calculate interaction energies 

with the Born solvation model, and also binding free 

energies with the MM/GBVI method. For this method, 

the dielectric constant is estimated according to the 

atoms present in the receptor, and a constrained energy 

minimization performed for ligand atoms (Klamt & 

Schuurmann 1993). 

 MOPAC was used to carry out semi-empirical 

calculations, using the RM1-D tested in our previous 

study (Aldulaijan & Platts 2010) and also the recent 

PM6-DH2 method, incorporating corrections for both 

dispersion and hydrogen bonding (Korth et al. 2010b, 

Rezac et al. 2009). For larger systems we used MO-

ZYME keyword to accelerate the calculations

(Wearsch & Cresswell 2008). COSMO was used to 

estimate the effect on a solvent (http:/

OpenMOPAC.net; Stewart 2009), with the same val-

ues for dielectric constant noted above (Southwood et 

al. 1998) and NSPA (number of geometrical segments 

per atom; Labute 2008a) equal to 122. 

 Several statistical tests were used to investi-

gate the suitability of different theoretical methods for 

prediction of peptide-MHCII bonding, using published 

IC50 values as a test. Specifically, we employed the 

standard Pearson R2 value against the negative log of 

IC50 values, Spearman’s rank correlation coefficient 

(http://www.wessa.net/rankcorr.wasp), and area under 

relative operating characteristic (ROC) curves by using 

the ROCkit package (Dorfman & Alf 1969, Metz et al. 

1998). In each case, a value of 1.0 indicates the ideal 

of perfect prediction. 

 

Results and Discussions 
 

Table 1 reports IC50 and interaction energies from 

OPLS-AA, AMBER94, MM/GB-VI and RM1-D for 

the series of peptides based on HEL. According to Tsai 

(2002), the value 4 of the dielectric constant is suitable 

to be used in protein interaction, and so was employed 

here. Sequential removal of one to three residues from 

the C-terminus of the native peptide increases IC50, a 

trend that is reflected in interaction energies from all 

methods considered. In contrast, removal of the N-

terminal methionine residue actually increases po-

tency: two of the four methods reflect this in increased 

binding, and the remaining two methods show only 

very small change in interaction energy. The shortest 

sequence, KRHGLDNY, is by some distance the least 

potent peptide in this data set, and again all methods 

predict weak binding for this peptide. From the GB-VI 

results, we can see that the binding energy is approxi-

mately additive: for example, removal of M from the 

http://www.wessa.net/rankcorr.wasp


N-terminus of the peptide reduces binding energy by 

ca. 1 kcal/mol independently of the other residues pre-

sent. Similarly, simultaneous removal of both M and Y 

from N- and C-termini reduces binding by 10.5 kcal/

mol, a value that is very close to the sum of individual 

values (1.0 and 9.4 kcal/mol, respectively).  

 Statistical measures across the entire data set 

clarify the differences in methods. Plotting log(1/IC50) 

against interaction energy gives some correlation for 

all methods, but noticeably superior performance for 

MM/GBVI over others considered (Figure 2). The pat-

tern is similar, but not as clear cut, when considering 

rank correlation, whether using raw or averaged data. 

ROC data shows that MM/GBVI and AMBER94/Born 

are able to unambiguously separate binders from non-

binders with no false positive or negatives, whereas 

PM6-DH2/COSMO, RM1-D/COSMO and OPLS-AA/

Born cannot. However, even those methods give high 

values, indicating that their predictive ability remains 

rather good. 

 Table 2 reports similar data for the data set 

consisting of peptides based on MBP. In this case, all 

but two peptides are quite strongly bound to the recep-

tor, and also exhibit very low IC50 values. The two ex-

ceptions to this are for mutation of Val89 and Phe92, 

which are well-known to be important as “anchor resi-

dues”: mutation of these into alanine significantly in-

creases IC50 values. All methods considered predict 

that the F92A mutation is particularly weakly bound. 

