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Abstract

Background: MicroRNAs (miRNAs) are a family of non-coding RNAs approximately 21 nucleotides in length that
play pivotal roles at the post-transcriptional level in animals, plants and viruses. These molecules silence their target
genes by degrading transcription or suppressing translation. Studies have shown that miRNAs are involved in
biological responses to a variety of biotic and abiotic stresses. Identification of these molecules and their targets
can aid the understanding of regulatory processes. Recently, prediction methods based on machine learning have
been widely used for miRNA prediction. However, most of these methods were designed for mammalian miRNA
prediction, and few are available for predicting miRNAs in the pre-miRNAs of specific plant species. Although the
complete Solanum lycopersicum genome has been published, only 77 Solanum lycopersicum miRNAs have been
identified, far less than the estimated number. Therefore, it is essential to develop a prediction method based on
machine learning to identify new plant miRNAs.

Results: A novel classification model based on a support vector machine (SVM) was trained to identify real and
pseudo plant pre-miRNAs together with their miRNAs. An initial set of 152 novel features related to sequential
structures was used to train the model. By applying feature selection, we obtained the best subset of 47 features for
use with the Back Support Vector Machine-Recursive Feature Elimination (B-SVM-RFE) method for the classification of
plant pre-miRNAs. Using this method, 63 features were obtained for plant miRNA classification. We then developed
an integrated classification model, miPlantPreMat, which comprises MiPlantPre and MiPlantMat, to identify plant
pre-miRNAs and their miRNAs. This model achieved approximately 90% accuracy using plant datasets from nine
plant species, including Arabidopsis thaliana, Glycine max, Oryza sativa, Physcomitrella patens, Medicago truncatula,
Sorghum bicolor, Arabidopsis lyrata, Zea mays and Solanum lycopersicum. Using miPlantPreMat, 522 Solanum lycopersicum

miRNAs were identified in the Solanum lycopersicum genome sequence.

Conclusions: We developed an integrated classification model, miPlantPreMat, based on structure-sequence
features and SVM. MiPlantPreMat was used to identify both plant pre-miRNAs and the corresponding mature
miRNAs. An improved feature selection method was proposed, resulting in high classification accuracy,
sensitivity and specificity.
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Background
MicroRNAs (miRNAs) are a family of non-coding RNAs

approximately 21 nucleotides (nt) in length that play im-

portant roles at the post-transcriptional level in animals,

plants and viruses [1]. These molecules are first cut from

a stem-loop structure by RNaseDicer III. Environmental

stress can induce or repress the expression of some

miRNAs, thereby regulating the expression of down-

stream genes that respond to environmental stresses.

The initial products of miRNA gene transcription are

pre-miRNAs. Next, enzymes release pre-miRNAs with

hairpin structures of 53–938 nt [2] by cutting and splicing.

Finally, mature miRNAs are released from pre-miRNAs

with hairpin structures by Dicer-like enzyme.

Mature miRNAs combine with RISC protein complexes

to target specific mRNAs [3] and induce gene silencing by

mRNA degradation or transcriptional inhibition. Plant

miRNAs target multiple sites [4] to regulate various aspects

of plant growth and development, including cell growth,

cell differentiation, root, stem, leaf and other morpholo-

gies; these miRNAs also function in plant adaptation to

different biotic and abiotic conditions [5,6].

The methods used to predict the role of miRNAs can

be divided into two categories: experimental verification

and bioinformatic prediction. Although experimental

verification, which is based on direct cloning experi-

ments, can identify many miRNAs with high expression

levels, few miRNAs with low or specific expression can

be identified. Moreover, this method is expensive and

results in a high number of false positive results. Bioinfor-

matic prediction can compensate for these deficiencies.

Based on recent studies, bioinformatic methods for identi-

fying miRNAs can be divided into three categories: align-

ment analysis, machine learning and high-throughput

sequencing [7,8]. Studies have shown that miRNAs are

conserved among species. Pre-miRNAs containing mature

miRNAs can be folded to form hairpin structures that

have low minimum free energy (MFE) values [9]. Align-

ment analysis is based on these properties. MiRscan

[10], miRFinder [11] and miREval [12], which are based

on alignment homology analysis, have been successfully

applied. Due to a lack of miRNA structural information,

most of these methods yield high false positive rates.

