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Abstract: The major criteria that control pile foundation design is pile bearing capacity (Pu). The
load bearing capacity of piles is affected by the various characteristics of soils and the involvement of
multiple parameters related to both soil and foundation. In this study, a new model for predicting
bearing capacity is developed using an extreme gradient boosting (XGBoost) algorithm. A total of
200 driven piles static load test-based case histories were used to construct and verify the model.
The developed XGBoost model results were compared to a number of commonly used algorithms—
Adaptive Boosting (AdaBoost), Random Forest (RF), Decision Tree (DT) and Support Vector Machine
(SVM) using various performance measure metrics such as coefficient of determination, mean absolute
error, root mean square error, mean absolute relative error, Nash–Sutcliffe model efficiency coefficient
and relative strength ratio. Furthermore, sensitivity analysis was performed to determine the effect of
input parameters on Pu. The results show that all of the developed models were capable of making
accurate predictions however the XGBoost algorithm surpasses others, followed by AdaBoost, RF,
DT, and SVM. The sensitivity analysis result shows that the SPT blow count along the pile shaft has
the greatest effect on the Pu.

Keywords: pile bearing capacity; machine learning; extreme gradient boosting; adaptive boosting;
random forest; decision tree; support vector machine

1. Introduction

A pile is a long, structural element used to allow structural loads to be transferred
to the soils at a depth below the structure’s base. Axial, lateral, and moment loads are
examples of structural loads. The load transmission mechanism is based on pile toe and
pile shaft resistances [1]. Deep foundations are another word for pile foundations that
are often used in practice. Pile foundations are used to support structures that cannot
be supported economically on shallow foundations. The most significant factor when
designing a pile foundation is pile carrying capacity (Pu) [2]. Various ways to determine
pile carrying capacity have been used during the years of research and development [3–13],
including dynamic analysis, high strain dynamic test, pile load test, cone penetration
test (CPT) and in situ tests. Some research, claims that the aforementioned connections
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exaggerate the bearing capability [14]. However, the pile load test is considered as one of
the best methods to determine the pile bearing capacity, although this strategy is costly for
small-scale projects and time-consuming [10], it is critical to find a more practical approach.
As a result, many studies using in situ test data to assess pile carrying capacity have
been performed [9].

Lopes and Laprovitera [15], and Decort [16] proposed different formulas for deter-
mining pile carrying capacity for several soils, including clay and sand. Conventional
approaches have used numerous main parameters to determine the mechanical properties
of piles, including the diameter of pile, length of pile, type of soil, and SPT blow counts
of each layer. Nevertheless, the selection of relevant parameters, along with the failure in
covering other parameters, have led to the disagreement of results given by various ap-
proaches [17]. As a result, the development of an optimal model for selecting an appropriate
set of parameters is critical.

A recently developed approach based on data mining techniques has been increas-
ingly employed to resolve real-world problems for the past half-decade, particularly in the
field of civil engineering [18–28]. Several practical problems have already been effectively
performed using machine learning algorithms, paving the way for new prospects in the
construction industry. Furthermore, a variety of machine learning algorithms, for exam-
ple, random forest, artificial neural network (ANN), decision tree, adaptive neuro-fuzzy
inference system (ANFIS), AdaBoost, SVM, XGBoost have been developed for addressing
technical issues, such as pile mechanical behavior prediction.

Goh et al. [29,30] produced an ANN-based algorithm of piles driven in clays to predict
the capacity of friction, using on-field data records to train the algorithm. Furthermore,
Shahin et al. [31–34] employed the ANN-based model for forecasting pile load capacity us-
ing data that included in situ load testing and cone penetration test (CPT) results. Similarly,
Nawari et al. [35] published an ANN approach that uses SPT data and shaft geometry to
measure the settling of drilled shafts. Pham et al. [17] produced an ANN and RF to predict
driven pile’s capacity. Momeni et al. [36] created an ANN model modified with Genetic
Algorithm (GA) which select appropriate biases and weights for predicting pile bearing
capacity. Based on CPT data, Kordjazi et al. [37] employed an SVM model to forecast the
pile ultimate load-bearing capability. Liu et al. [21] developed XGBoost, Backpropagation
Neural Network (BPNN) and RF algorithm to estimate driven piles bearing Capacity.
Liang et al. estimated stability of hard rock pillars applying XGBoost, gradient boosting
decision tree (GBDT), and light gradient boosting machine (LightGBM) Algorithms [23].
Pham et al. [38] has also developed Deep Learning Neural Network to estimate the carrying
capacity of piles.

In addition to machine learning (ML) techniques mentioned above, the GBDT method
demonstrates excellent results in a variety of disciplines [39–41]. It uses the boosting
strategy to incorporate many DTs into a strong classifier as one of the ensemble learning
algorithms [42]. DTs belong to the ML approach which employs a tree-like framework to
handle a wide range of input types while tracing each path to the prediction outcomes [43].
DTs, on the other hand, are easy to overfit and sensitive to dataset noise because errors of
the DTs were offset by one another, the total prediction performance of GBDT improves
with the integration of DTs. XGBoost [44] and LightGBM [45] have recently been proposed
in the context of GBDT. They have also attracted a lot of attention as a result of their
outstanding performances. These three techniques, in particular, operate well with tiny
datasets. To some extent, overfitting, which occurs when results match existing data very
closely but fail to correctly estimate future trends, can also be prevented [43].

The aim of the present study is to develop a robust model to estimate axial pile bearing
capacity using the XGBoost algorithm based on reliable pile load test results. The scope of
the present research includes the following:

• To develop a model that is able to learn the complex relationship among axial pile
bearing capacity and its influencing factors with reasonable precision.
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• To validate the proposed model by comparing the efficacy with prominent modeling
techniques, such as AdaBoost, RF, DT, and SVM in terms of performance measure metrics.

• To conduct sensitivity analyses for the determination of the effect of each input param-
eter on Pu.

The framework of the paper is as follows: In Section 2, data collection and preparation
are presented. Section 3 describes the machine learning approaches. The construction of
the prediction model is presented in Section 4. Results and discussion are given in Section 5.
Lastly, there are some closing remarks.