The instability of the F92A mutant is most marked 

with the forcefield method: OPLS-AA predicts that 

this peptide is not bound at all to the receptor. In con-

trast, the semi-empirical methods succeed in predicting 

the relatively weak binding of the V89A mutant, 

whereas with force field methods this mutant does not 

stand out as being more weakly bound than other pep-

tides. 
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Peptide IC50 

MM/ 

GBVI 

RM1-D/ 

COSMO 

PM6-DH2/ 

COSMO 

OPLS-AA/ 

Born 

AMBER94/ 

Born 

MKRHGLDNYRGY 250 -98.55 -214.89 -347.72 -129.53 -130.69 

MKRHGLDNYRG 600 -89.11 -205.87 -344.21 -119.61 -120.62 

MKRHGLDNYR 1000 -85.05 -188.91 -312.20 -112.30 -111.85 

MKRHGLDNY 1250 -75.98 -145.17 -293.10 -99.28 -95.17 

KRHGLDNYRGY 200 -97.57 -209.74 -337.18 -138.25 -135.53 

KRHGLDNYRG 250 -88.03 -200.92 -334.00 -128.33 -125.49 
KRHGLDNYR 5000 -83.94 -183.75 -302.20 -121.03 -116.70 

KRHGLDNY 30000 -74.83 -140.01 -282.69 -108.02 -100.01 

RHGLDNYRGY 500 -93.37 -150.54 -303.55 -125.39 -120.58 

RHGLDNYRG 3000 -83.83 -141.75 -300.10 -115.47 -110.54 

              

R2   0.65 0.46 0.65 0.43 0.55 

Rank correlation   0.88 0.82 0.63 0.80 0.86 
*(IC50-average) rank      

correlation   0.92 0.90 0.82 0.73 0.82 

ROC area 

(cutoff 1000 nM)   1.00 0.93 0.96 0.96 1.00 

* Rank correlation for the set after taking the average values for peptides in bold (IC50
 = 250). 

Table 1: IC50 values (nM) and interaction energies (kcal/mol) for HEL along with R2, rank correlation, and ROC area for each 

method. 
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Figure 2. (A) Linear and (B) rank correlations from MM/

GB-VI data for HEL data set. ROC curve not shown due to 

perfect prediction. 
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 The R2 statistic indicates reasonable correla-

tion between IC50 and RM1-D interaction energy, a 

slightly worse correlation with MM/GBVI data, and 

poor correlations with OPLS-AA and AMBER94 data. 

Application of the rank correlation statistic is not 

straightforward for this data set, since four peptides 

have IC50 = 4 nM and a further four have IC50 = 10 

nM. Therefore, we took the average energies for the 

peptides with IC50 = 4 nM and the average energies for 

the peptides with IC50 = 10 nM and used these aver-

ages on the calculation of the rank correlation of this 

set. The standard cutoff of 1000 nM to distinguish 

binders from non-binders for ROC analysis is inappro-

priate in this case.  

 While the results for HEL and MBP data sets 

is encouraging, the structural similarities and restricted 

range of IC50 data (particularly for MBP) mean that 

more stringent tests are required before we can reach 

any conclusions on the suitability of the methods ex-

amined. For this, we employed Southwood et all's 

(1998) set of 22 structurally diverse peptides bound 

with IC50 values ranging from below 2 to over 2000 

nM. Initially, SYFPEITHI and SVMHC prediction 

servers, along with our own implementation of South-

wood et al’s algorithm, were used to identify the best 

alignment for each peptide. This alignment was then 

constructed by manual mutation of PDB structure 

1AQD in MOE, and energy minimized. The peptide on 

1AQD PDB structure contains 14 residues, with the 

fourth residue located in pocket 1 of the receptor. So, 

in order to mutate this peptide to Southwood’s pep-

tides, we located the anchor residue in pocket 1 and 

then mutated the rest of the original peptide from 

1AQD to that employed by Southwood et al. By using 

this technique we included the core residues of the 

peptides (located on pocket 1 to pocket 9 of the recep-

tor, the importantly binders residues) and some more 

residues of the peptides to our calculations, but we 

missed few residues from each peptide on the set. On 

table 3 and 4, we underline the residues included in our 

calculations and identify the residue in pocket 1 in 

bold red. 