Based on prior knowledge, appropriate data are selected,

appropriate features are chosen, and a high-performance

data-mining algorithm is used to construct a classifica-

tion model. Triplet-SVM [13], bayesmiRNAfind [14]

and MiPred [15] are successful models that are based

on the machine learning method. However, few of these

models can be used for plant pre-miRNA prediction be-

cause the hairpin structure of plant pre-miRNAs is much

more complex than that of animal pre-miRNAs. More-

over, these models cannot be used to predict mature miR-

NAs in specific species [16]. High-throughput sequencing

identifies not only pre-miRNAs but also mature miRNAs

[17]. An integrated model to identify plant miRNA–target

interactions has been proposed [18]. However, due to the

existence of genome-wide sequencing errors, mistakes

may occur when comparing with short sequences. Fur-

thermore, some parameters are set based on experience

and lack a strong theoretical basis. There is no consensus

regarding miRNA prediction.

In this study, we focus on building a model that can

be used in the classification of real/pseudo plant pre-

miRNAs together with their mature miRNAs via the

machine learning method. An initial set of 152 novel

features related to sequential structure was used in the

model. By applying feature selection, the subset of 47

features yielding optimal results was obtained using Back

Support Vector Machine-Recursive Feature Elimination

(B-SVM-RFE) in real/pseudo plant pre-miRNA classifica-

tion. In the same way, the subset of 63 features yielding

optimal plant miRNA classification was obtained. An inte-

grated classification model, miPlantPreMat, was trained to

identify real/pseudo plant pre-miRNAs and the corre-

sponding miRNAs. MiPlantPreMat achieved high accur-

acy on plant datasets from nine plant species, including

Arabidopsis thaliana, Glycine max, Oryza sativa, Physco-

mitrella patens, Medicago truncatula, Sorghum bicolor,

Arabidopsis lyrata, Zea mays and Solanum lycopersicum.

For example, 522 Solanum lycopersicum miRNAs were

obtained from the Solanum lycopersicum genome se-

quence. The superior performance of the proposed

classifier can be attributed to the extraction of plant

pseudo pre-miRNAs, selection of the training dataset

and careful feature selection. The website dedicated to

miPlantPreMat includes the training and testing data-

sets, training models (MiPlantPre and MiPlantMat) and

miPlantPreMat source codes used, all of which are freely

available (https://github.com/kobe-liudong/miPlantPreMat).

We provide a detailed description of the sources used for

the datasets in the readme.txt in the ‘data’ folder.

Methods
Dataset preparation for the training and testing of the

SVM model

An effective classifier of plant pre-miRNAs and miRNAs

should distinguish real pre-miRNAs and miRNAs from

pseudo pre-miRNAs and miRNAs. The positive dataset

comprised known plant pre-miRNAs and miRNAs,

whereas the negative dataset comprised pseudo Solanum

lycopersicum, pseudo Glycine max and pseudo Arabidop-

sis lyrata hairpins.

All 6,378 plant miRNAs and 5,166 plant pre-miRNAs

that were experimentally verified in miRBase release

19.0 were screened for inclusion in the positive data set. Re-

dundant sequences were excluded, and the remaining non-

redundant sequences were folded into hairpin secondary
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structures. Of these pre-miRNAs, 3,126 non-redundant

pre-miRNAs having single stem-loops were treated as real

samples for miPlantPre. Plant pre-miRNAs range from

53 nt to 938 nt in length and have more complex secondary

structures than mammalian pre-miRNAs. It is difficult to

locate the position of miRNAs and miRNAs* for plant

pre-miRNAs. In this study, pre-miRNAs were intercepted

such that mature miRNAs in pre-miRNAs are at the 3’- or

5’-end of the selected sequence. We treated these pre-

miRNAs as real samples within miPlantMat. Furthermore,

pre-miRNAs intercepted at other positions were treated

as pseudo samples within miPlantMat. After interception,

the pre-miRNAs exhibited a narrower length range, and

structures in each region of the pre-miRNAs were more

unified. The 152 features applied in miPlantPre were also

used because the stem-loop structure was maintained. In

this process, the proposed features termed MFEI7, MFEI8,

MFEI9, Mis_num_begin, Mis_num_end and "G(((_be-

gin_S", "A.(._end_S" were useful because they helped to

identify real pre-miRNAs that were intercepted at differ-

ent positions. For consistency, all pre-miRNA secondary

structures were recalculated using RNAfold in the Vienna

package [19]. Figure 1 illustrates the interception proced-

ure using the stem-loop of Solanum lycopersicum miR-

166b as an example. The length was shortened from

201 nt to 138 nt by removing the bases before the miRNA*

and after the miRNA.

