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ABSTRACT 
In this paper, a 3D shroud contact model is employed to predict 

the periodic response of blades having 3D nonlinear shroud constraint. 
When subjected to periodic excitation, the resulting relative motion at 
the shroud contact is assumed to be periodic in three-dimensional 
space. Based on the 3D shroud contact model, analytical criteria are 
used to determine the transitions between stick, slip, and separation of 
the contact interface and are used to simulate hysteresis loops of the 

induced constrained force, when experiencing periodic relative 
motion. The constrained force can be considered as a feedback force 
that influences the response of the shrouded blade. By using the 
Multi-Harmonic Balance Method along with Fast Fourier Transform, 

the constrained force can be approximated by a series of harmonic 
functions so as to predict the periodic response of a shrouded blade. 
This approach results in a set of nonlinear algebraic equations, which 
can be solved iteratively to yield the periodic response of blades 
having 3D nonlinear shroud constraint In order to validate the 
proposed approach, the predicted results are compared with those of 
the direct time integration method. The resonant frequency shift, the 
damping effect, and the jump phenomenon due to nonlinear shroud 
constraint are examined. The implications of the developed solution 
procedure to the design of shroud contact are also discussed. 

Introduction 
In a shrouded blade system, the protruding shrouds constrain the 

blade motions not only along the contact plane but also along the 
normal direction of the plane, resulting in very complex contact 
kinematics. The in-plane tangential relative motion is often two-
dimensional, and it can induce stick-slip friction (Meng and Yang, 
1998; Yang and Meng, 1997; Griffin and Meng, 1991; Meng et al, 
1991). On the other hand, the normal relative motion can cause 
variation of the contact normal load and, in extreme circumstances, 
separation of contact interface (Meng et al, 1986; Yang and Meng,  

1998). In previous studies of the shrouded blade systems, Yang and 
Menq (1997) proposed a two-dimensional model for the contact 
kinematics. This model retains the normal component of the relative 
motion that causes normal load variation while degenerating the in-
plane tangential component of the relative motion into linear motion. 
In their study, the assumed blade motion has only two components, 
namely axial and tangential components. In order to take the radial 
component into account, Yang et al (1998) proposed a simplified 
three-dimensional shroud contact kinematics, in which the two-
dimensional in-plane tangential relative motion is assumed to be 
elliptical and is decomposed into two linear motions along the 
principal major and minor axes of the ellipse. A variable normal load 
friction force model (Yang and Meng, 1997) was then applied 
separately to each individual linear motion to estimate the equivalent 
stiffness and damping of the shroud contact. 

Yang and Meng (1998) further proposed a three-dimensional 

shroud contact model, in which the joined effect of the 2D tangential 
relative motion and the normal relative motion is examined. They 
developed a set of analytical criteria to determine the transitions 
among stick, slip, and separation, when experiencing variable normal 
load. With these transition criteria, the constrained force can be 
predicted for any given 3D cyclic relative motion across the contact 
interface. In this paper, the 3D shroud contact model (Yang and 
Meng, 1998) is employed to obtain the constrained force at the shroud 
contact of a shrouded blade system. The bladed system is assumed 
tuned and the assumed blade motion has three components, namely 
axial, tangential, and radial components. In the shroud contact model, 
a contact plane is defined and its orientation is assumed invariant. 
When subjected to periodic excitation, the resulting three-dimensional 

relative motion at a shroud contact as well as the constrained force are 
assumed to be periodic. The constrained force can be considered as a 

feedback force that influences the response of the shrouded blade. By 
using the Multi-Harmonic Balance Method along with Fast Fourier 

Transform, the constrained force can be approximated by a series of 
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Figure 1 Shroud contact of two neighboring shrouded blades. 

Figure 2 Contact geometry of a shrouded blade system. 

  

decomposed 

  

Periodic relative 
	

hi-plane (2D) 
	

Periodically varying 
motion in 3D space 	 periodic motion 	normal component 

causing normal load 
variation 

harmonic functions. 	In the calculation of the nonlinear forced 
response of a shrouded blade, all the linear degrees of freedom can be 
condensed to receptance and the modeling of shroud contact can be 
separated from the complex structure model. This approach results in 
a set of nonlinear algebraic equations, which can be solved iteratively 
to yield the periodic forced response of blades having 3D nonlinear 
shroud constraint. 