2. Data Collection and Preparation
2.1. Dataset

In this study, the dataset of 200 reinforced concrete piles at the test site in Ha Nam
province–Vietnam (the complete database is available in Table A1) was used to train and
test the model. As a first step, all known parameters affecting Pu were taken into account.
Furthermore, it was discovered that the majority of traditional methods utilized three
categories of parameters: geometry of pile, pile material quality, and soil attributes [3]. To
achieve the measurements, hydraulic pile presses were used to drive pre-cast square-section
piles with closed tips to the ground at a constant rate of penetration. The testing began
at least seven days after the piles were driven, and the experimental setup is shown in
Figure 1. The load increased gradually in each pile test, as can be observed. The load
might be increased up to 200 percent of the pile load design depending on the design
requirements. The time it takes to achieve 100 percent, 150 percent, and 200 percent of
the load could take from around 6 to 12 h or 24 h, depending on the load [38]. These
two principles were used to determine pile bearing capacity:

(i) the pile bearing capacity was taken as the failure load when the settlement of pile top
at the current load level was five times or higher than the settlement of pile top at the
previous load level;

(ii) when the load–settlement curve became linear at the last test load, condition (i) would
not be used. In such a case, the test load at which progressive movement occurs or
the total settlement exceeds 10 % of the pile diameter or width would be taken as the
pile bearing capacity.
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Figure 1. Schematic layout of pile load test.

As a result, previous studies (e.g., [38]) show that pile bearing capacity (Pu) is a
function of (1) diameter of the pile (D); (2) depth of the first layer of soil embedded (X1);
(3) depth of the second layer of soil embedded (X2); (4) depth of the third layer of soil
embedded (X3); (5) pile top elevation (Xp); (6) ground elevation (Xg); (7) extra pile top
elevation (Xt); (8) pile tip elevation (Xm); (9) SPT blow count at pile shaft (NS) and (10) SPT
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blow count at pile tip (Nt) as shown in Figure 2. Therefore, in the current study, these input
variables were used to develop the proposed models.
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Figure 2. Diagram for stratigraphy and pile parameters [38].

Collected data were divided into training and testing sets, researchers have used a
different percentage of the available data as the training set for different problems. For
instance, Pham et al. [38] used 60%; Liang et al. [23] used 70%; while Ahmad et al. [28] used
80% of the data for training. The statistical consistency of training and testing datasets has a
substantial impact on the results when using soft computing techniques which improves the
performance of the model and helps in evaluating them better [22,46]. To choose the most
consistent representation, statistical studies of input and output variables of the training
and testing data were performed. It was accomplished through the use of a trial-and-error
strategy. For training and testing datasets, the best statistically consistent combination was
selected. The data division was performed in such a way that 140 (70%) samples were
used for training, and 60 (30%) samples were used for testing the models considered in this
study. The results of the statistical analysis of the finally selected combinations are shown
in Table 1, which includes minimum, mean, maximum and standard deviation of the input
and output variables.

Table 1. Statistical study of inputs and output data.

Dataset Statistical
Parameters

Input and Output Parameters

D (mm) X1 (m) X2 (m) X3 (m) Xp (m) Xg (m) Xt (m) Xm (m) Ns Nt Pu (kN)

Training

Minimum 300 3.4 1.8 0 1.95 3.32 2 8.6 5.9 4.64 432

Average 378.57 4.002 6.43 0.377 2.615 3.517 2.834 13.425 10.811 6.908 1064.739

Maximum 400 4.75 8 1.18 3.4 3.7 4.45 15.58 13.63 7.69 1551

Standard
Deviation 41.179 0.455 2.039 0.467 0.552 0.069 0.609 2.207 2.550 0.914 363.681

Testing

Minimum 300 3.4 2.08 0 2.05 3.38 2.05 8.88 6.18 4.86 407.2

Average 371.667 3.85 6.774 0.307 2.77 3.522 2.987 13.702 10.932 7.087 1023.266

Maximum 400 4.75 8 1.18 3.4 3.72 4.05 15.58 13.53 7.73 1551

Standard
Deviation 45.442 0.472 1.594 0.438 0.585 0.078 0.549 1.719 2.123 0.636 362.003
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2.2. Correlation Analysis

Correlation (ρ) was used to verify the intensity of correlation between different pa-
rameters (see Table 2). Given pair of random variables (m, n), the following equation for ρ
is used:

ρ(m, n) =
cov(m, n)

σmσn
(1)

where cov denotes covariance, σm denotes the standard deviation of m, and σn denotes
the standard deviation of n. |ρ| > 0.8 represents a strong relationship among m and n,
values between 0.3 and 0.8 represents medium relationship, while |ρ| < 0.30 represents
weak relationship [47]. According to Song et al. [48], correlation is considered as “strong” if
|ρ| > 0.8. Table 2 displays the correlations between input and output characteristics. The
correlation coefficient has a maximum absolute value of 0.989, as shown in Table 2. There is
a “strong to weak” relationship among various variable combinations so none of the input
variables was removed.

Table 2. Correlation between parameters.

Parameters D X1 X2 X3 Xp Xg Xt Xm Ns Nt Pu

D 1.000
X1 0.641 1.000
X2 0.462 0.329 1.000
X3 0.421 0.448 0.564 1.000
Xp −0.714 −0.935 −0.515 −0.672 1.000
Xg 0.436 0.357 0.333 0.203 −0.377 1.000
Xt −0.481 −0.469 −0.331 −0.810 0.628 −0.135 1.000
Xm 0.474 0.378 0.989 0.672 −0.571 0.334 −0.422 1.000
Ns 0.577 0.572 0.947 0.719 −0.732 0.371 −0.533 0.969 1.000
Nt 0.197 0.050 0.923 0.619 −0.289 0.198 −0.303 0.931 0.827 1.000
Pu 0.735 0.706 0.785 0.474 −0.780 0.460 −0.336 0.785 0.846 0.558 1.000

3. Machine Learning Methods
3.1. Extreme Gradient Boosting Algorithm

Chen and Guestrin [44] suggested the XGBoost algorithm, which is based on the GBDT
structure. It has attracted a lot of attention as a result of its outstanding results in Kaggle’s
ML competitions [49]. Unlike GBDT, the XGBoost goal function includes a regularization
term to avoid overfitting. The main objective function is described as follows:

O = ∑n
i=1 L(yi, F(xi)) + ∑t

k=1 R( fk) + C (2)

where R( fk) represents the regularization term at iteration k, and C being a constant that
can be removed selectively.

Regularization term R( fk) written as,

R( fk) = αH +
1
2

η ∑H
j=1 w2

j (3)

where α is the complexity of leaves, H denotes the number of leaves, η signifies penalty
variable, and ωj represents output results in each leaf node. Leaves denote the expected
categories based on classification criteria, whereas the leaf node denotes the tree node
which cannot be divided.

Furthermore, unlike GBDT, XGBoost employs a second-order Taylor series of main
functions rather than the first-order derivative. If the loss function is the mean square error
(MSE), then the main function may be written as:

O = ∑n
i=1

[
piωq(xi)

+
1
2

(
qiω

2
q(xi)

)]
+ αH +

1
2

η ∑H
j=1 ω2

j (4)
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where q(xi) is a function that maps data points to leaves, gi and hi represents loss function’s
first and second derivatives, respectively.