 These structures were then used to examine 

the performance of the methods discussed above in 

predicting binding energy for this more challenging set 

of data (Table 3). As in other data sets considered 

above, all methods clearly identify the peptide with the 

highest IC50 value, namely 27.415, as being particu-

larly weakly bound. Indeed, MM/GBVI predicts this 

peptide not to be bound at all to the receptor. Across 

the entire set, statistical measures show promising per-

formance for MM/GBVI and AMBER94/Born meth-

ods, with rather worse performance for OPLS-AA/

Born and PM6-DH2/COSMO, and poor results from 

RM1-D/COSMO. The MM/GBVI R2 value of 0.54 is 

more than 99.9% significant, and corresponds to a 

standard error for estimate of IC50 of 0.64 nM. The 

rank correlation coefficient of 0.78 indicates that this 

method puts almost 80% of peptides in the correct rank 

order. For ROC results, we used a cutoff of 50 nM to 

distinguish binders from non-binders, resulting in 11 

peptides in each category, thereby giving a balanced 

test of predictions. The area under the ROC curve of 

0.93 found using MM/GBVI is highly encouraging, 

indicating that very few false positives/negatives result 

from this approach. In contrast, the value of 0.62 for 

Peptide IC50 

MM/ 

GBVI 

RM1-D/ 

COSMO 

PM6-DH2/ 

COSMO 

OPLS-AA/ 

Born 

AMBER94/

Born 

EAPVVHFFKNIVTP 7 -71.09 -20.38 -124.32 -12.86 -14.50 

ENAVVHFFKNIVTP 10 -70.00 -18.01 -125.35 -9.24 -15.18 

ENPAVHFFKNIVTP 10 -68.85 -19.83 -127.46 -10.72 -18.02 
ENPVAHFFKNIVTP 50 -67.19 -15.66 -118.41 -6.64 -14.23 

ENPVVAFFKNIVTP 10 -65.74 -17.54 -124.17 -8.68 -13.08 

ENPVVHAFKNIVTP 10 -67.28 -18.19 -124.50 -6.28 -13.20 
ENPVVHFAKNIVTP 199 -63.90 -13.41 -117.60 +0.05 -5.55 

ENPVVHFFKAIVTP 4 -68.45 -17.22 -113.15 -29.96 -37.80 

ENPVVHFFKNAVTP 4 -70.95 -20.91 -128.37 -14.70 -23.28 

ENPVVHFFKNIATP 4 -69.25 -18.76 -127.31 -9.29 -16.37 

ENPVVHFFKNIVAP 4 -69.35 -21.79 -128.18 -29.98 -34.72 

              

R2   0.57 0.69 0.22 0.46 0.45 

*(IC50-average) rank cor-

relation   1.00 0.90 0.60 1.00 0.90 

Table 2: IC50 values (nM) and interaction energies (kcal/mol) for MBP along with R2, rank correlation, and ROC area for each 

method.  

* Rank correlation for the set after taking the average energies for peptides with IC50 = 4 nM (underlined) and for peptides with 

IC50 = 10 nM (bold). 
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Peptide No. 

  