Almost all reported miRNAs are located in untranslated

regions or intergenic regions, although some can be found

in protein-coding sequences (CDSs). Some sequence seg-

ments have stem-loop structures that are similar to those

of real pre-miRNAs but have not been reported as pre-

miRNAs. Because the model was trained to distinguish

analogous real/pseudo pre-miRNAs, the sequences in the

negative dataset should regard structures with stem-loop

structures as genuine pre-miRNAs; otherwise, the classifi-

cation will not yield significant results. CDSs of Solanum

lycopersicum, Glycine max and Arabidopsis lyrata RefSeq

genes with no known alternative splice events were

collected. Most known plant pre-miRNAs are 120 nt in

length. Thus, a sliding window of widths ranging ran-

domly from 60 to 150 nt was used to scan the CDSs to

produce sequence segments. The sequence segments

should fold into single stem-loop structures and satisfy

five criteria based on the number of base pairs in hairpins,

%G + C, MFEI, the complementary base pairing of mature

miRNAs and the stability of the precursor in relation to

the MFE rate. The criteria were determined by observing

real intercepted plant pre-miRNAs. The criteria for select-

ing pseudo miRNAs were as follows: a minimum of 19

Figure 1 Original pre-miRNA and intercepted pre-miRNA of Solanum lycopersicum miR-166b. Mature miRNA is at 3’-end and

miRNA* is at 5’-end of the selected sequence. Each base has two states, match or mismatch. Each precursor contains one loop at least.
The original pre-miRNA has 201 bases with the MFE −76.92 kcal/mol and the intercepted pre-miRNA has 138 bases with the

MFE −51.72 kcal/mol.
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base pairings in the hairpin structure, %G + C > 0.242 and

<0.825, MFEI >0.522 and <1.39, no multiple loops, at most

3 continuous unpaired bases and at most 7 unpaired bases

in the mature miRNAs. All precursor secondary structures

were recalculated with p-values of 0.01 and the ‘-p’ option

at 37°C. The frequency distribution of MFE and the em-

pirical distribution were modeled using a modified sig-

moid function

x ¼ MFE=length

f xð Þ ¼ a

bþ ex�c

Where length represented the length of the precursor,

a = 1.339e-12, b = 2.7783e-13, and c = 45.843 were the

fitting parameters. The stability was calculated using f

(x). The selection criterion was f(x) > −4.42. Finally,

8,494 pseudo pre-miRNAs were collected as the nega-

tive dataset.

While training the model miPlantMat, we collected

pre-miRNAs that were not intercepted by mature miR-

NAs or miRNAs* from the primary pre-miRNAs. We

treated these pre-miRNAs as pseudo samples for

miPlantMat. The sequences either contained real sam-

ples for miPlantMat or were contained in real samples

for miPlantMat. If a base was paired with another base

on the opposite strand of the stem in the pseudo pre-

miRNAs, the paired base was collected in the pre-miRNAs

to maintain the stem-loop structure. Consequently, the

pseudo samples must be similar to the real samples for the

classification to be significant.

Features of plant miRNAs and pre-miRNAs

Recent studies have demonstrated that the primary se-

quence and secondary structure of plant pre-miRNAs

exhibit many features that can be used to classify real/

pseudo plant pre-miRNAs. Because the sequences of

almost all mature miRNAs are located in the stems of

the corresponding pre-miRNAs, the sequences either

begin from miRNAs and end in miRNAs or form a

stem-loop structure. Based on these features, mature

miRNAs can be located in pre-miRNAs. The stem-

loop of Solanum lycopersicum miR-166b was used as

an example. The stem-loop without interception was

treated as a real sample in the MiPlantPre model of

miPlantPreMat. The stem-loop with interception is

treated as a real sample in the miPlantMat model of

miPlantPreMat.

Structural characteristics are also very important for

identifying real/pseudo pre-miRNAs. 32 structured triplet

composition features are defined in triplet-SVM (including

the frequencies of “G(((“ and ”C((.“, which are extracted

from the pre-miRNAs. A left bracket ”(“ indicates that a

paired nucleotide is located near the 5’-end and can be

paired with another nucleotide at the 3’-end, and the

corresponding nucleotide at the 3’-end is indicated

using a right bracket ”)“. As in previous studies, ”(“ and ”)“

were treated equally. A dot ”.“ indicates that a nucleotide

does not pair with a nucleotide on opposing end. These

32 features were extracted from stems and are denoted as

”G(((_S“ and ”C((._S“, etc.