The final loss value is calculated by adding all of the loss values together. Because
samples in the DT corresponds to nodes of leaf, the ultimate loss value can be calculated by
adding loss values of the leaf nodes. As a result, the main function can be written as:

O =
T

∑
j=1

[
Pjωj +

1
2

(
Qj + η)ω2

j

)]
+ αH (5)

where Pj = ∑iεIj
pi, Qj = ∑iεIj

qi, and Ij are the total number of samples in leaf node j.
To summarize, the challenge of optimizing the main function is reduced to identifying

the minimum of a quadratic function. Due to the addition of regularization phenomena,
XGBoost has a stronger capability to avoid overfitting. The structure of XGBoost can be
seen in Figure 3.
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3.2. Random Forest (RF) Algorithm

Because of its simplicity and diversity, RF is the most applied ML method. Breiman
in 2001, developed this supervised learning approach for classification and regression
analysis [50]. RF is an integrated learning strategy that collects data from a single DT and
improves prediction accuracy by using majority voting or mean findings, depending on
the task.

Assume you have an input data set with the following values Q = q1, q2, q3, . . . , qn
where n is the number of datasets. An RF model would be a set of T trees T1(Q), T2(Q),
T3(Q) . . . , Tn(Q). R̂1, R̂2 . . . . . . R̂n is the predicted outcome of these decision-making trees.
The eventual output of the RF model for the regression problem will be the average of
all the above trees’ prediction outcomes. The concept of splitting initial training sets into
smaller sets, with only a few predictive elements picked at random in each split, has been
used to construct tree-growing algorithms. Because the programmer fails to prune decision
trees according to predetermined stopping criteria, they continue to grow indefinitely. Tree
growth stops such as the Gini Diversity Index, RMSE and MSE are frequently utilized. Trees
with appropriate predictions are picked in the final RF model, and trees with low predictive
outcomes are excluded. The overfitting problem of the single DT model is eliminated by
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randomly selecting predictor parameters and the final set of DTs [50,51]. Figure 4 illustrates
the random forest’s structure.
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3.3. AdaBoost Algorithm

AdaBoost or adaptive boosting is a sequential ensemble technique which is based on
the principle of developing several weak learners using different training sub-sets drawn
randomly from the original training dataset [52,53]. During each training, weights are
assigned which are used when learning each hypothesis. The weights are used for compu-
tation of the error of the hypothesis on the dataset and are an indicator of the comparative
importance of each instance. The weights are recalculated after every iteration, such that
incorrectly classified instances by the last hypothesis receive higher weights. This enables
the algorithm to focus on more difficult-to-learn instances. Assigning revised weights to the
incorrectly classified instances is the most vital task of the algorithm. Unlike in classification,
in regression, the instances are not correct or incorrect, rather they constitute a real-value
error. By comparing the computed error to a predefined threshold prediction error, it
can be labeled as an error or not an error and thus, the AdaBoost classifier can be used.
Instances with larger errors on previous learners are more likely (i.e., higher probability) to
be selected for training the subsequent base learner. Finally, weighted average or median is
used to provide an ensemble prediction of the individual base learner predictions [54].

3.4. Support Vector Machine (SVM) Algorithm

Vapnik invented the SVM in 1995 [55], and it is a popular and successful learning algo-
rithm for the classification of linear and nonlinear regression problems. The SVM algorithm
delivers reliable prediction outcomes and is practicable for high-dimensional feature spaces,
is robust and has good noise resistance [56,57]. In many disciplines, many effective SVM
implementations with classification and regression issues have been documented [58–60].
The following is a summary of SVM’s basic theory.

As illustrated in Figure 5, a training set {(uk, vk), k = 1,2, . . . . . . , n} is chosen for an
SVM model, where uk = [u1k, u2k, . . . . . . , unk] ∈ Rnh is the input data, vk ∈ Rnm is the
output data corresponding to uk, and n is the number of training samples. The goal of the
SVM is to identify an optimal hyperplane function f(x) (defined by the weight vector w and
the offset b), that passes through all data items with the insensitive loss coefficient ε (based
on two supporting hyperplanes, w.u – b = ε and w.u – b = −ε).
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The function f(u) in nonlinear regression is determined as follows:

f (u) = ∑(n
i=1(αi − α∗i )K

(
ui, uj

)
+ b
)

(6)

with
∑n

i=1(αi − α∗i ) = 0, C ≥ αi, α∗i ≥ 0, ∀i (7)

The penalty constant C is used to manage the penalty error, αi, α∗i are the Lagrange
multipliers, and K (ui, uj) is the kernel function defined as follows:

K
(
ui, uj

)
=< Φ(ui), Φ

(
uj
)
> (8)

The mapping function F is a nonlinear mapping function. The most often used kernel
functions are linear, polynomial, sigmoid, and Gaussian functions:

Linear kernel function:
K
(
ui, uj

)
= ui · uj (9)

Polynomial kernel function:

K
(
ui, uj

)
=
(
γui · uj + c

)d (10)

Sigmoid kernel function:

K
(
ui, uj

)
= tanh

(
γui · uj + c

)d (11)

Gaussian kernel function:

K
(
ui, uj

)
= exp

(
−γ
(
ui − uj

)2
)d

(12)

3.5. Decision Tree (DT) Algorithm

A decision tree is a tool with a tree-like structure that predicts likely outcomes, re-
source costs, utility costs, and potential consequences. One of the benefits of the machine
learning approach over traditional statistical approaches such as regression is that they can
handle more than two-dimensional data. For data-driven prediction analysis of diverse
geotechnical problems, many researchers have adopted the tree-based approach [20,61,62].
As a result, tree-based ML techniques, such as DT, were used to build models and identify
the key predictors of pile–soil friction in this work. DT can be seen graphically, showing
specific decision requirements as well as the complicated branching that occurs in a con-
structed decision. This is one of the most popular and commonly used supervised learning
techniques for forecasting model accuracy.

DT is capable of performing all tasks including recognition, classification, and predic-
tion. DT is a “tree”-shaped structure made up of a succession of questions, each of which is
described by a set of parameters. Roots, branches, and leaves comprise a real tree. Similarly,
the graph for DT is comprised of nodes, which are leaves, and branches, which represent
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connections between nodes [63]. A variable is chosen as a root, also known as the initial
node, during the DT process. By reference to the appointed features, the initial node is
divided into many internal nodes. DT is a top-down tree, meaning the roots are at the very
top. Roots, branches, and nodes are the end products of the branches [64]. Each node can be
divided into two branches and each node has a relationship to a specific characteristic and
branches that have been specified by a specific range of input. Figure 6 depicts a flowchart
linked to the DT approach.
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4. Construction of Prediction Models

Orange software was used to create the proposed models for predicting pile bearing
capacity. Orange is an open-source software package. Machine learning, preprocessing,
and visualization methods are included in the default installation, which is divided into
six widget sets i.e., Data, Visualize, Classify, Regression, Evaluate and Unsupervised.
Orange is visual programming software for machine learning, visualization, data mining,
data analysis.