3D Shroud Contact 
Figure 1 shows a shrouded blade system with two neighboring 

blades contacting each other through the protruding shrouds. When 
subjected to cyclic excitation, the vibratory motion of the shrouded 

blade can be assumed to be periodic, and the resulting relative motion 
across the shroud contact is also periodic in the 3D space. In 
modeling the shroud contact, a "substructure" can be used to 
represent the friction interface that contains the contact plane and 
small portions of the two neighboring shrouds, and the substructure 
can be modeled as two massless elastic elements that are held together 
by a preload no. The points A and B are the outermost points of these 
two elastic elements; and the difference of their respective motions can 
describe the 3D periodic relative motion of the two neighboring 
shrouds. The periodic relative motion is often not parallel to the 
contact plane. In order to analyze the induced friction, the periodic 
relative motion in the 3D space can be decomposed into an in-plane 
periodic motion on the contact plane and a periodically varying 
component normal to the contact plane. 

Shroud Contact Geometry  
Two shrouded blades contact each other through their protruding 

shrouds are as shown in Figure 2, and the zyz coordinate system 
(called blade coordinate system) is defined in accordance with the 
tangential (x), axial (y), and radial (z) directions. The contact plane of 
the 3D shroud contact is defined by two angles w (called shroud angle) 
and 0 (called inclination angle). A Innw coordinate system (called 
shroud coordinate system) can be defined, where v axis is along the 
normal direction of the contact plane, and is and w axes are on the 
contact plane. In this paper, the blade coordinate system is defined by 

using three unit vectors, namely fi 9 11, and the shroud coordinate 

system ji . These two coordinate systems can be related to 

each other as follows: 

il=[i9 tro 	 (1) 

where To  is the coordinate transformation matrix (Yang eta!, 1998). 

[

cos w cosi+ — sin w cosy sin+ 

sin w cos+ cos w sin tir sin+ 

— sin+ 0 cos0 

(2) 

In current design practice, the inclination angle 0 is often set to be 
WM. 	 Figure 3 Decomposition of 3D periodic relative motion. 

The decomposition of the 3D relative motion is shown in Figure 
3 schematically. The in-plane periodic motion can induce stick-slip 
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friction, and thus can attenuate the periodic response of the shrouded 
blades. On the other hand, the normal component tends to alter the 
normal load across the interface; and this effect, in extreme 
circumstances, may lead to separation of the interface. It should be 
noted that the variable normal load is taken as the sum of the initial 
contact pressure at equilibrium plus a term that is proportional to the 
periodically varying normal component of the relative motion. Since 
this decomposition is to transfer the relative motion from the blade 
coordinate system to the shroud coordinate system, it can be carried 

out by performing a coordinate transformation on the 31) relative 
motion by using equation (1). 

3D Shroud Contact Model  
ln the 3D shroud contact model proposed by Yang and Menq 

(1998), the contact interface between two vibrating shrouds can be 

modeled as a substructure that contains a massless elastic element and 
a friction contact point, as depicted in Figure 4. In this model, the 
elastic element accounts for the shear and normal stiffness of the 
substructure, and it is characterized by a 2 x 2 stiffness matrix K.„ for 
the shear stiffness and a spring constant k, for the normal stiffness. 
The friction contact point, that is assumed to obey the Coulomb 
friction law with the friction coefficient ji  when in contact with Body 
2, can undergo tangential stick-slip motion, and may experience 
intermittent separation from Boa5.0 1 when the normal relative motion 
(v) becomes large. The motion of the contact point is denoted as w in 
this model. The contact interface is assumed to have either a preload 
or an initial gap (as designated by n o). This model allows a negative 
preload to represent the situation when the interface has an initial gap; 
the equivalent preload across the interface with a gap e is calculated as 
–k.e. In this model, u and v are the input tangential relative motion 

([u w]') and normal relative motion (v) of the contact interface 
respectively, and they can be evaluated as the motion of Body I with 
respect to Body 2, where v, u, and w are the relative motions in the 
shroud coordinate system. 

