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ABSTRACT

In this paper, 2 3D shroud contact model is employed to predict
the periodic response of blades having 3D nonlinear shroud constraint.
When subjected to periodic excitation, the resulting relative motion a1
the shroud contact is assumed to be periodic in three-dimensional
space. Based on the 3D shroud contact model, analytical criteria are
used to determine the transitions between stick, slip, and separation of
the contact interface and are used to simulate hysteresis loops of the
induced constrained force, when experiencing periodic relative
motion. The constrained force can be considered as a feedback force
that influences the response of the shrouded blade. By using the
Multi-Harmonic Balance Mcthod along with Fast Fourier Transform,
the constrained force can be approximated by a series of harmonic
functions so as to predict the periodic response of a shrouded blade.
This approach results in a set of nonlinear algebraic equations, which
can be solved iteratively to yield the periodic response of blades
having 3D nonlinear shroud constraint. In order to validate the
proposed approach, the predicted results are compared with those of
the dircct time integration method. The resonant frequency shift, the
damping effect, and the jump phenomenon dut 1o nondinear shroud
constraint are examined. The implications of the developed solution
procedure to the design of shroud contact are also discussed.

Introduction

In a shrouded blade system, the protruding shrouds constrain the
blade motions not only along the contact plane bui also 2long the
normal direction of the plane, resulting in very complex contact
kinematics. The in-plane tangential relative motion is often two-
dimensional, and it can induce stick-slip friction (Menq and Yang,
1998; Yang and Menq, 1997; Griffin and Meng, 1991; Menq er al,
1991). On the other hand, the normal rclative motion can cause
variation of the contact normal load and, in extreme circumstances,
separation of contact interface (Menq er af, 1986; Yang and Meng,

1998). In previous studies of the shrouded blade systems, Yang and
Menq (1997) proposed a two-dimensional model for the contact
kinematics. This mode! retains the normal component of the relative
motion that causes normal Ioad variation while degenerating the in-
plane tangential component of the relative motion into linear motion.
In their study, the assumed blade motion has only two components,
namely axial and tangential components. In order to take the radial
component into account, Yang et al (1998) proposed a simplified
three-dimensional shroud contact kinematics, in which the two-
dimensional in-planc tangential relative motion is assumed 1o be
clliptical and is decomposed into two linear motions zlong the
principal major and minor axes of the ellipse. A variable normal load
friction force mode! (Yang and Meng, 1997) was then applied
separately to each individual linear motion to estimate the equivalent
stiffness and damping of the shroud contact.

Yang and Menq (1998) further proposed a three-dimensional
shroud contact model, in which the joined effect of the 2D tangential
relative motion and the normal relative motion is examined, They
developed a set of analytical criteria to determine the transitions
among stick, slip, and separation, when experiencing variable normal
load. With these transition criteria, the constrained force can be
predicted for any given 3D cyclic relative motion across the contact
interface. In this paper, the 3D shroud contact model (Yang and
Mengq, 1998) is cmployed to obtain the constrained force at the shroud
contact of a shrouded blade system. The bladed system is assumed
tuned and the assumed blade motion has three components, namely
axial, tangential, and radial components. In the shroud contact model,
a contact plane is defined and its orientation is assumed invariant.
When subjected to periodic excitation, the resulting threc-dimensional
relative motion at a shroud contact as well as the constrained force are
assumed 10 be periodic. The constrained force can be considered as a
feedback force that influences the response of the shrouded blade. By
using the Multi-Harmonic Balance Method along with Fast Fourier
Transform, the constrained force can be approximated by a series of
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harmonic functions. In the calculation of the nonlinear forced
response of a shrouded blade, all the linear degrees of freedom can be
condensed to receptance and the modeling of shroud contact can be
separated from the complex structure model. This approach results in
a set of nonlinear algebraic equations, which can be solved iteratively
to yield the periodic forced response of blades having 3D nonlingar
shroud constraint.