The predictor variables were provided via an input set (x) defined by x = {D, X1, X2, X3,
Xp, Xg, Xt, Xm, NS and Nt}, while the target variable (y) is Pu. The most important task in
every modeling step is to pick the right number of training and testing datasets. As a result,
70% of the whole data was chosen to generate the models in this study, with the developed
models being tested on the remaining data. On the other way, 140 and 60 sets were utilized
for creating and testing the models, respectively. All models (XGBoost, AdaBoost, RF, DT,
and SVM) were tweaked to optimize the Pu prediction using the trial-and-error process.
Figure 7 shows how the prediction models were built.

4.1. Hyperparameter Optimization

ML algorithms have parameters that must be tuned. The optimization procedure
seeks to find ideal settings for XGBoost, AdaBoost, RF, DT, and SVM to achieve accurate
prediction. This study tunes various critical parameters in the XGBoost, AdaBoost, RF,
DT and SVM, as well as clarifies the definitions of these hyperparameters. The tuning
parameters for the models were chosen and then changed in the trials until the best metrics
shown in Table 3 were achieved.
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Table 3. Hyperparameters optimal results.

Algorithm Hyperparameters Meanings Optimal Values

XGBoost
n estimators Number of trees 133

Learning rate Shrinkage coefficient of tree 0.03

Maximum depth Maximum depth of a tree 4

RF

n estimators Number of trees in forest 500

Minimum split Minimum samples of split for nodes 5

Maximum depth Maximum depth of a tree 5

Minimum leaf Minimum samples of nodes for leaf 8

AdaBoost
n estimators Number of trees 500

Learning rate Shrinkage coefficient of tree 1

SVM C2 Regularization parameter 2.5

DT
Minimum split Minimum samples of split for nodes 4

Maximum depth Maximum depth of a tree 100

Minimum leaf Minimum samples of nodes for leaf 7

4.2. Model Evaluation Indexes

The results of the proposed models are evaluated using R2, MAE, RMSE, MARE, NSE
and RSR, as more commonly used criteria in the literature. The following equations are
used to calculate these metrics:

R2 = 1− ∑n
i=1(xi − x̂i)

2

∑n
i=1(xi − x̂)2 (13)
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MAE =
1
n ∑n

i=1(xi − x̂i) (14)

RMSE =

√
1
n ∑n

i=1(xi − x̂i)
2 (15)

MARE =
1
n ∑n

i=1

∣∣∣∣ xi − x̂i
xi

× 100
∣∣∣∣ (16)

NSE = 1− ∑n
i=1(xi − x̂i)

2

∑n
i=1(xi − x)2 (17)

RSR =

√
∑n

i=1(xi − x̂i)
2√

∑n
i=1(xi − x)2

(18)

where n denotes the number of points, xi and x̂i denotes the actual and expected outputs
of i-th sample, respectively; x is data averaged actual output. R2 is a number that ranges
from 0 to 1, a higher R2 value indicates a more efficient model. The model is considered
effective when R2 is more than 0.8 and close to 1 [22]. The mean squared difference between
projected outputs and targets is the criterion RMSE, and the mean magnitude of errors is
the criterion MAE, RMSE and MAE are similar in that the closer these criterion values of
these errors are to 0, the better the model’s performance. In circumstances where the MAE
and RMSE are minimal, the model’s accuracy is greater. Models yielded the lowest MARE
value, indicating that the model has superior predictive power. The RSR ranges from 0 to a
considerable positive number. Lower RSR indicates lower RMSE, indicating that the model
is more productive. RSR and NSE categorization ranges as very good, good, satisfactory,
and unsatisfactory with ranges 0 ≤ RSR ≤ 0.5, 0.5 < RSR ≤ 0.6, 0.6 < RSR ≤ 0.7,
RSR > 0.7 and 0.75 < NSE ≤ 1, 0.65 < NSE ≤ 0.75, 0.5 < NSE ≤ 0.65, and
NSE ≤ 0.5, respectively [65].

In addition, the Taylor diagram was used to compare the model’s performance visu-
ally [66]. Taylor diagram shows how similar patterns are and how closely a model pattern
relates to reference. The standard deviation (σ), R2, and the RMSE are three equivalent
model performance statistics that can be shown on a two-dimensional plot using the law
of cosines. Taylor diagram is the best method for comparing the performance of various
models in particular.

5. Result and Discussion
5.1. Comparison of Models

This section evaluates the model’s efficacy. Figures 8 and 9 depict the training and test-
ing dataset’s prediction performance in regression form, respectively, while Tables 4 and 5
provide a summary of the relevant data.

Table 4. Summary of Training model.

Training Set

Model R2 MAE (kN) RMSE (kN) MARE (%) NSE RSR

XGBoost 0.971 47.518 66.844 4.355 0.966 0.184

AdaBoost 0.957 56.671 82.495 5.252 0.948 0.228

RF 0.952 58.366 79.240 5.739 0.952 0.219

DT 0.932 68.912 94.304 6.911 0.932 0.260

SVM 0.887 88.801 123.375 8.507 0.884 0.340
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Table 5. Summary of Testing model.

Testing Set

Model R2 MAE (kN) RMSE (kN) MARE (%) NSE RSR

XGBoost 0.955 59.929 80.653 6.600 0.950 0.225

AdaBoost 0.950 70.383 90.665 8.252 0.936 0.253

RF 0.945 69.030 86.348 8.014 0.942 0.241

DT 0.925 74.450 99.822 8.775 0.923 0.278

SVM 0.878 98.320 128.027 10.991 0.873 0.357

In terms of training, the XGBoost model produced the best prediction results (i.e.,
R2 = 0.971, MAE = 47.518 and RMSE = 66.844) compared to AdaBoost (i.e., R2 = 0.957, MAE
= 56.671 and RMSE = 82.495), RF (i.e., R2 = 0.952, MAE = 58.366 and RMSE = 79.240), DT
(i.e., R2 = 0.932, MAE = 68.912 and RMSE = 94.304) and SVM (i.e., R2 = 0.887, MAE = 88.801
and RMSE = 123.375). This is also confirmed by the results of MARE, NSE and RSR in
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Table 4. In training part, XGBoost produced lesser MARE, NSE and RSR values compared
to AdaBoost, RF, DT and SVM.
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In the testing part, the XGBoost model had the best prediction results with respect
to R2, MAE, RMSE, MARE, NSE and RSR (i.e., R2 = 0.955, MAE = 59.929, RMSE = 80.653,
MARE = 6.6, NSE = 0.950, and RSR = 0.225) compared to AdaBoost (i.e., R2 = 0.950,
MAE = 70.383, RMSE = 90.665, MARE = 8.252, NSE = 0.936, and RSR = 0.253), RF (i.e.,
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R2 = 0.945, MAE = 69.030, RMSE = 86.348, MARE = 8.014, NSE = 0.942, and RSR = 0.241),
DT (i.e., R2 = 0.0.925, MAE = 74.450, RMSE = 99.822, MARE = 8.775, NSE = 0.923, and
RSR = 0.278) and SVM (i.e., R2 = 0.878, MAE = 98.320, RMSE = 128.027, MARE = 10.991,
NSE = 0.873, and RSR = 0.357) as shown in Table 5.