Constrained Force 
The constrained force consists of two components: the induced 

friction force on the contact plane and the variable normal force. 
Since the friction force is completely characterized by the relative 
motion, it will not lose generality to assume one of the contacting 
surfaces is the ground. With this assumption, the input tangential 
relative motion u, the slip motion of the contact point w, and the 
induced friction force f are vectors parallel to the ground; the normal 
relative motion v and the normal load n are scalars. The friction force, 
acting on the ground, can be expressed as: 

Figure 4 A 3D shroud contact model. 

In this paper, the orientation of the contact plane is assumed to be 

invariant. This assumption is reasonable if the amplitude of shroud 
relative motion is relatively small when compared to the overall 
dimension of the shroud interface. 

Stick, Slip, and Separation  
Depending on the amplitude and phase of the in-plane relative 

motion and the normal load component of the vibratory motion, the 
friction contact will either stick, slip, or separate during a cycle of 
oscillation. The stick and slip conditions can be expressed as follows 
(Yang and Menq, 1998): 

I f  = K.(u – u0)+ < 	* =0 

f = pn —  
1"1 

(5)  

(6)  

where uo and fo are the initial values of u and f at the beginning of the 
stick state. During the cycle of motion, the applied variable normal 
load may vanish to cause the interface to separate; consequently, the 
friction force is not present. 

Stick/Slip/Separation Transition Criteria  
In order to evaluate the resulting periodic constrained force at the 

shroud contact, analytical criteria are employed to determine the 
transitions between stick, slip, and separation when experiencing 
variable normal load. The analytical criteria can be summarized as 
follows. 

stick condition: 

slip condition: 

f K„(u – w) 
	

(3) 

The normal load is taken as the sum of the preload no  plus the 
variation caused by v, and it can be expressed as: 

n= 
 when v < –n,,I k, 

(i ) Stick-to-slip transition 
This transition occurs when the friction force on the 
tangential plane reaches the varying slip load pin. That is, 

(4) k,v 	 when v –n,/k, (7) 
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To ensure that the magnitude of the friction force has a 	 action will be developed along U . Thus, according to the 
tendency to exceed the slip load, the following constraint is 

	
Coulomb friction law, the rate of change of the developing 

imposed: 
	

friction force can be expressed as: 

III > jth 
	

(8) 	

t = 
	 (15) 

(ii) Slip-to-stick transition 
During the slipping state, according to the Coulomb friction 

law, the friction force can be solved from an initial value 
problem: 

— f 	—112m1  f)  Eric (9) 

The slip-to-stick transition occurs when the velocity of the 

relative motion * equals 0, which implies: 

Once the friction force develops, it can be further 

determined by solving the initial value problem of equation 

(9). 
In this paper, these criteria are used to simulate hysteresis loops 

of the friction contact, when experiencing periodic relative motion. 
With these hysteresis loops, the resulting constrained force can be 
characterized by the relative motion between two neighboring shrouds. 
By using Fast Fourier Transform, the constrained force can be 
approximated by a series of harmonic functions and employed in 
Multi-Harmonic Balance Method to solve for the periodic response. 

fiK u n m 2niz 	 (10) 
Periodic Response of A Shrouded blade System 

In the analysis of a shrouded blade system, a great simplification 
can be obtained by assuming that the bladed system is tuned, namely 
each blade of the system has exactly the same dynamic characteristics. 
In addition, the excitation of interest is that induced by the blades 
rotating through circumferential variations in the flow field. It can be 
shown that in effect each blade is exposed to a periodic excitation 
having the same amplitude but differing in phase by an amount which 
is proportional to the blade's angular location on the disk. It is 
assumed that the forced response of the bladed system is also periodic 
and has the same fundamental period as the excitationi. Thus the 
motion of the blade as well as the nonlinear constrained force can be 
represented by infinite Fourier series. By truncating these series after 

the m th  terms, an approximate solution assuming that the forced 
response is periodic can be derived. In this approach, each blade 
vibrates in the same manner but with a proportional interblade phase 

difference ( lap ) for k th  harmonic component from its adjacent blades. 

The interblade phase angle is defined as follows: 

= 
21cE 	 (16) 

where N is the total number of the blades in the system and E is the 
engine order of the excitation on the system. 

The equation of motion of a shrouded blade subjected to a 
periodic excitation can be expressed as follows: 

mi+ ci + kx f, — 	 (17) 

where x is the nodal displacement vector, m is the mass matrix, c is 
the damping matrix, k is the stiffness matrix, fe  is the external periodic 
excitation, and G is the nonlinear constrained force which is a 
nonlinear function of the relative motion at the shroud contact. The 

'Sub-harmonic components can also be included in the approach 
presented in this paper. However, they are ignored in the current 
manuscript. 