29 global and intrinsic folding features were extracted

from secondary structures of real/pseudo pre-miRNAs

defined in miPred. These features include the following:

(i) %G + C content and 16 dinucleotide frequencies de-

fined as %XY, where X, Y in {A, C, G, U}; (ii) adjusted

base pairing propensity denoted as dP [20]; (iii) the MFE

of folding denoted as dG [21]; (iv) the adjusted base pair

distance denoted as dD [22]; (v) the adjusted Shannon

entropy denoted as dQ [23]; (vi) the MFE index denoted

as MFEI1 and MFEI2 [24], a topological descriptor of

the degree of compactness denoted as dF; and (vii) 5

normalized variants of dP, dG, dQ, dD and dF denoted

as zP, zG, zQ, zD and zF, respectively [25].

19 features defined in microPred [26] include the

following: (i) seven base pair-related features that are

denoted as |A − U|/L, |G − C|/L, |G − U|/L, the aver-

age number of base pairs per stem (Avg_BP_Stem),

%(A −U)/n_stems, %(G − C)/n_stems and %(G − U)/

n_stems; (ii) the MFE index denoted as MFEI3 and

MFEI4; (iii) four RNA fold-related features, such as the

normalized ensemble free energy (NEFE); the frequency of

the MFE structure denoted as Freq; structural thermo-

dynamic features such as the structural entropy dS and

dS/L; the structural enthalpy dH and dH/L; and the melt-

ing energy of the structure, denoted as Tm and Tm/L,

where L represents the length of the pre-miRNA se-

quences and n_stems represents the number of stems in

the secondary structure.

3 features defined in PlantMiRNAPred [27] include: (i)

the MFE index denoted as MFEI5 and MFEI6; (ii) the

average number of mismatches per 21-nt window, which

is calculated as Avg_mis_num = tot_mismatches/n_21nts,

where tot_ mismatches is the total number of mismatches

in the 21-nt sliding window and n_21nts is the number of

sliding windows in a stem.

69 novel features proposed in our study include the

following: (i) MFE Index 7: MFEI7 =MFE/%G + C_

Begin_n_ 21nts, where %G + C_ Begin_ n_21nts is the

GC content in the first 21 bases of the stems; MFE

Index 8: MFEI8 = MFE/%G + C_End_n_21nts, where

%G + C_End_n_21nts is the GC content in the last 21

bases of the stems; MFE Index 9: MFEI9 = MFE/avg_

mis_num_n_21nts, where avg_mis_num_n_21nts is

the average number of mismatches per 21-nt window;

(ii) Mis_ num_begin: the nucleotide is not paired with

a nucleotide on the opposing terminus in the first 21

bases of the stems; (iii) Mis_num_end: the nucleotide
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is not paired with a nucleotide on the opposing

terminus in the last 21 bases of the stems. Because the

miRNAs and miRNAs* are stable, it is necessary to de-

termine the position of the mature miRNAs in the

corresponding pre-miRNAs; and (iv) to obtain im-

proved classification, features that reflect both the se-

quence and secondary structure of the real/pseudo

pre-miRNAs and that aid in determining the position

of the mature miRNA in the pre-miRNA were needed.

In addition to the features extracted above, 64 new

features including the frequencies of ”G(((_begin“ and

”A.(._end“ were extracted from the beginning and end

of pre-miRNAs. Because almost all mature miRNAs

were located in stems, these 64 features were extracted

from stems and were denoted as ”G(((_begin_S“ and

”A.(._end_S“, etc.

152 features belonging to six groups were selected,

as shown in Table 1. MFEI1, MFEI2, MFEI3, MFEI4,

MFEI5, MFEI6, MFEI7, MFEI8, and MFEI9 were con-

sidered MFE-related features. 20 features that reflect

the proportion of adjacent bases and the G and C con-

tent of bases were used as sequence-related features. 6

thermodynamic features were used as mfold-related

features. Seven types of base pairing were used as base

pair-related features. 96 features were triple-related. 14

features calculated by RNAfold were used as RNAfold-

related features. Secondary structures and thermodynamic

parameters were obtained using the ViennaRNA package.