3D Shroud Contact

Figure 1 shows a shrouded blade system with two neighboring
blades contacting each other through the protruding shrouds. When
subjected to cyclic excitation, the vibratory mation of the shrouded
blade can be assumed ta be periadic, and the resulting relative motion
across the shroud contact is also periodic in the 3D space. In
modeling the shroud contact, a “‘substructure™ can be used to
represent the friction interface that comains the contact plane and
small portions of the two neighboring shrouds, and the substructure
can be modeled as two massless elastic ¢lements that are held together
by a preload ny. The points 4 and B are the outermost points of these
two elastic elements; and the difference of their respective motions can
describe the 3D periadic relative mation of the twa neighboring
shrouds. The periodic relative motion is often not parallel to the
contact plane. In order to analyze the induced friction, the periodic
relative motion in the 3D space can be decomposed into an in-plane
periodic motion on the contact plane and a periodically varying
component normal to the contact plane.

Shroud Contact Geometry

Two shrouded blades contact each other through their protruding
shrouds are as shown in Figure 2, and the xyz coordinate system
(called blade coordinate system) is defined in accordance with the
tangential (x), axial (y), and radial (z) directions. The contact plane of
the 3D shroud contact is defined by two angles y (called shroud angle)
and ¢ (called inclination angle). A vuw coordinate system (called
shroud coordinate system) can be defined, where v axis is along the
normal direction of the contact plane, and u and w axes are on the
contact plane. In this paper, the blade coordinate system is defined by

using three unit vectors, namely [i ¥y i] » and the shroud coordinate

system [\7 a \?:]. These two coordinate systems can be related to
each other as follows:

[v'a wl=[x ¥ 2, (n

where Ty is the coordinate transformation matrix (Yang et al, 1998).

coswcosd —siny cosysind )
T, =|sinycosd cosy sinysind @
-sind ¢ cosd

In current design practice, the inclination angle ¢ is ofien set to be
ZE70.

The decomposition of the 3D relative motion is shown in Figure
3 schematically. The in-plane periodic motion can induce stick-slip

Blades

+ mxial

tangential
4

Past-span

shroud Substructure representing

friction contact

) — 1

Figure | Shroud contact of two neighboring shrouded blades.

Blades radial(z)
axial {y)
1angentiz! (x)
y
¢ y

//._ < 4

Part-span
shrood

Figure 2 Contact geometry of a shrouded blade system.
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Figure 3 Decomposition of 3D periodic relative motion.
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friction, and thus can attenuate the periodic response of the shrouded
blades. On the other hand, the normal component tends o alter the
normal load across the interface; and this effect, in extreme
circumstances, may lead to separation of the interface. It should be
noted that the variable normal load is taken as the sum of the initial
" contact pressure at equilibrium plus a term that is proportional to the
periodically varying normal component of the relative motion. Since
this decomposition is to transfer the relative motion from the biade
coordinate system to the shroud coordinate system, it can be carried
out by performing a coordinate transformation on the 3D relative
motion by using equation (1),

3D Shroud Contact Mode!

In the 3D shroud contact model proposed by Yang and Meng
(1998), the contact interface between two vibrating shrouds can be
modeled as a substructure that contains a massless elastic element and
@ friction contact point, as depicted in Figure 4. In this modc!, the
elastic element accounts for the shear and normal stiffness of the
substructure, and it is characterized by 2 2 x 2 stiffness matrix K,, for
the shear stiffness and a spring constant k, for the normal stiffness.
The friction contact point, that is assumed to obey the Coulomb
friction law with the friction coefficient u when in contact with Body
2, can undergo tangential stick-slip motion, and may experience
intermittent separation from Body 2 when the normal relative motion
(v) becomes large. The motion of the contact point is denoted as w in
this model. The contact interface is assumed to have either a preload
or an initial gap (as designated by ny). This model allows a negative
preload to represent the situation when the interface has an initial gap,
the equivalent preload across the interface with & gap e is calculated as
=kve. In this mode), u and v are the input tangential relative motion
{(u wI") and normal reiative motion (v) of the comtact interface
respectively, and they can be evaluated as the motion of Body J with
respect to Body 2, where v, u, and w are the relative motions in the
shroud coordinate system.