Since the initial friction force at the beginning of the slip 
condition is known, the initial value problem of equation (9) 
can be solved by using a numerical integration scheme such 
as the 4th order Runge-Kutta method to obtain the friction 
force f. Once the friction force is obtained, the criterion of 
equation (10) can be used to check the occurrence of the 
slip-to-stick transition. 

(iii) Stick/slip-to-separation transition 
The transition from stick/slip to separation occurs when the 
normal load vanishes. In addition, the normal load should 
be decreasing at this moment to ensure the occurrence of the 
separation. Hence the transition criteria can be formulated 
as: 

n=0, 	n<0 	 (11) 

(iv) Separation-to-stick/slip transition 

Similarly to the above criterion, the separation ends when 
the normal load is about to develop on the contact plane. 
Therefore, the moment of this transition can be determined 
by the criterion: 

n=0, 	ri0 	 (12) 

When the normal load and the friction force begin to 

develop on the contact plane at the end of the separation, 
their rate of change at the moment determine whether the 
following state is either stick or slip. 

	

ÜTKK U Ü < g 2n 2  Stick begins 	 (13) 

p 2 ri 2 	Slip begins 	 (14) 

It should be pointed out that the incipient slipping condition 
can be regarded as an one-dimensional case, because the 
friction force is not present at this moment and the slip 
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finite element model is three-dimensional and if the model contains n 
nodes, all the matrices will be 3n x 3n matrices, and all the vectors 
will be 3n-element vectors. 

The external periodic excitation can be expressed as follows. 

1..(t) = 	e  

where m is the fundamental excitation frequency and fo is a complex 

vector representing the amplitude and phase for the 01  harmonic 

component of the excitation. Here the external periodic excitation is 

assumed to include up to m d'  harmonic component. It should be 
pointed out that except for the elements associated with those shroud 
contact points the other elements of f,, are zeros. It is clear that the 
nonlinear aspect of the dynamic problem is embedded in the nonlinear 

friction force By using the Modal Analysis Method, the mode 

shape matrix can be obtained and is denoted as V. Using the mode 
shape matrix and the associated modal information, the receptance of 
the blade can be derived as: 

r [rn 	E(P s ii i.k 0T) 

and 

= Rk, — k i co l m,)+ Aktoc,)1 1 
	

(20) 

where rpo is defined as the steady state response of the p th  node due 

to unit eh  harmonic excitation force at the e th  node, 0, is the 

mode shape, m, is the i d'  modal mass, lc, is the 1 th modal stiffness, 

and c, is the 	modal damping. 

In this paper, the periodic three-dimensional motion in the blade 
coordinate system can be represented as follows: 

where co is the fundamental oscillating frequency, and Au , i = x, y, 

z, are the complex vectors representing the amplitude and phase angle 

of the k th  harmonic component along tangential, axial and radial axes. 
For a shrouded blade, several pairs of shroud contact points can be 
defined. For each pair of shroud contact points, one is on the right and 

the other left and their motions are denoted as [x, x, ] . For 

convenience, this vector can be arranged as: 

Ix, 	= Rx, x,)k i =Exo 
	 (22)  

Relative Motion at Shroud Contact 
Since the shrouded blade system is assumed tuned, the condition 

of cyclic symmetry can be applied when deriving the relative motion 
of a shroud contact. Take the relative motion between the point B of 
the right shroud and the point A of the left shroud in Figure 1 as an 

example. First, the motions of the two contact points of the first 

shrouded blade (left one) are defined and they are [it, 14 . 
Therefore, the motion of point B is now x, and the motion of point A 

differs from x, with the proportional interblade phase angle (hp) for 

the k th  harmonic component. As a result, the relative motion of the 

two neighboring shrouds, w„ can be derived as 

w, T,[(x, xik r , k =0,1 
	

(23) 

where T, is the interblade relative displacement transformation matrix. 