All RNAfold-related features were extracted using the

RNAfold program using the ‘-p’ option at 37°C. For

consistency, every parameter was scaled in the range

from −1 to 1.

SVM and miPlantPreMat classifier

We chose SVM as our classification paradigm in this re-

search based on its excellent generalization ability. For a

given dataset Xn, xi ∈Xn (i = 1, 2,…, N), each element in

the dataset has a corresponding label γi (−1 or +1, repre-

senting the two classes to be classified; +1 represents real

samples whereas −1 represents pseudo samples). A deci-

sion function is given by the SVM classifier

f xð Þ ¼ sgn
X

N

i¼1

γ iαiK x; xið Þ þ b

 !

Where γi is the class label of the i-th element, αi is the

coefficient to be learned, K is the kernel function, and b

is the offset. αi is obtained by maximizing

X

N

i¼1

αi−
1

2

X

N

i;j¼1

αiαjγiγ jK xi; xj
� �

If the value of f(x) is greater than zero, the label assigned

to data x is +1; otherwise, the assigned label is −1.

The LIBSVM package (version 3.1) [28] was used in

our study. To obtain the best performance, the penalty

parameter C and the RBF kernel parameter γ were cal-

culated using grid search strategy.

MiPlantPreMat was proposed based on SVM, as illus-

trated in Figure 2. A total of 3,126 non-redundant plant

pre-miRNAs with single stem-loops were collected from

miRBase release19.0 and used as the positive dataset. A

total of 8,494 non-redundant sequence segments with

stem-loop structures similar to real pre-miRNAs that

were not previously reported as pre-miRNAs were

collected and used as the negative dataset. (i) A total

of 2,000 positive and 2,000 negative samples were

randomly collected for use in training the miPlantPre

model of MiPlantPreMat; (ii) 152 features were extracted

from the primary sequences and secondary structures of

pre-miRNA stems; (iii) redundant features were elimi-

nated, and the informative feature subset was selected

using B-SVM-RFE; (iv) miPlantPre was trained with the

selected 47 features; (v) 3,835 sequence segments from the

3,126 pre-miRNAs mentioned above were collected and

used as the positive dataset. The sequence segments ex-

tended from the beginning of the mature miRNAs to the

end of the miRNAs*, from both the 5’ and 3’ arms. A total

Table 1 Selected pre-miRNA features

Classification Number Features

MFE-related 9 MFEI12, MFEI22, MFEI33, MFEI43, MFEI54, MFEI64, MFEI75, MFEI85, MFEI95

Sequence-related 20 %AA,%AC, etc.2 (16),%G + C2, Avg_mis_num4 Mis_num_begin5, Mis_num_end5

Mfold-related 6 dS3, dS/L3, dH3, dH/L3, Tm3, Tm/L3

Base-pair -related 7 |A-U|/L3,|C-G|/L3, |G-U|/L3, Avg_BP_Stem3, %(A − U)/n_stems3, %(G − C)/n_stems3

Triple-related 96 A(((_S, A((._S, etc.1 (32), A(((_begin_S, A((._begin _S, etc.5 (32), A(((_end _S, A((._end _S, etc.5 (32)

RNAfold-related 14 dP2, dG2, dD2, dQ2, dF2, zP2, zG2, zD2, zQ2, zF2,NEFE3, Freq3, Diversity3, Diff3

1Features extracted in triplet-SVM.
2Features extracted in miPred.
3Features extracted in microPred.
4Features extracted in plantMiRNAPred.
5Features extracted in miPlantPreMat.
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of 39,428 sequence segments from the same pre-miRNAs,

which were not previously included in the positive dataset,

were longer than 55 nt, and comparable stem-loop struc-

tures were collected for use as the negative dataset. Ran-

domly, 1,000 positive and 5,000 negative samples were

collected and preprocessed using SMOTE to train the

miPlantMat model of MiPlantPreMat, keep the positive

and negative ratio of 1:1; (vi) miPlantMat was trained

using the selected 63 features using the same method; and

(vii) an integrated MiPlantPreMat model was constructed

by combining MiPlantPre and MiPlantMat. The detailed

feature extraction and selection of the SVM model are

shown in Additional file 1.

Feature subset selection

Feature subset selection is used to choose a group of in-

formative features that retain the most information from

the original data, screen out redundant features and

distinguish each sample in the dataset. A total of 152

features were selected without considering redundancy

and correlation with class. SVM-RFE [29,30] was used

for subset selection in our study.