Constrained Force

The constrained force consists of two components: the induced
friction force on the contact plane and the variable normal force.
Since the friction force is completely characterized by the relative
motion, it will not lose generality to assume one of the contacting
surfaces is the ground. With this assumption, the input tangential
relative motion u, the slip motion of the contact point w, and the
induced friction force f are vectors paralle! to the ground; the normal
relative motion v and the normal ioad n are scalars. The friction foree,
acting on the ground, can be expressed as:

f=K (u~w) 3

The normal load is taken as the sum of the preload n, plus the
variation caused by v, and it can be expressed as:

e g+ kv when vz —ng fk, )
0 whenv < —-n,fk,

Figure 4 A 3D shroud contact modcl.

In this paper, the orientation of the contact plane is assumed to be
invariant. This assumption is reasonable if the amplitude of shroud
relative motion is relatively small when compared to the overall
dimension of the shroud interface.

Stick, Slip, and Separation

Depending on the amplitude and phase of the in-plane relative
motion and the normal load component of the vibratory motion, the
friction contact will either stick, slip, or separate during a cycle of
oscillation. The stick and slip conditions can be expressed as follows
(Yang and Mengq, 1998):

stick condition: |f = K,(u - u°]+ fol <pn w=0 (3

w

slip condition: f= unm w=( (6)

where up and fp are the initial values of u and f at the beginning of the
stick state, During the cycle of motion, the applied variable normal
load may vanish to cause the interface to separate; consequently, the
friction force is not present.

Stick/Slip/Separation Transition Criteria

In arder to evaluate the resuiting periodic constrained force at the
shroud contact, analytical criteria are employed to determine the
transitions between stick, slip, and scparation when experiencing
variable normal load. The analytical criteria can be summarized as
follows.

(i) Stick-to-slip transition
This transition occurs when the friction force on the
tangential plane reaches the varying slip load pa. That is,

|f=K,,(u—u,,)+f,|=pn )]
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(i)

To ensure that the magnitude of the friction force has a
tendency to exceed the slip load, the fallowing constraint is
imposed:

li]> pa (8)

Slip-to-stick transition

During the slipping state, according to the Coulomb friction
law, the frictian farce can be salved from an initial value
problem:

. . fTK.l'l—}.lznr'IJ (9)
f-K“[u— e

The slip-to-stick transition accurs when the velacity of the
relative motion w equals 0, which implies:

K o-pu’mi=0 (10)
Since the initial friction force at the beginning of the slip
condition is known, the initial value problem of equation (9)
can be selved by using a numerical integration scheme such
as the 4* order Runge-Kutta method to obtain the friction
force £. Once the friction force is obtained, the criterion of

equation (10) can be used to check the accurrence of the
slip-to-stick transition.

(iii) Stick/slip-to-separation transition

(iv)

The transition from stick/slip to separation occurs when the
normal load vanishes. In addition, the normal load should
be decreasing at this moment to ensure the occurrence of the
scparation. Hence the transition criteria can be formulated
as:

n=0 A< (11)
Separation-ta-stick/slip transition
Similarly ta the above criterion, the separation ends when
the normal load is about to develop an the contact plane.
Therefore, the moment of this transition can be determined
by the criterian:

n=0, #20 (12)
When the normal load and the friction force begin to
develop an the contact plane at the end of the separation,
their rate of change at the moment determine whether the
following state is either stick or slip.

u"KIK, i < pti? = Stick begins
U'KIK, 02 pa® = Slip begins

(13)
(14
It should be pointed out that the incipient slipping condition

can be regarded as an one-dimensional case, because the
friction force is not present at this moment and the slip

action will be developed along u. Thus, according to the
Coulomb frictian law, the rate of change of the developing
friction force can be expressed as:
. o
f=pn—s (15)
r
Once the friction force develops, it can be further
determined by solving the initial value prablem of equation
.

In this paper, these criteria are used to simulate hysteresis loops
of the friction contact, when experiencing periodic relative motion.
With these hysteresis laops, the resulting constrained force can be
characterized by the relative motian between two neighboring shrouds.
By using Fast Fourier Transform, the constrained force can be
approximated by a series of harmonie functions and employed in
Muiti-Harmonic Balance Method ta salve far the periodic response.