Comparing the above performance measures the proposed XGBoost model performed
better than the AdaBoost, RF, DT and SVM. From these statistical analysis and prediction
capabilities, we can state that the XGBoost model has good accuracy prediction for pile
bearing capacity.

The sensitivity results of the XGBoost model were assessed using Yang and Zang’s [67]
method for assessing the impact of input variables on Pu. This approach, which has been
used in several investigations [22,28,68–70], is as follows:

rij =
∑n

k=1(xim × xom)√
∑n

k=1 xim
2 ∑n

k=1 xom2
(19)

as n represents the number of values (i.e., 140); xim and xom denotes input and output
variables, respectively. For each input parameter, the rij value ranges from zero to one, with
the greatest rij values indicating the efficient output variable (i.e., Pu).

Figure 10 shows the rij scores for all input variables. Figure 10 demonstrates that SPT
blow count at pile shaft (NS) (rij = 0.985) has the greatest effect on the Pu.
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With the use of the Taylor diagram (see Figure 11), we investigated the model’s
efficiency further. The better the performance, the closer each produced model’s point is to
the observed point location. The models demonstrated the best predictive capability, while
the XGBoost method had a greater correlation and a lesser RMSE.

5.2. Comparison with Other Researchers

Table 6 shows some findings from a study on machine learning applications on
pile bearing capacity. On the test data set, the expected efficiency of ML algorithms in
foundation engineering having predictive outcomes of foundation load is mostly ranging
R2 from 0.71 to 0.918, according to the results of previous studies while in the present study
it is 0.955. However, due to the use of different datasets, a comparison between these results
is unwarranted. A project that uses different datasets is needed to give a generalized model
to foundation engineering.
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Figure 11. Taylor diagram of the models.

Table 6. Comparison with other studies.

Author Model Foundation Type Number of Samples R2 RMSE

Momeni et al. [71]
ANFIS

Thin-walls 150
0.875 0.048

ANN 0.71 0.529

Momeni et al. [72] GPR Piles 296 0.84 -

Kulkarni et al. [73] GA-ANN

Rock-socketed piles 132

0.86 0.0093

Armaghani et al. [74]
ANN 0.808 0.135

PSO-ANN 0.918 0.063

Pham et al. [38] GA-DLNN Piles 472 0.882 109.965

Present study XGBoost Piles 200 0.955 80.653

6. Conclusions

Pile bearing capacity values were estimated in this paper using five models. The
prediction model was built with ten input parameters and one output parameter. The mod-
eling results show that the XGBoost model has the best capability for accurate prediction of
Pu when compared to other models such as AdaBoost, RF, DT and SVM. The following are
some of the major findings of this study:

1. In testing phase, the XGBoost model (R2 = 0.955, MAE = 59.929, RMSE = 80.653,
MARE = 6.6, NSE = 0.950, and RSR = 0.225) has the highest performance capability as
compared to other soft computing techniques considered in this study i.e., AdaBoost,
RF, DT and SVM as well as the models used in the literature.

2. Sensitivity analysis results show that SPT blow count at pile shaft (NS) was the most
important parameter in predicting pile bearing capacity.

3. Taylor diagram also verified that all the models are good but the predictive power of
the XGBoost algorithm had a higher correlation and lower RMSE.

4. Based on the results and analysis the XGBoost model can also be applied to solve a
variety of geotechnical engineering problems.
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Furthermore, the XGBoost technique has the advantage of being easily updated, it
is obvious that the proposed model is open to further development, and that the collec-
tion of more data will result in significantly stronger prediction capability, avoiding the
requirement for expertise and time to update an existing design aid or equation.
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Abbreviation
Symbol Explanation
Pu Pile bearing capacity
ML Machine learning
XGBoost Extreme gradient boosting
AdaBoost Adaptive boosting
RF Random forest
DT Decision tree
SVM Support vector machine
ANN Artificial neural network
ANFIS adaptive neuro-fuzzy inference system
GA Genetic algorithm
BPNN Backpropagation neural network
GBDT Gradient boosting decision tree
LightGBM Light gradient boosting machine
DLNN Deep Learning Neural Network
PSO-ANN Particle swarm optimization—ANN
GPR Gaussian process regression
R2 Coefficient of determination
MAE Mean absolute error
MSE Mean square error
RMSE Root mean square error
MARE Mean absolute relative error
NSE Nash–Sutcliffe model efficiency
RSR Relative strength ratio
SPT Standard penetration test
CPT Cone penetration test
D Diameter
X1 Depth of first layer of soil embedded
X2 Depth of second layer of soil embedded
X3 Depth of third layer of soil embedded
Xp Pile top elevation
Xg Ground elevation
Xt Extra pile top elevation
Xm Pile tip elevation
NS SPT blow count at pile shaft
Nt SPT blow count at pile tip
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Appendix A

Table A1. Data Catalog.