(24)  

(25)  

It is worthy noting that only the relative motion at the right shroud 
contact point is derived. Since the shrouded blade system is assumed 
tuned, the relative motion and the resulting constrained force of the 
left shroud contact point can be related to those of the right shroud 
contact point by using the condition of cyclic symmetry. Since both 

x, and x, are periodic motions, the resulting relative motion w, also 

has periodic trajectory in the 3E) space. 

Since this relative motion w, is in the blade coordinate system, it 

can be transformed to the shroud coordinate system by using the 
transformation defined in equation (1): 

U, 	 (26) 

T as 	 = To , k =0,1,•••,m 	(27) 

where Tag is the coordinate transformation matrix for 3D periodic 

relative motion. The 3D relative motion in the shroud coordinate 
system can be expressed as follows: 

_ 

V 	
EA,,,e ilsa 
1.3 

U, = u [ 

w 	
k•O . 

ER  A, Les'  

(28) 

where Ao , i = v, u, it , are the complex vectors representing the 

amplitude and phase angle of the e h  harmonic component along v, u 
and w axes. 

(21) 

T, = Ediag(T,..,T,.„• • • 

(19) 	 To = [1 3 ,, 3  —C.14 1 3 ,3 k = 	•,m 
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f, 	
I f, 

 

it 
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Figure 5 Nonlinear feedback loop of a shrouded blade. 

Constrained Force at Shroud Contact 
After the decomposition. the u and w components of the relative 

motion follow a periodic trajectory on the contact plane and can 
induce the stick-slip friction, while the v component can cause the 
normal load across the interface to vary dynamically. It is apparent 
that the u and w motions are coupled together when inducing stick-slip 
friction. Using the 3D contact model proposed by Yang and Menq 
(1998), the constrained force at the right shroud contact point can be 

determined. By using Fast Fourier Transform, the constrained force 
can be approximated by a series of harmonic functions and can be 
expressed as follows: 

(29) 

where p,,j , i = v, u, w, are the complex Fourier coefficients of the 

k th  harmonic component along v, u and w axes. Then, the 
constrained force can be transformed back to the blade coordinate 
system: 

f, = Tap, 	 (30) 

Furthermore, the constrained forces at a pair of shroud contact points 
can be related to the force at the right shroud contact point using the 
interblade relative displacement transformation matrix. 

[f  
T-rf 

f, 	' 
(31) 

where Tr is the complex conjugate transpose of T, 

Nonlinear Algebraic Equations 
When the blade is constrained by its neighboring blades through 

shroud contacts, the resulting constrained forces are characterized by 

the displacements of a pair of contact points, [x, x t  ]T , and they can 

be considered as feedback forces that influence the response of the 
blade. This feedback effect along with the contact kinematics is 
shown in Figure 5. From the nonlinear feedback loop shown in Figure 
5, it is evident that in the calculation of nonlinear forced response of a 
shrouded blade, all the linear degrees of freedom can be condensed to 
receptance and the modeling of friction contact can be separated from 
the complex structure model. This approach results in a set of 
nonlinear algebraic equations, which can be formulated as follows: 

U, =T çT1  r„f, — r„TT„p,(u,)} 
	

(32) 

where ra  is the receptance at the shroud contact points due to unit 

harmonic excitation force, and r„. is the receptance at the shroud 

contact points due to unit constrained force. For simplicity of 

Slide 

Figure 6 A blade with shroud-to-ground friction damper. 

demonstration, each shrouded blade is assumed to contain a pair of 
shroud contact points. By using the Fast Fourier Transform, the 
constrained force can be approximated by harmonic functions having 

the same fundamental frequency as the external periodic excitation, 
and its amplitude and phase are nonlinear functions of the relative 
motions of the pair of contact points. By using the Multi-Harmonic 
Balance Method, the nonlinear algebraic equations become 

k = 0, I,2 1 •••m 

where 
r r =TT  T r er,1 	0.k  

ra4 = To;Turce$TtHAT0.1 

This set of nonlinear algebraic equations has the unknown Iti r.k  , and 

can be solved iteratively by using Newton-Raphson algorithm. With 

the solution fu,.. k  , the constrained force can be obtained by using 

equation (29). The periodic response of the shrouded blade system 
can be calculated by using the resulting constrained force together 

with the receptance. 