Periodic Response of A Shrouded blade System

In the analysis of a shrouded blade system, a great simplification
can be abtained by assuming that the bladed system is tuned, namely
each blade of the system has exactly the same dynamic eharacteristics.
In addition, the excitation of interest is that induced by the blades
ratating through circumferential variations in the flow field. It can be
shown that in effect each blade is exposed to a periodic excitation
having the same amplitude but differing in phase by an amount which
is propartional to the blade’s angular location an the disk. It is
assumed that the forced response of the bladed system is alsa periodic
and has the same fundamental period as the excitationt. Thus the
motion of the blade as well as the nonlinear constrained force can be
represented by infinite Fourier series. By truncating these series after
the m™ terms, an approximate solution assuming that the forced
response is periodic can be derived. In this approach, each blade
vibrates in the same manner but with a proportional interblade phase

difference ( 4ip ) for ™ harmonic companent from its adjacent blades.
The interblade phase angie is defined as follows:

_ 2k (16)

N

where N is the total number of the blades in the system and £ is the
engine order of the excitation on the system.
The equation of mation of a shrouded blade subjected to a
periadic cxcitation can be expressed as fallows:
mi+ck+kx=f —f, (1
where x is the nodal displacement vector, m is the mass matrix, ¢ is
the damping matrix, k is the stiffness matrix, f, is the external periodic
excitation, and f. is the nonlinear constrained force which is a
nonlincar function of the relative motion at the shroud cantact. The

! Sub-harmonic companents can also be included in the approach
presented in this paper. However, they ase ignored in the current
manus<ript.
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finite element model is three-dimensional and if the model contains »
nodes, all the matrices will be 37 x 3n matrices. and all the veciors
will be 3n-element vectors. .

The external periodic excitation can be expressed as follows.

L= S e (18)

where @ is the fundamental excitation frequency and [, is a complex

vector representing the amplitude and phase for the ™ harmonic
component of the excitation. Here the external periodic excitation is

assumed 10 include up 16 m™ harmonic component. It should be
pointed out that except for the elements associated with those shroud
contact points the other elements of [, are zeros. It is clear thal the
nonlinear aspect of the dynamic problem is embedded in the nonlinear
friction force fy. By using the Modal Analysis Methed, the mode
shape matrix can be obtained and is denoied as @®. Using the mode
shape matrix and the associaied modal information, the receptance of
the blade can be derived as:

r=[r,u]=§(¢'/\m¢r) (19}
and
Ay = [(k. -J’c’m‘m.)i-j(itmc,)]'l (20)

where r,,, is defined as the steady state response of the " node due

to unit k* harmonic excitation force at the ¢* node, @, is the i

th th

mode shape, m; is the /™ modal mass, k; is the i modal stiffness,

and c; is the i™ modal damping.

In this paper, the periodic three-dimensional motion in the blade
coordinate system can be represented as follows:

ZA H ‘ea‘h'
X &:0 ' . ) (21)
x={yl=st 3 A ™
¥ E i
z el .
z A X tlh’

kel

where @ is the fundamental oscillating frequency, and A;,, i = x, y.
z, are the complex veciors representing the amplitude and phase angle

of the ™ harmonic component along tangential, axial and radial axes.
For a shrouded blade, several pairs of shroud contaci points can be
defined. For each pair of shroud contact points, one is on the right and

B . T
the other left and their motions ere denoied as [x, x,] . For
convenience, this vector can be arranged as:

[x, x,]T =[(x, x,)‘r]T =[x,'n X,q X, X, X, x"']T (22)

Relative Motion at Shroud Contact

Since the shrouded blade system is assumed tuned, the condition
of cyclic symmetry can be applied when deriving the relative motion
of a shroud contact. Take the relative motion between the point B of
the cight shroud and the point A of the teft shroud in Figure 1 as an
example, First, the motions of the two contact points of the firsi

shrouded blade (left one) are defined and they are [x, x,]T,
Therefore, the motion of point B is now x, and the motion of point A
differs from x, with the proportional interblade phase angle (kp) for

the ¥ harmonic component. As a result, the relative motion of the
two neighboring shrouds, w, , can be derived as

w,=T,[(x, x,)‘]T, k=01 m (23)

where T, is the interblade relative displacement transformation matrix.