S. No. D X1 X2 X3 Xp Xg Xt Xm Ns Nt Pu

Unit mm m m m m m m m - - kN

1 400 3.45 8 0.3 2.95 3.65 2.95 14.7 11.75 7.59 1017.9

2 400 4.25 8 1 2.15 3.56 2.16 15.4 13.25 7.67 1152

3 400 4.25 8 1.02 2.15 3.58 2.16 15.42 13.27 7.68 1344

4 400 4.25 8 0.1 2.15 3.58 3.08 14.5 12.35 7.14 1551

5 400 4.35 8 1.06 2.05 3.55 2.09 15.46 13.41 7.66 1321

6 300 3.4 5.25 0 3.4 3.49 3.44 12.05 8.65 6.75 559.8

7 400 4.25 8 1.02 2.15 3.58 2.16 15.42 13.27 7.68 1248

8 300 3.4 5.18 0 3.4 3.36 3.38 11.98 8.58 6.73 559.8

9 400 4.75 7.25 0 2.05 3.62 3.57 14.05 12 6.73 1425

10 300 3.4 5.25 0 3.4 3.47 3.42 12.05 8.65 6.75 559.8

11 300 3.4 5.2 0 3.4 3.42 3.42 12 8.6 6.73 660.6

12 400 3.45 5.24 0 3.35 3.44 3.4 12.04 8.69 6.72 1240

13 400 4.35 8 1.07 2.05 3.52 2.05 15.47 13.42 7.67 1425

14 400 4.1 2.17 0 2.7 3.7 2.73 8.97 6.27 4.92 661.6

15 400 3.55 5.39 0 3.25 3.44 3.25 12.19 8.94 6.72 1083

16 400 4.25 8 1 2.15 3.56 2.16 15.4 13.25 7.67 1152

17 400 3.4 7.3 0 3.4 3.61 3.51 14.1 10.7 7.28 1115.2

18 300 3.4 5.2 0 3.4 3.43 3.43 12 8.6 6.73 610.7

19 300 3.4 5.2 0 3.4 3.42 3.42 12 8.6 6.73 661.6

20 400 4.1 1.8 0 2.7 3.39 2.79 8.6 5.9 4.64 620

21 400 3.45 8 0.3 2.95 3.66 2.96 14.7 11.75 7.59 960

22 300 3.4 5.27 0 3.4 3.49 3.42 12.07 8.67 6.75 559.8

23 400 4.25 8 1 2.15 3.56 2.16 15.4 13.25 7.67 1248

24 400 4.65 7.4 0 2.15 3.59 3.39 14.2 12.05 6.80 1551

25 400 4.1 2 0 2.7 3.56 2.76 8.8 6.1 4.80 620

26 400 4.35 8 0.3 2.05 3.45 2.75 14.7 12.65 7.22 1473

27 400 4.35 8 1.03 2.05 3.48 2.05 15.43 13.38 7.65 1318

28 400 4.35 8 1.01 2.05 3.46 2.05 15.41 13.36 7.64 1473

29 400 4.1 1.72 0 2.7 3.27 2.75 8.52 5.82 4.57 423.9

30 400 3.4 7.28 0 3.4 3.48 3.4 14.08 10.68 7.27 1318

31 400 4.35 8 1.05 2.05 3.55 2.1 15.45 13.4 7.66 1221.5

32 300 3.4 5.2 0 3.4 3.43 3.43 12 8.6 6.73 559.8

33 400 4.25 8 0.96 2.15 3.53 2.17 15.36 13.21 7.65 1344

34 400 4.65 7.35 0 2.15 3.55 3.4 14.15 12 6.79 1392

35 400 3.85 7.5 0 2.95 3.68 3.38 14.3 11.35 7.13 1425

36 300 3.4 5.35 0 3.4 3.57 3.42 12.15 8.75 6.78 661.6

37 400 4.75 7.5 0 2.05 3.6 3.3 14.3 12.25 6.79 1425

38 400 4.35 8 0.95 2.05 3.41 2.06 15.35 13.3 7.60 1323.2
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Table A1. Cont.

S. No. D X1 X2 X3 Xp Xg Xt Xm Ns Nt Pu

39 400 4.25 8 0.9 2.15 3.57 2.27 15.3 13.15 7.61 1473

40 400 4.35 8 0.96 2.05 3.42 2.06 15.36 13.31 7.61 1244

41 400 4.35 8 1.05 2.05 3.5 4.35 15.45 13.4 7.66 1297.8

42 400 4.65 7.4 0 2.15 3.59 3.39 14.2 12.05 6.80 1551

43 400 4.65 7.2 0 2.15 3.58 3.58 14 11.85 6.75 1551

44 400 4.1 2 0 2.7 3.5 2.7 8.8 6.1 4.80 610.7

45 400 4.35 8 0.95 2.05 3.44 2.09 15.35 13.3 7.60 1152

46 400 4.05 8 0.66 2.35 3.46 2.4 15.06 12.71 7.56 1318

47 400 3.5 8 0.2 2.9 3.51 2.91 14.6 11.7 7.50 960

48 400 4.35 8 0.98 2.05 3.48 2.1 15.38 13.33 7.62 1224.8

49 400 4.65 7.5 0 2.15 3.59 3.29 14.3 12.15 6.82 1551

50 400 4.65 7.46 0 2.15 3.56 3.3 14.26 12.11 6.81 1551

51 400 4.25 8 0.2 2.15 3.55 2.95 14.6 12.45 7.20 1392

52 400 4.25 8 1.02 2.15 3.58 2.16 15.42 13.27 7.68 1344

53 400 3.4 7.24 0 3.4 3.44 3.4 14.04 10.64 7.26 967

54 400 4.25 8 0.99 2.15 3.54 2.15 15.39 13.24 7.66 1248

55 400 4.65 7.2 0 2.15 3.58 3.58 14 11.85 6.75 1392

56 400 4.1 2 0 2.7 3.54 2.74 8.8 6.1 4.80 712.5

57 400 4.65 6.3 0 2.15 3.55 4.45 13.1 10.95 6.53 1440

58 300 3.4 5.2 0 3.4 3.45 3.45 12 8.6 6.73 559.8

59 300 3.4 5.3 0 3.4 3.5 3.4 12.1 8.7 6.76 661.6

60 400 4.25 8 0.96 2.15 3.54 2.18 15.36 13.21 7.65 1395

61 400 4.25 8 1.02 2.15 3.58 2.16 15.42 13.27 7.68 1344

62 400 4.65 7.4 0 2.15 3.59 3.39 14.2 12.05 6.80 1551

63 400 3.4 7.35 0 3.4 3.56 3.41 14.15 10.75 7.29 1052.4

64 400 4.35 8 1.07 2.05 3.52 2.05 15.47 13.42 7.67 1082.3

65 400 4.75 7.6 0 2.05 3.44 3.04 14.4 12.35 6.81 1473

66 400 4.25 8 0.9 2.15 3.56 2.26 15.3 13.15 7.61 1395

67 300 3.4 5.35 0 3.4 3.57 3.42 12.15 8.75 6.78 661.6

68 400 3.5 8 0.18 2.9 3.5 2.92 14.58 11.68 7.49 1032.4

69 300 3.4 5.2 0 3.4 3.42 3.42 12 8.6 6.73 559.8

70 400 3.4 7.33 0 3.4 3.55 3.42 14.13 10.73 7.28 1094.25

71 400 4.25 8 1 2.15 3.55 2.15 15.4 13.25 7.67 1248

72 400 3.45 8 0.2 2.95 3.52 2.92 14.6 11.65 7.52 967

73 400 3.5 8 0.17 2.9 3.47 2.9 14.57 11.67 7.48 960

74 400 3.45 8 0.14 2.95 3.52 2.98 14.54 11.59 7.48 885

75 400 3.45 8 0.07 2.95 3.42 2.95 14.47 11.52 7.44 1240

76 400 5.4 6.3 0 2.15 3.52 1.06 13.1 14.7 5.50 1056

77 300 3.4 5.2 0 3.4 3.43 3.43 12 8.6 6.73 600.7

78 300 3.4 5.3 0 3.4 3.52 3.42 12.1 8.7 6.76 508.9

79 400 3.55 5.36 0 3.25 3.41 3.25 12.16 8.91 6.71 930
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Table A1. Cont.