SVM-RFE is a simple and efficient feature selection

algorithm that ranks features according to the SVM classi-

fication results. The evaluation function is biased toward

subsets that contain features that are highly correlated

with class. Irrelevant features should be ignored because

they will be poorly correlated with class. Feature subset se-

lection can be summarized as follows: (i) input training

examples X0 = [x1, x2, …, xn]
T together with their class

labels y = [y1, y2, …, yn]
T; (ii) initialize the subset of sur-

viving features s = [1, 2, …, 152] and the features ranked

list r = [], repeat until s = []; (iii) restrict the training exam-

ples to those exhibiting good feature indices X =X0(:, s)

Figure 2 Flow chart of the classification model miPlantPreMat for use with plant miRNAs. Construction of SVM classifier MiPlantPreMat

based on feature selection and sample selection was shown.

Meng et al. BMC Bioinformatics  (2014) 15:423 Page 6 of 14



and train the classifier α = SVM-train(X, y); (iv) compute

the weight vector of dimension length(s), w ¼
X

k

αkykxk ;

(v) compute the ranking criteria ci = (wi)
2 for all i; (vi) find

the feature with the smallest ranking criterion f = argmin

(c) and update the feature ranked list r = [s(f ), r]; (vii) elim-

inate the feature with the smallest ranking criterion s = s

(1: f-1, f + 1: length(s)); and (viii) find the classifier α and

the subset of trained classifiers α.

A total of 152 features without redundancy were ex-

tracted under the initial conditions. These features rep-

resent a sample but do not fully consider the

relationship between the attributes during extraction

and classification. SVM-RFE can dynamically calculate

attribute weights, sort each attribute, and fulfill feature

selection. However, once the attributes are sorted to the

bottom, they can no longer participate in subsequent at-

tribute weight calculations. Because the training number

is different each time, the properties calculated under

different SVM classification space attribute weights also

differ. Therefore, sorting of the calculated weights of less

important properties may be overshadowed by proper-

ties with a higher weight. Here, we propose the use of a

B-SVM-RFE method that is based on the attribute of In-

formation Gain [31] (IG).

Information entropy is an important concept underlying

information gain. For a classification system, the possible

values of a category are C1, C2,…, Cn, where P(C1), P(C2),

…, P(Cn) represent the probabilities of each category and

n represents the total number of categories. The informa-

tion entropy of the classification system is expressed as:

H Cð Þ ¼ −

X

n

i¼1

P Cið Þ � log2P Cið Þ

Information gain is reliant on characteristic t. When

calculating the differences in information entropy be-

tween when characteristic t exists and when it does not,

the increased amount of information obtained is the in-

formation gain.

Characteristics of t included in the system of informa-

tion entropy can be obtained. When t does not belong

to the system, feature t is treated as a constant. Then,

the problem can be seen as computing the conditional

entropy with constant t

H CjTð Þ ¼ P tð ÞH Cjtð Þ þ Pðt−ÞHðCj t−Þ

Where T is the characteristic, t indicates the presence

of characteristic T, and t
−

indicates the absence of charac-

teristic T. Then, the information gain of characteristic T

can be calculated as follows:

IG Tð Þ ¼ H Cð Þ−H CjTð Þ ¼
X

C;T

p CTð Þ log2
p CTð Þ

p Cð Þp Tð Þ

A total of 2,000 real samples and 2,000 pseudo sam-

ples were chosen from the data pool using progressive

sampling. The information gain and SVM-RFE ranking

of the 4,000 samples regarding the 152 features are listed

in Table 2.

First, the information gain of each attribute and the

SVM-RFE ranking were calculated. Then, the existing

set s = [1, 2, …, 152] and ranking set r = [] of the proper-

ties were updated. The SVM model was trained, and the

property ranking was sent to ranking set r. If properties

existed that yielded higher information gain than the

property with the lowest weight in s, then the property

with the highest information gain in r would be sent to

the existing set s. Then, the SVM model was trained

again. If the cross validation error at this time was better

than that obtained during the previous run, then the

property with the highest information gain in r would be

sent back to s. The existing set and the ranking set

would be updated and used to train the SVM model

again. If the cross validation error at this time was not

better than that obtained during the previous run, then

the property would be sent back to r. The SVM model

was trained until no property was present in existing set

s. Finally, the property set with the best cross validation

error was selected for use. The process is illustrated in

Figure 3.