T = [dia Tu,mTl,..---,T,,)] (24)
le =[l3,! —B_Jblhz], k= 0r l,-..!m (25}

It is worthy noting that only the relative motion at the right shroud
contact point is derived. Since the shrouded blade system is assumed
tuned, the relative motion and the resulting constrained force of the
left shroud contact point can be related to those of the right shroud
contact point by using the condition of cyclic symmetry. Since bath
x, and x, arc periodic motions, the resulting relative motion w, also
has periodic trajectory in the 3D space.

Since this relative motion w, is in the blade coordinate system, it
can be transformed to the shroud coordinate system by using the
transformation defined in equation (1):

' u, =T:sw' (26)
Ty = [d:'ag('l‘,l,,Tn',,---,TD,)],Tn., =T, k=0L-m (27

where Tpe is the coocdinate transformation matrix for 3D periodic

relative motion. The 3D relative motion in the shroud coordinate
system can be expressed as follows:

= o
2A, e
v k=0 (28)
u, =lu|=| A, ™
bad "
w m
ZA-erw
sl

where A, i = v, u, w, arc the complex vectors representing the

amplitude and phase angle of the &™ harmanic componeni along v, u
and w axes.
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Constrained Force at Shroud Contact

After the decomposition. the u and w components of the relative
motion follow a periodic trajectory on the contact plane and can
induce the stick-slip friction, while the v component can cause the
normal load across the interface to vary dynamically. It is apparent
that the & and w motions are coupled together when inducing stick-slip
friction. Using the 3D contact model proposed by Yang and Meng
(1998), the constrained force at the right shroud contact point can be
determined. By using Fast Fourier Transform, the constrained force
can be approximated by a series of harmonic functions and can be
expressed as follows:

2 p . ‘.e,lh'f
p(v) N (29)
p. = pm(v‘ u, W) = me‘*eﬂ""
G w) =
pn- 3+ Z p ”‘k ejb"
kuQ

whete p;,, i=v, u, w, are the complex Fourier coefficients of the

£® harmonic component along v, u and w axes. Then, the
constrained fpree can be transformed back to the blade coordinate
system:

r.r = T.BSpr (30)
Furthermore, the constrained forces at a pair of shroud contact points

can be related to the force at the right shroud contact point using the
interblade relative displacement transformation matrix.

[

where T is the complex conjugate transpose of T, .

Nonlinear Algebraic Equations
When the blade is constrained by its neighboring blades through
shroud contacts, the resulting constrained forces are characierized by

the displacements of a pair of contact points, [x, x,]‘r , and they can
be considered as feedback forces that influence the response of the
blade. This feedback effect along with the contact kinematics is
shown in Figure 5. From the nonlinear feedback loop shown in Figure
5, it is evident that in the calculation of nonlinear forced response of a
shrouded blade, all the linear degrees of freedom can be condensed to
receptance and the modeling of friction contact can be separated from
the complex structure model. This approach resuits in a set of
nonlinear algebraic equations, which can be formulated as follows:

u, = T;\'TI ir«fz - rcchHT”pf (u' )} (32)

where r,, is the receptance at the shroud contact points due to unit
harmonic excitation force, and r,. is the receptance at the shroud

contact points due to unit constrained force. For simplicity of

Friction Force Model

Figure 5 Nonlinear feedback toop of a shrouded blade.

Blade

e

Part-span
throud

L

Figure 6 A blade with shroud-to-ground friction damper.

demonstration, cach shrouded blade is assumed to contain a pair of
shroud contact points. By using the Fast Fourier Transform, the
constrained force can be approximated by harmonic functions having
the same fundamental frequency as the cxternal periodic excitation,
and its amplitude and phase are nonlinear functions of the relative
motions of the pair of contact points. By using the Multi-Harmonic
Balance Method, the nonlinear algebraic equations become

u,‘=rr“’,f,lt-rr“_,p,’,,(u,), k=0,1,2,--m (33)

where
Tty = To T s s (34
s = To T T T (3%

This set of nonlinear algebraic equations has the unknown {u,.,,} , and
can be solved iteratively by using Newton-Raphson algorithm. With
the solution {u,.,} , the constrained force can be obtained by using

equation (29). The periodic response of the shrouded blade system
can be caiculated by using the resulling constrained force together
with the receptance.
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Comparison with Direct Time Integration Method