Sequence* IC50 

MM/ 

GBVI 

RM1-D/ 

COSMO 

PM6-

DH2/ 

COSMO 

OPLS-

AA/ 

Born 

AM-

BER94/ 

Born 

1188.34 HNWVNHAVPLAMKLI 14 -40.62 -85.53 -152.33 -143.45 -126.40 

1188.16 KSKYKLATSVLAGLL 3.7 -49.04 -182.02 -246.12 -138.83 -139.35 

1136.47 THHYFVDLIGGAMLSL 2.2 -57.48 -26.04 -101.91 -145.89 -143.04 

1188.32 GLAYKFVVPGAATPY 3.1 -42.75 -105.60 -172.91 -129.11 -120.34 

1136.16 LTSQFFLPALPVFTWL 1.6 -53.28 -71.09 -143.94 -148.22 -138.43 

27.415 NVKYLVIVFLIFFDL 2011 +17.46 -4.54 -71.56 -93.76 -95.87 

27.403 LVNLLIFHINGKIIK 78 -13.19 -77.91 -127.79 -168.31 -128.50 

1136.21 IPQEWKPAITVKVLPA 2.2 -36.32 -130.90 -209.19 -132.11 -117.41 

1136.28 LAAIIFLFGPPTALRS 0.23 -53.05 -90.94 -161.75 -140.97 -135.16 

1136.11 VVFPASFFIKLPIILA 0.89 -59.32 -84.21 -146.19 -155.07 -137.81 

1136.14 FATCFLIPLTSQFFLP 5.3 -24.52 -63.29 -136.09 -133.68 -131.21 

1188.13 AGLLGNVSTVLLGGV 116 -28.96 -86.62 -149.38 -115.74 -102.50 

1136.24 NLSNVLATITTGVLDI 182 -25.61 -27.96 -96.12 -113.74 -96.22 

1136.12 IKLPIILAFATCFLIP 105 40.92 -118.30 -150.80 -107.73 -98.42 

27.392 SSVFNVVNSSIGLIM 41 -38.79 -51.92 -123.90 -133.96 -123.70 

27.417 VKNVIGPFMKAVCVE 56 -53.73 -100.38 -152.69 -128.45 -126.36 

1136.55 QEIDPLSYNYIPVNSN 65 -11.14 -7.50 -78.95 -119.45 -102.80 

1136.71 EPQGSTYAASSATSVD 5.1 -58.73 -16.20 -96.59 -127.66 -113.00 

1136.38 SSIIFGAFPSLHSGCC 70 -8.49 -33.79 -85.15 -90.11 -85.43 

27.388 MRKLAILSVSSFLFV 50 -13.22 -73.82 -125.30 -143.71 -128.80 

1136.59.01a RVYQEPQVSPPQRAET 130 +29.36 -28.23 -86.59 -94.42 -110.26 

1136.46 LWWSTMYLTHHYFVDL 68 -9.91 -106.31 -190.35 -135.71 -128.45 

                

                

R2     0.54 0.14 0.23 0.36 0.48 

Rank        

correlation     0.78 0.29 0.48 0.66 0.74 

ROC area     0.93 0.62 0.75 0.79 0.87 

* The underlined residues are the residues which we included in our calculations and the residues on bold red are the residue 

which located on pocket one of the receptor.    

Table 3: IC50 values (nM) and interaction energies (kcal/mol) for Southwood data set along with R2, rank correlation, and ROC 

area for each method. 



RM1-D is only slightly higher than random. 

 Because of the encouraging performance of 

MM/GBVI, we then explored whether this method 

could be used to predict alignment of peptides within 

the receptor, rather than relying on purely sequence-

based methods. To do this, numerous potential binding 

poses were generated with SYFPEITHI and SVMHC 

algorithms, and the one with the most negative MM/

GBVI interaction energy selected. In 20 of the 22 

cases, this agreed with the results from sequence-based 

prediction methods, but for two peptides (nos. 1136.14 

and 1136.16) a lower energy alternative was found 

from this analysis. For the 1136.14, MM/GBVI pre-

dicts Thr as the anchor residue instead of Leu, and for 

1136.16, the MM/GBVI predicts Gln as the anchor 

residue instead of Phe. This is illustrated in Figure 3 

for 1136.16: as might be expected, sequence-based 

predictions place Phe in the hydrophobic environment 

of pocket 1. However, this leads to placement of Ala 

into pocket 4, Pro in pocket 6 and Thr in pocket 9, 

none of which are particularly favourable for binding. 

With Gln as the residue in pocket 1, a hydrogen bond 

can form to the side-chain carbonyl (Figure 3, bottom 

left). In addition, this alignment places Leu in pocket 

4, Ala in pocket 6 and Val in Pocket 9, all of which 

contribute to favourable binding. Comparison of Ta-

bles 3 and 4 shows that the second alignment has al-

most 10 kcal/mol greater binding energy, despite the 

apparent anomaly of a having relatively polar residue 

in the hydrophobic pocket 1. 
 Using the new values for these two peptides 

improves all statistical tests slightly, as shown in Table 

4. MM/GBVI data shows small increases in R2 and 

rank correlation coefficient, with plots corresponding 

to these data shown in Figure 4. The area under the 

ROC curve increases from 0.93 to 0.96, again illus-

trated in Figure 4. The statistics from other methods 

are barely affected by this change. Thus, we conclude 

that MM/GBVI interaction energies are a useful addi-

tion to sequence-only methods of prediction of peptide

-MHC-II binding alignments. 

 

Conclusion 
 

We have tested several methods to calculate the inter-

action energy for peptide-MHC-II complexes for three 

separate data sets, using IC50 data to evaluate the accu-

racy of each theoretical method. We show that MM/

GBVI approach is a promising way to calculate the 

free energy for peptide-receptor complexes, with reli-

able performance for all three data sets as measured by 

three distinct statistical tests. For two data sets where 

peptides are closely related, HEL and MBP, excellent 

performance is evident from these statistics, with 
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Figure 3 3D and 2D ligand interaction views of two possible alignments of peptide 1136.16 in HLA-DR1. Top: Phe in pocket 

1; Bottom: Gln in pocket 1. On the left, the MHC receptor is shown as a continuous surface, the residue in pocket 1 as space-

filling CPK spheres, and the remainder of the peptide as white wireframe. On the right, blue-shading of the peptide residue indi-

cates exposed atoms. 
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strongly significant correlation between interaction 

energy and log(1/IC50) good or perfect ranking of ac-

tivity, and no false negatives/positives. AMBER94 

with a Born model of solvation performs almost as 

well, while OPLS-AA/Born and RM1-D/COSMO give 

rather worse performance. MM/GBVI also performs 

well for the more diverse set of peptides contained in 

the Southwood data set despite the lack of entropy 

contributions to these calculations, apparently confirm-

ing that such contributions are not required in evalua-

tion of relative binding free energies even for ligands 

as flexible as peptides.  