S. No. D X1 X2 X3 Xp Xg Xt Xm Ns Nt Pu

80 400 4.35 8 1.18 2.05 3.66 2.08 15.58 13.53 7.73 1056

81 400 4.1 2 0 2.7 3.52 2.72 8.8 6.1 4.80 610.7

82 300 3.4 5.25 0 3.4 3.49 3.44 12.05 8.65 6.75 610.7

83 400 4.25 8 1 2.15 3.55 2.15 15.4 13.25 7.67 1344

84 300 3.4 5.2 0 3.4 3.38 3.38 12 8.6 6.73 610.7

85 400 4.25 8 0.9 2.15 3.59 2.29 15.3 13.15 7.61 1473

86 400 4.1 1.85 0 2.7 3.35 2.7 8.65 5.95 4.68 508.9

87 300 3.4 5.2 0 3.4 3.43 3.43 12 8.6 6.73 661.6

88 400 4.25 8 0.94 2.15 3.54 2.2 15.34 13.19 7.64 1395

89 400 4.25 8 0.9 2.15 3.59 2.29 15.3 13.15 7.61 1551

90 400 4.75 7.25 0 2.05 3.65 3.6 14.05 12 6.73 1425

91 400 4.25 8 1.02 2.15 3.58 2.16 15.42 13.27 7.68 1152

92 400 4.35 8 1.05 2.05 3.53 2.08 15.45 13.4 7.66 1473

93 400 3.45 8 0.14 2.95 3.52 2.98 14.54 11.59 7.48 885

94 400 4.1 1.9 0 2.7 3.43 2.73 8.7 6 4.72 620

95 400 4.35 8 0.97 2.05 3.42 2.05 15.37 13.32 7.61 1317

96 400 4.65 6.49 0 2.15 3.59 4.3 13.29 11.14 6.58 1551

97 400 3.4 7.31 0 3.4 3.56 3.45 14.11 10.71 7.28 1032.4

98 300 3.4 5.25 0 3.4 3.48 3.43 12.05 8.65 6.75 610.7

99 400 3.45 8 0.19 2.95 3.56 2.97 14.59 11.64 7.52 1318

100 400 3.45 6.29 0 3.35 3.44 3.35 13.09 9.74 7.02 1240

101 300 3.4 5.24 0 3.4 3.49 3.45 12.04 8.64 6.75 610.7

102 400 4.25 8 0.7 2.15 3.58 2.48 15.1 12.95 7.50 1392

103 300 3.4 5.25 0 3.4 3.47 3.42 12.05 8.65 6.75 585.4

104 400 4.25 8 1 2.15 3.56 2.16 15.4 13.25 7.67 1152

105 400 4.1 1.8 0 2.7 3.32 2.72 8.6 5.9 4.64 559.8

106 400 3.4 7.3 0 3.4 3.49 3.39 14.1 10.7 7.28 1068.8

107 400 4.35 8 1 2.05 3.45 2.05 15.4 13.35 7.63 1119.7

108 400 3.4 7.31 0 3.4 3.54 3.43 14.11 10.71 7.28 1032.8

109 400 3.45 8 0.1 2.95 3.54 3.04 14.5 11.55 7.46 1017.9

110 300 3.4 5.2 0 3.4 3.48 3.48 12 8.6 6.73 611.6

111 400 4.75 7.6 0 2.05 3.49 3.09 14.4 12.35 6.81 1473

112 400 4.35 8 1.04 2.05 3.52 2.08 15.44 13.39 7.65 1321

113 400 3.5 8 0.21 2.9 3.48 2.87 14.61 11.71 7.51 1032.4

114 400 4.65 7.2 0 2.15 3.55 3.55 14 11.85 6.75 1392

115 400 4.35 8 1.08 2.05 3.53 2.05 15.48 13.43 7.67 1248

116 300 3.4 5.25 0 3.4 3.46 3.41 12.05 8.65 6.75 661.6

117 300 3.4 5.2 0 3.4 3.41 3.41 12 8.6 6.73 610.7

118 400 4.35 8 1.1 2.05 3.55 2.05 15.5 13.45 7.69 1425

119 400 4.35 8 0.05 2.05 3.58 3.13 14.45 12.4 7.07 1344

120 400 4.1 2.08 0 2.7 3.63 2.75 8.88 6.18 4.86 432



Appl. Sci. 2022, 12, 2126 20 of 24

Table A1. Cont.