(33)  

(34)  

(35)  
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Comparison with Direct Time Integration Method 
In order to verify the solution procedure presented in this paper, 

the predicted results are compared to those of direct time integration 
method. Since it is very time consuming when using direct time 
integration method for a bladed system, a simplified system is 
considered. A blade with shroud-to-ground friction damper, as shown 
in Figure 6, is tested to validate the proposed solution procedure. In 
this test, the 3D shroud contact model is employed to predict the 
periodic response of a shrouded blade, which is constrained by the 
ground. In this study, the first five vibration modes of the shrouded 
blade are employed to calculate the receptances and three harmonic 
terms are included in the calculation of nonlinear forced response. 

Various levels of preload, ranging from fully separate to fully stuck 
case, are applied and the predicted results are shown as solid curves in 
Figure 7, along with discrete data points, which are the results of the 

direct time integration method. In the figure, the frequency is 
normalized with respect to the first mode natural frequency, and the 
amplitude is normalized with respect to the peak value of the fully 
separation case. It is seen that the Multi-Harmonic Balance Method 
can accurately predict the periodic response of the shrouded blade 
when the shroud contact is either preloaded or having an initial gap. 
In the same figure, the predicted resonance response for the case n o  = 
—5000 using single-term Harmonic Balance Method is also compared. 
It is apparent that in this case the nonlinear spring force of the shroud 
constraint exhibits a hardening effect that causes a jump phenomenon 
and the single-term Harmonic Balance Method can not accurately 
predict the resonance response. 

Periodic Response of A Shrouded Blade System 
The proposed method is applied to predict the periodic response 

of a shrouded blade system. In this shrouded blade system, the first 
twenty vibration modes are employed in the analysis. 

Shift of Resonant Frequency  
It is known that when changing the preload there exist two limit 

cases, namely the fully separate case and fully stuck case (Yang and 
Meng, 1998). Since the nonlinear contact force does not appear in the 
analysis, both cases are linear problems. The fully separate case 
occurs when the interface has such a large initial gap that the vibrating 
neighboring shrouds can not make contact with each other. Since the 
contact force is not present, the resonant response corresponding to the 
natural frequencies of the system can be clearly seen. On the other 
hand, when the preload of the interface exceeds a level depending on 
the external excitation, the shroud contact interface remains fully 
stuck. In this case, the shroud contact does not dissipate energy. 

However, it provides additional stiffness, which arises from the shroud 
constraint, to the system to cause higher resonant frequencies. 

The frequency shifts of the first three vibration modes of the 
shrouded blade system subjected to nodal force external excitation are 
shown in Figure 8. In the figure the frequency is normalized with 
respect to the first mode natural frequency, and the amplitude is 
normalized with respect to the peak of the first mode for the fully 
separation case. Since the resulting responses along the three axes are 
similar, only the normalized amplitude of the response along the axial 
direction is presented in the figure. In the first vibration mode, the 

resonant peak shifts from fully separation at normalized frequency 1.0 

Figure 7 Periodic response of a blade with shroud-to-ground 
friction damper. 

0.1135 

0.0908 

sk• 

`: 0.0681 

0.0454 

0.0227 

0.0 

Figure 8 Periodic response of a shrouded blade system: 
resonant shift of resonant frequency. 

to fully stuck at normalized frequency 2.08, and the amplitude of the 
peak resonance is reduced by 54.5%. For the second vibration mode, 
the resonant peak shifts from fully separation at normalized frequency 
2.14 to fully stuck at normalized frequency 4.79, and the amplitude of 
the peak resonance is reduced by 93.3%. For the third vibration mode, 
the resonant peak shifts from fully separation at normalized frequency 
133 to fully stuck at normalized frequency 6.85, and the amplitude of 
the peak resonance is reduced by 89.1%. 
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Reduction of Resonant Peak 
In between the two linear cases, the constraint force consists of 

nonlinear friction force and the variable normal load. The significance 
of the variation of the contact normal load depends on the direction of 

the resulting relative motion at the shroud contact and the orientation 
of the contact plane. If the variation of the contact normal load is not 

significant, the effect of a shroud constraint is not very different from 
that of a platform damper. This is demonstrated by the attenuation 
effect of the induced friction on the resonant response of the first 

vibration mode. Figure 9 shows the tracking curves of the first 
vibration mode of the shrouded blade system when changing the 

contact preload. Two sets of curves are shown. The solid curves are 
the predicted results using the 3-terms Harmonic Balance Method and 
the dashed curves the single-term Harmonic Balance Method. It is 
seen that as the preload increases, the resonant peak decreases until the 
minimum response is reached at n o  = 2. Beyond this preload, the 

damping effect tends to reduce gradually towards the fully stuck case. 
The preload that gives the minimum response is known as the optimal 
preload. 