 We also show that this method can be used to 

predict the anchor residues that reside in receptor bind-

ing pockets, and that this approach gives slight im-

provement in statistics over purely sequence-based 
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Peptide No. 

  

Sequence* IC50 

MM/ 

GBVI 

RM1-D/ 

COSMO 

OPLS-AA/ 

Born 

AMBER94/ 

Born 
1188.34 HNWVNHAVPLAMKLI 14 -40.62 -85.53 -143.45 -126.40 
1188.16 KSKYKLATSVLAGLL 3.7 -49.04 -182.02 -138.83 -139.35 
1136.47 THHYFVDLIGGAMLSL 2.2 -57.48 -26.04 -145.89 -143.04 
1188.32 GLAYKFVVPGAATPY 3.1 -42.75 -105.60 -129.11 -120.34 
1136.16 LTSQFFLPALPVFTWL 1.6 -62.43 -68.14 -146.77 -131.54 
27.415 NVKYLVIVFLIFFDL 2011 17.46 -4.54 -93.76 -95.87 
27.403 LVNLLIFHINGKIIK 78 -13.19 -77.91 -168.31 -128.50 
1136.21 IPQEWKPAITVKVLPA 2.2 -36.32 -130.90 -132.11 -117.41 
1136.28 LAAIIFLFGPPTALRS 0.23 -53.05 -90.94 -140.97 -135.16 
1136.11 VVFPASFFIKLPIILA 0.89 -59.32 -84.21 -155.07 -137.81 
1136.14 FATCFLIPLTSQFFLP 5.3 -64.73 -66.80 -140.92 -130.17 
1188.13 AGLLGNVSTVLLGGV 116 -28.96 -86.62 -115.74 -102.50 
1136.24 NLSNVLATITTGVLDI 182 -25.61 -27.96 -113.74 -96.22 
1136.12 IKLPIILAFATCFLIP 105 40.92 -118.30 -107.73 -98.42 
27.392 SSVFNVVNSSIGLIM 41 -38.79 -51.92 -133.96 -123.70 
27.417 VKNVIGPFMKAVCVE 56 -53.73 -100.38 -128.45 -126.36 
1136.55 QEIDPLSYNYIPVNSN 65 -11.14 -7.50 -119.45 -102.80 
1136.71 EPQGSTYAASSATSVD 5.1 -58.73 -16.20 -127.66 -113.00 
1136.38 SSIIFGAFPSLHSGCC 70 -8.49 -33.79 -90.11 -85.43 
27.388 MRKLAILSVSSFLFV 50 -13.22 -73.82 -143.71 -128.80 
1136.59.01a RVYQEPQVSPPQRAET 130 29.36 -28.23 -94.42 -110.26 
1136.46 LWWSTMYLTHHYFVDL 68 -9.91 -106.31 -135.71 -128.45 
              
R2     0.56 0.14 0.36 0.47 
Rank 

correlation 

  

  0.79 0.29 0.66 0.74 
ROC area     0.96 0.62 0.80 0.87 

Figure 4 (A) Linear correlation, (B) rank correlation and (C) ROC curve from MM/GBVI data for Southwood data set. 

a Alignments that differ from Table 3 shown in bold.  

* The underlined residues are the residues which we included in our calculations and the residues on bold red are the residue 

which located on pocket one of the receptor.  

Table 4: IC50 values (nM) and interaction energies (kcal/mol) for Southwood data set from MM/GBVI alignment along with 

R2, rank correlation, and ROC area for each method.a 
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prediction methods such as SYFPEITHI or SVMHC. 

The accuracy of the MM/GBVI approach may stem 

from the fact that the dielectric constant employed is 

estimated from the atoms present in the specific com-

plex under study, rather than on an idealised value, or 

from the use of constrained optimisation that allows 

ligand and some receptor flexibility while keeping the 

overall binding mode fixed. Of course, both peptide 

ligand and protein receptor are flexible objects, such 

that the single snapshots used here can only be ap-

proximations of the entire binding event. We are cur-

rently exploring the use of molecular dynamics to cal-

culate MM-GB/SA averaged over multiple snapshots, 

and will report the results in a future publication. For 

now, we have shown that the MM/GBVI approach can 

deliver reasonable predictions of peptide-MHC bind-

ing in a matter of a few seconds on a desktop com-

puter. 
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