In order to verify the solution procedure presented in this paper,
the predicted results are compared to those of direct time integration
method.  Since it is very time consuming when using direct time
integration method for a bladed system, a simplified system is
considered. A blade with shroud-to-ground friction damper, as shown
in Figure 6, is tested to validate the proposed solution procedure. In
this test, the 3D shroud contact model is employed to predict the
periodic response of a shrouded blade, which is constrained by the
ground. In this study, the first five vibration modes of the shrouded
blade are employed to calculate the receptances and three harmonic
terms are included in the calculation of nonlinear forced response.
Various levels of preload, ranging from fully separate to fully stuck
case, are applied and the predicted results are shown as solid curves in
Figure 7, along with discrcte data points, which are the results of the
direct time integration method. In the figure, the frequency is
normalized with respect to the first mode natural frequency, and the
amplitude is normalized with respect to the peak value of the fully
separation case. It is seen that the Multi-Harmonic Balance Method
can accurately predict the periodic response of the shrouded blade
when the shroud contact is either preloeded or having an initial gap.
In the same figure, the predicted resonance response for the case ny, =
-5000 using single-lerm Harmonic Balance Method is also compared.
It is apparent that in this case the nonlinear spring force of the shroud
constraint exhibits a hardening effect that causes a jump phenomenon
and the single-term Harmonic Balance Method can not accurately
predict the resonance response.

Periodic Response of A Shrouded Blade System

The proposed method is applied to predict the periodic response
of a shrouded blade system. In this shrouded blade system, the first
twenty vibration modes arc employed in the analysis.

Shift of Resonant Frequency

It is known that when changing the preload there exist two limit
cases, namely the fully separate case and fully stuck case (Yang and
Meng, 1998). Since the nonlinear contact force does not appear in the
analysis, both cases arc lincar problems. The fully separate case
occurs when the interface has such a large initial gap that the vibrating
neighboring shrouds can not make contact with each other. Since the
contact force is not present, the resonant response corresponding to the
natural frequencies of the system can be clearly seen. On the other
hand, when the preload of the interface exceeds a level depending on
the extemal ecxcitation, the shroud contact interface remains fully
stuck. In this case, the shroud contact does not dissipate energy.
However, it provides additional stiffness, which arises from the shroud
constraint, to the system to cause higher resonant frequencies.

The frequency shifts of the first three vibration modes of the
shrouded blade sysiem subjected 1o nodal force external excitation are
shown in Figure 8. In the figure the frequency is normalized with
respect 1o the first mode natural frequency, and the amplitude is
normalized with respect to the peak of the first mode for the fully
separation case. Since the resulting responses along the three axes are
similar, only the normalized amplitude of the response along the axial
direction is presented in the figure. In the first vibration mode, the
resonant peak shifts from fully separation at normalized frequency 1.0

0.035 ' y . - .
. . = }-terms HBM
Fully separation ———.: single-term HBM Fully sruck
0.0 } \ + :time integration 1
- L]
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v o 1000
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< ]
S 002
k-]
2
%
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1] 0.5 [ ] 1.5 2.0 5
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Figure 7 Periodic response of a blade with shroud-to-ground
friction damper.
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Figure 8 Periodic response of a shrouded blade system:
resonant shift of resonant frequency.

to fully stuck at normalized frequency 2.08, and the amplitude of the
peak resonance is reduced by 54.5%. For the second vibration mode,
the resonant peak shifts from fully separation at normalized frequency
2.14 to fully stuck at normalized frequency 4.79, and the amplitude of
the peak resonance is reduced by 93.3%. For the third vibration mode,
the resonant peak shifts from fully separation at normalized frequency
2.33 to fully stuck at normalized frequency 6.85, and the amplitude of
the peak resonance is reduced by 89.1%.
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Reduction of Resonant Peak .

In between the two linear cases. the constraint force consists of
nonlinear friction force and the variable normal load. The significance
of the variation of the contact normal load depends on the direction of
the resulting relative motion at the shroud contact and the orientation
of the contact plane. [f the variation of the contact normal load is not
significant, the cffect of a shroud constraint is not very different from
that of a platform damper. This is demonstrated by the attenuation
effect of the induced friction on the resonant response of the first
vibration mode. Figure 9 shows the tracking curves of the first
vibration mode of the shrouded blade system when changing the
contact preload. Two sets of curves are shown. The solid curves are
the predicted results using the 3-terms Harmonic Balance Method and
the dashed curves the single-term Harmonic Balance Method. It is
seen that as the preload increases, the resonant peak decreases until the
minimum response is reached at n; = 2. Beyond this preload, the
damping effect tends to reduce gradually towards the fully stuck case.
The preload that gives the minimum response is known as the optimal
preload.