S. No. D X1 X2 X3 Xp Xg Xt Xm Ns Nt Pu

121 300 3.4 5.25 0 3.4 3.48 3.43 12.05 8.65 6.75 559.8

122 400 3.85 7.35 0 2.95 3.64 3.49 14.15 11.2 7.09 1425

123 300 3.4 5.25 0 3.4 3.48 3.43 12.05 8.65 6.75 508.9

124 400 4.65 7.5 0 2.15 3.59 3.29 14.3 12.15 6.82 1551

125 300 3.4 5.3 0 3.4 3.5 3.4 12.1 8.7 6.76 559.8

126 300 3.4 5.32 0 3.4 3.55 3.43 12.12 8.72 6.77 661.6

127 300 3.4 5.25 0 3.4 3.48 3.43 12.05 8.65 6.75 559.8

128 400 3.5 8 0.16 2.9 3.48 2.92 14.56 11.66 7.47 960

129 400 4.65 7.5 0 2.15 3.55 3.25 14.3 12.15 6.82 1551

130 400 4.75 7.5 0 2.05 3.45 3.15 14.3 12.25 6.79 1297.8

131 300 3.4 5.2 0 3.4 3.42 3.42 12 8.6 6.73 610.7

132 400 4.35 8 1.01 2.05 3.46 2.05 15.41 13.36 7.64 1550

133 300 3.4 5.2 0 3.4 3.41 3.41 12 8.6 6.73 610.7

134 400 3.4 7.3 0 3.4 3.54 3.44 14.1 10.7 7.28 967

135 400 4.25 8 1.03 2.15 3.58 2.15 15.43 13.28 7.69 1248

136 300 3.4 5.25 0 3.4 3.46 3.41 12.05 8.65 6.75 559.8

137 300 3.4 5.3 0 3.4 3.51 3.41 12.1 8.7 6.76 661.6

138 400 4.25 8 0.4 2.15 3.55 2.75 14.8 12.65 7.32 1392

139 400 4.35 8 0.95 2.05 3.41 2.06 15.35 13.3 7.60 1110.6

140 300 3.4 5.2 0 3.4 3.4 3.4 12 8.6 6.73 559.8

141 400 3.85 7.3 0 2.95 3.68 3.58 14.1 11.15 7.08 1440

142 400 4.1 2.08 0 2.7 3.58 2.7 8.88 6.18 4.86 480

143 400 4.45 8 1.18 1.95 3.58 2 15.58 13.63 7.69 1032.4

144 300 3.4 5.2 0 3.4 3.4 3.4 12 8.6 6.73 559.8

145 300 3.4 5.2 0 3.4 3.43 3.43 12 8.6 6.73 661.6

146 300 3.4 5.25 0 3.4 3.46 3.41 12.05 8.65 6.75 407.2

147 400 3.45 8 0.22 2.95 3.57 2.95 14.62 11.67 7.53 1318

148 400 4.25 8 1.01 2.15 3.57 2.16 15.41 13.26 7.68 1248

149 400 3.4 7.3 0 3.4 3.5 3.4 14.1 10.7 7.28 958

150 400 4.1 2.2 0 2.7 3.72 2.72 9 6.3 4.94 610.7

151 400 4.35 8 1.02 2.05 3.47 4.05 15.42 13.37 7.64 1318

152 400 4.25 8 0.9 2.15 3.53 2.23 15.3 13.15 7.61 1395

153 400 4.25 8 0.4 2.15 3.59 2.79 14.8 12.65 7.32 1551

154 300 3.4 5.24 0 3.4 3.48 3.44 12.04 8.64 6.75 559.8

155 400 4.25 8 0.4 2.15 3.55 2.75 14.8 12.65 7.32 1392

156 300 3.4 5.25 0 3.4 3.46 3.41 12.05 8.65 6.75 661.6

157 400 4.05 8 0.7 2.35 3.47 2.37 15.1 12.75 7.58 1318

158 300 3.4 5.23 0 3.4 3.44 3.41 12.03 8.63 6.74 585.35

159 400 4.35 8 0.7 2.05 3.49 2.39 15.1 13.05 7.46 1392

160 400 4.25 8 1 2.15 3.57 2.17 15.4 13.25 7.67 1248
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Table A1. Cont.

S. No. D X1 X2 X3 Xp Xg Xt Xm Ns Nt Pu

161 400 4.25 8 1 2.15 3.58 2.18 15.4 13.25 7.67 1395

162 400 4.25 8 1 2.15 3.56 2.16 15.4 13.25 7.67 1395

163 400 4.25 8 1.01 2.15 3.57 2.16 15.41 13.26 7.68 1248

164 400 4.25 8 0.1 2.15 3.53 3.03 14.5 12.35 7.14 1551

165 400 3.5 8 0.17 2.9 3.48 2.91 14.57 11.67 7.48 1056

166 400 4.25 8 1.02 2.15 3.58 2.16 15.42 13.27 7.68 1248

167 300 3.4 5.25 0 3.4 3.46 3.41 12.05 8.65 6.75 532.4

168 400 4.35 8 0.8 2.05 3.45 2.25 15.2 13.15 7.52 1392

169 300 3.4 5.2 0 3.4 3.45 3.45 12 8.6 6.73 610.7

170 400 4.25 8 0.98 2.15 3.54 2.16 15.38 13.23 7.66 1344

171 400 4.25 8 1 2.15 3.56 2.16 15.4 13.25 7.67 1344

172 400 3.45 8 0.25 2.95 3.6 2.95 14.65 11.7 7.55 960

173 400 4.65 7.24 0 2.15 3.54 3.5 14.04 11.89 6.76 1551

174 400 4.25 8 0.9 2.15 3.58 2.28 15.3 13.15 7.61 1395

175 400 3.4 7.3 0 3.4 3.5 3.4 14.1 10.7 7.28 900

176 400 3.4 7.4 0 3.4 3.61 3.41 14.2 10.8 7.30 1088.8

177 400 4.25 8 0.1 2.15 3.54 3.04 14.5 12.35 7.14 1551

178 400 3.4 7.23 0 3.4 3.43 3.4 14.03 10.63 7.26 960

179 300 3.4 5.3 0 3.4 3.52 3.42 12.1 8.7 6.76 610.7

180 400 4.1 2 0 2.7 3.55 2.75 8.8 6.1 4.80 610.7

181 400 4.25 8 1.03 2.15 3.58 2.15 15.43 13.28 7.69 1248

182 400 3.45 8 0.12 2.95 3.47 2.95 14.52 11.57 7.47 1318

183 400 4.25 8 1 2.15 3.58 2.18 15.4 13.25 7.67 1395

184 400 4.35 8 1.11 2.05 3.56 2.05 15.51 13.46 7.69 1128.6

185 400 4.45 7.21 0 2.35 3.41 2.4 14.01 11.66 6.83 1318

186 400 4.65 7.38 0 2.15 3.58 3.4 14.18 12.03 6.79 1551

187 400 4.25 8 1 2.15 3.56 2.16 15.4 13.25 7.67 1248

188 400 4.25 8 0.2 2.15 3.58 2.98 14.6 12.45 7.20 1551

189 400 4.65 7.6 0 2.15 3.58 3.18 14.4 12.25 6.84 1446

190 300 3.4 5.22 0 3.4 3.44 3.42 12.02 8.62 6.74 617

191 400 4.75 7.4 0 2.05 3.52 3.32 14.2 12.15 6.76 1425

192 400 4.65 7.4 0 2.15 3.59 3.39 14.2 12.05 6.80 1392

193 400 3.4 7.3 0 3.4 3.61 3.51 14.1 10.7 7.28 1115.2

194 300 3.4 5.25 0 3.4 3.49 3.44 12.05 8.65 6.75 559.8

195 300 3.4 5.25 0 3.4 3.46 3.41 12.05 8.65 6.75 559.8

196 400 4.25 8 1 2.15 3.58 2.18 15.4 13.25 7.67 1395

197 300 3.4 5.18 0 3.4 3.38 3.4 11.98 8.58 6.73 559.8

198 400 4.25 8 0.91 2.15 3.56 2.25 15.31 13.16 7.62 1473

199 400 4.05 8 0.7 2.35 3.48 2.38 15.1 12.75 7.58 1238

200 400 4.1 2.01 0 2.7 3.53 2.72 8.81 6.11 4.80 528
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