Since the induced friction force has super-harmonic components, 
it is possible that the super-harmonics of the shrouded blade system 
can be excited and internal resonance can occur. As can be seen in 
Figure 9, when the preload is 0, the internal resonance can be observed 
at normalized frequencies 0.75 and 1.45 based on the results using 3- 
terms Harmonic Balance Method. It appears that the single-term 
Harmonic Balance Method tends to over-estimate the resonant peak 
although for the first vibration mode the problem is not obvious. 

Jump Phenomenon 
In addition to its influence on the friction characteristic, the 

variable normal load can directly impose nonlinear stiffness on the 
system. This nonlinear stiffness arises from the intermittent separation 
of the contact surface during the course of vibration. It has been 
known that this nonlinearity can result in a multi-valued response that 
can lead to a jump phenomenon (Thomson, 1988). A multi-valued 
response can be obtained by using the standard continuation technique 
(Allgower and Georg, 1990). In this study, a jump phenomenon can 
be observed at the third vibration mode, as shown in Figure 10, when 
a moderate preload (n o  = 2) is applied. The increase in the resonant 
amplitude causes the preloaded interface to separate, and as a result, 
the interface can not provide stiffness to the system temporarily. The 
overall effect of the temporary separation is similar to the effect of a 
"softening spring" that gives rise to the response with a resonance 
peak bending towards lower frequencies. It should also be noted that 
one of the multiple solutions from the harmonic balance method 
shown as the dotted curve is unstable (Thomson, 1988); while 
separated by the unstable response, the stable response consists of two 

curves, which are referred to as the upper and lower branches. In this 

figure, the resonant response predicted by the single-term Harmonic 
Balance Method is compared to that by the 3-terms Harmonic Balance 
Method. It is seen that the single-term Harmonic Balance Method 
well over-estimates the resonant response at the region near jump. 
Furthermore, the internal resonance can be clearly observed from the 
predicted results using 3-terms Harmonic Balance Method. 

Figure 9 Periodic response of a shrouded blade system: 
attenuation of resonant amplitude. 

Figure 10 Periodic response of a shrouded blade system: 
jump phenomenon at third vibration mode. 

Conclusion 
In this paper, a 3D shroud contact model is employed to predict 

the periodic response of blades having 3D nonlinear shroud constraint. 
When subjected to periodic excitation, the resulting relative motion at 
the shroud contact is assumed to be periodic in three-dimensional 
space. Based on the 3D shroud contact model, analytical criteria are 
used to determine the transitions between stick, slip, and separation of 
the contact interface and are used to simulate hysteresis loops of the 
induced constrained force, when experiencing periodic relative 
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motion. The constrained force can be considered as a feedback force 
that influences the response of the shrouded blade. By using the 
Multi-Harmonic Balance Method along with Fast Fourier Transform, 
the constrained force can be approximated by a series of harmonic 
functions so as to predict the periodic response of a shrouded blade. 
This approach results in a set of nonlinear algebraic equations, which 
can be solved iteratively to yield the periodic response of blades 
having 3D nonlinear shroud constraint. 

The predicted nonlinear response shows three distinct features: 
(1) shifted resonant frequency due to the additional spring constant 
introduced by the shroud constraint, (2) damped resonant response due 
to the additional friction damping introduced by frictional slip, (3) 
multi-valued response leading to a jump phenomenon due to 
intermittent interface separation. The predictive ability of the 
proposed approach has important implications to the design of the 
shroud contact. In the design of the shroud contact, the preload is one 

of the important parameters to control the effectiveness of the shroud 
contact. Since the attenuation effect of the shroud contact on resonant 
vibration can be accurately predicted over a wide range of preload 
using the proposed approach, the designer can achieve the optimal 
preload to maximize the performance of the shroud contact in 
dissipating vibratory energy. Moreover, the proposed approach can 
also facilitate the design of shroud angle, which is another important 
parameter to be considered in the design of the shroud contact. 
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