Since the induced friction force has super-harmonic components,
it i5 possible that the super-harmonics of the shrouded blade system
can be excited and internal resonance can occur. AS can be seen in
Figure 9, when the preload is 0, the internal resonance can be observed
at pormalized frequencies 0.75 and 1.45 based on the results using 3-
terms Harmonic Balance Mecthod, It appears that the single-term
Harmonic Balance Method tends to over-estimate the resonant peak
although for the first vibration mode the problem is not obvious.

Jump Phenomenon

In addition to its influence on the friction characteristic, the
variable normal Ioad can directly impose nonlinear stiffness on the
systetn. This noniinear stiffness arises from the intermittent separation
of the contact surface during the course of vibration. It has been
known that this nonlincanity can result in 2 multi-valued response that
can lead to a jump phenomenon (Thomson, 1988). A multi-valued
response can be obtained by using the standard continuation technique
(Allgower and Georg, 1990). In this study, 2 jump phenomenon can
be observed at the third vibration mode, as shown in Figure 10, when
a moderate preload {n, = 2) is applied. The increase in the resonant
amplitude causcs the preloaded interface to separate, and as a result,
the interface can not provide stiffness to the system temporarily, The
overall effect of the temporary separation is similar to the effect of a
“softening spring” that gives rise to the response with a resonance
peak bending towards lower frequencies. It should also be noted that
one of the multiple solutions from the harmonic balance method
shown as the dotted curve is unstable (Thomson, 1988); while
separated by the unstabie response, the stable response consists of two
curves, which are referred 1o as the upper and lower branches. In this
figure, the resonant response predicted by the single-term Harmonic
Balance Method is compared ta that by the 3-terms Harmonic Balance
Method. It is seen that the single-term Harmonic Balance Method
well over-estimates the resonant response at the region near jump.
Furthermore, the internal resonance can be clearly observed from the
predicted results using 3-terms Harmonic Balance Method.
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Figure 9 Periodic response of a shrouded blade system:
attenuation of resonant amplitude.
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Figure 10 Periodic response of a shrouded blade system:
jump phenomenon at third vibration mode.
Conclusion

In this paper, a 3D shroud contact moede] is employed to predict
the periodic response of blades having 3D nonlincar shroud constraint.
When subjected to periodic excitation, the resulting relative motion at
the shroud contact is assumed to be periodic in three-dimensional
space. Based on the 3D shroud contact model, analytical criteria are
used to determine the transitions between stick, slip, and separation of
the contact interface and are used to simulate hysteresis loops of the
induced constrained force, when experiencing periodic relative
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motion. The constrained force can be considered as a feedback force

that influences the response of the shrouded blade. By using the
Multi-Harmonic Balance Method along with Fast Fourier Transform,
the constrained force can be approximated by a series of harmonic
functions so as to predict the periodic response of & shrouded blade.
This approach results in a set of nonlinear algebraic equations, which
can be solved iteratively to yield the periodic response of blades
having 3D nonlinear shroud constraint.

The predicted nonlinear response shows three distinct features:
(1) shifted resonant frequency due to the additional spring constant
introduced by the shroud constraint, (2) damped resonant response due
to the additional friction damping introduced by f{rictional slip, (3)
multi-valued response leading to a jump phenomenon due to
intermittent interface separation. The predictive ability of the
proposed approach has important implications to the design of the
shroud contact. In the design of the shroud contact, the preload is one
of the important parameters to control the effectiveness of the shroud
contact. Since the attenuation effect of the shroud contact on resonant
vibration can be accurately predicted over a wide range of preload
using the proposed approach, the designer can achieve the optimal
preload to maximize the performance of the shroud contact in
dissipating vibratory energy. Moreover, the proposed approach can
also facilitate the design of shroud angle, which is another important
parameter to be considered in the design of the shroud contact.
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