During feature selection, the 5-fold cross validation

recognition rate (LooErrorRate) and independent test

error recognition rate (TestErrorRate) were used to

determine the best feature set. When B-SVM-RFE was

used to train the model with 5-fold cross validation, the

parameter of the penalty coefficient C and the kernel

function parameter g were set to the default values.

When tested using an independent test set, the grid

search method was used to determine the best parame-

ters. The process used to determine the best feature set

is shown in Figure 4.

In this paper, 2,000 real samples and 2,000 pseudo

samples were used to train the SVM model; 1,000 real

samples and 1,000 pseudo samples were used in the test

set, and the principle of the fence was used to verify that

no sample appeared repeatedly both in the training and

testing sets. The feature set F1, F2, …, F152 represents the

number of corresponding properties of the sample space

selected using B-SVM-RFE. The best classification rate

was obtained using this feature subset. The classification

rate was tested using 5-fold cross validation, and the

LooErrorRate and TestErrorRate for SVM-RFE and B-

SVM-RFE obtained in this experiment are provided in

Table 3. The lowest 5-fold cross validation recognition

rate (LooErrorRate) and the independent test error

recognition rate (TestErrorRate) were 2.42% and 7.04%,

respectively. In this paper, this subset of 47 features was

selected to train miPlantPreMat.
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Normal plant pre-miRNAs are 60–150 nt in length.

Only one miRNA is located in the pre-miRNA; however,

more than one pseudo miRNA can be obtained from the

pre-miRNA. If the same positive and negative data rates

were to be applied to miPlantMat and miPlantPre, the

obtained information might reflect pseudo samples from

miPlanMat that would be of little use to the classifica-

tion model and possibly increase the false positive rate.

In this paper, the positive and negative data rates were

set at 1:5, indicating that if one positive data sample

were selected, then five negative data samples would also

be selected. This data rate is closer to that of the original

data samples and reflects the distribution features of the

data samples. However, this result illustrates the class

imbalance problem. The data classification is biased to-

ward the negative class, potentially resulting in a high

false negative rate. To solve these problems, the SMOTE

[32] method was used for data processing.

Two potential methods can be used to solve the classi-

fication problem for unbalanced data. The first method

is to balance the dataset, and the second is to improve

the performance of the machine learning algorithm on

specific issues. In 2002, Chawla proposed a method that

improved the fitting sample problem caused by trad-

itional classification. The main idea behind SMOTE was

to increase rare class samples by joining the closer rare

class samples to the ”simulation“ samples and then in-

creasing the number of rare class samples to approach a

dense sample number. The specific experimental steps

are as follows:

i. determine the sampling ratio N and the number of

rare class samples x; identify k nearest neighbors for

each rare class sample; identify N points from the

original x class samples and their x*k similar samples;

ii. identify each k nearest neighbors from the selected N

rare class samples and the original rare class samples,

and then identify k neighbor samples of the (x +N)*k

class samples from the original sample; new rare class

samples randomly generate N points as the rare

generated class sample;

iii. new rare class samples are added to the original

training set, thus forming a new training data set,

xnew ¼ xþ rand � y i½ �−xð Þ

Where i = 1, 2, …, N; rand is a random number

between 0 and 1; xnew represents the new sample; x

represents the original sample; and y[i] represents the

i-th neighbor of x.

Evaluation method

The classification model was trained using the informative

feature subset and the training samples using 5-fold cross-

validation and default values for g and C. Datasets were

optimized for g and C using the grid selection approach

recommended by LIBSVM. The accuracy of the prediction

result was evaluated based on the number of true positives

(TP), false positives (FP), true negatives (TN) and false

negatives (FN). The sensitivity (SE), specificity (SP),

geometric mean (Gm) and total prediction accuracy

(Acc) used to assess the prediction system were calculated

according to the following definitions:

SE ¼ TP

TP þ FN

Table 2 Information gain of each attribute and SVM-RFE ranking

Feature IG SVM-RFE rank Feature IG SVM-RFE rank

dP 0.78628 1 U…_S 0.09652 58

MFEI5 0.77982 2 C…_S_end 0.0933 103

zP 0.75613 3 G(((_S 0.07866 30

MFEI7 0.68656 54 A…_S_end 0.07662 74

MFEI8 0.66704 48 C(((_S 0.072 13

… … … … … …

%GG 0.12375 38 G(((_S 0.07866 30

MFEI6 0.1227 25 A…_S_end 0.07662 74

dH/L 0.11855 77 C(((_S 0.072 13

%CU 0.11651 8 %(G-C)/n_stems 0.07079 44

MFEI4 0.11603 15 G…_S_begin 0.06746 93

G…_S_end 0.11563 34 %GC 0.06041 28

C.(._S 0.11034 139 U.(._S 0.05969 101

dF 0.10372 127 A…_S_begin 0.05779 53
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SP ¼ TN

FP þ TN

Acc ¼ TN þ TP

TP þ FP þ FN þ TN

Gm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE � SP
p

Where SE is the proportion of positive samples (real

pre-miRNAs) that are correctly classified as pre-miRNAs,

and SP is the proportion of negative samples (pseudo pre-

miRNAs) that are correctly classified as pre-miRNAs.

Results
The results of feature subset selection

To obtain the highest classification performance, three

subset selection methods were used in this paper: Prin-

cipal Components Analysis (PCA), Correlation-based

Feature Subset Selection (CFS) [33] and B-SVM-RFE.

Additionally, three machine-learning methods were

used in this paper: naiveBayes (NBC) [34], Random-

Forest (RF) [35] and SVM. Finally, the subset collected

using B-SVM-RFE and trained using SVM was chosen

because it performed better than the other selection

Figure 3 Flow chart of B-SVM-RFE feature selection. Feature subset was selected using B-SVM-RFE. This method was combined by SVM-RFE

and information gain. The final feature subset for miPlantPreMat was obtained.
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methods. Subsets containing 47 features used for

miPlantPre and 63 features used for miPlantMat were

acquired. The selected features were ranked as shown

in Additional files 2 and 3. Among the selected fea-

tures, dS, dH and Tm are related to mfold. A number

of studies have verified that the stem-loop structures

of plant pre-miRNAs are thermodynamically stable

[36]. A(((_S, G…_S and C…_S are triple-related. Studies

have shown that local adjacent structures can be applied

to distinguish real pre-miRNAs from pseudo miRNAs

[37]. The features %AA, %UC and %G + C are related

to sequence. Because pre-miRNAs are composed of

nucleotide sequences that have unique characteristics,

the sequence composition of pre-miRNAs is useful for

classification [12].

Table 4 shows that the SVM using subset selection

method B-SVM-RFE has the best performance.

Parameter subset selection compared with other methods

To test the efficiency of our model, we compared

miPlantPre with five existing models (Triplet-SVM, MiPred,

miPred, miRabela and microPred). Table 5 shows that

miPlantPre exhibited better performance than the existing

models in terms of sensitivity (SE), specificity (SP), geo-

metric mean (Gm) and total prediction accuracy (Acc)

while using fewer features.

Tests on different plant species

Pre-miRNAs of Arabidopsis thaliana (ath), Glycine max

(gma), Oryza sativa (osa), Physcomitrella patens (ppt),

Figure 4 Determination of the best feature subset. Two indicators named LooErrorRate and TestErrorRate were used for the best subset
evaluation. The LooErrorRate was calculated with 5-fold cross validation model. The TestErrorRate was calculated by independent training set and
testing set with optimized parameters. The parameters of penalty coefficient c and the kernel function parameter g were obtained by grid

search method.

Table 3 LooErrorRate and TestErrorRate of SVM-RFE and B-SVM-RFE

Feature number SVM-RFE B-SVM-RFE

LooErrorRate TestErrorRate LooErrorRate TestErrorRate

1 21.13 26.53 21.13 26.53

2 11.40 21.01 11.40 21.01

3 9.91 20.94 9.91 20.94

… … … … …

46 3.04 7.15 2.72 7.15

47 2.84 7.34 2.42 7.04

48 2.72 7.14 2.72 7.14

… … … … …

150 3.00 8.17 3.00 8.17

151 3.19 8.29 3.19 8.29

152 3.30 7.30 3.30 7.30
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Medicago truncatula (mtr), Sorghum bicolor (sbi), Ara-

bidopsis lyrata (aly), Zea mays (zma) and Solanum lyco-

persicum (sly) were used to compare the efficiency of

miPlantPre with three widely used methods. To show

that the false positive rate was sufficiently low, a nega-

tive dataset was used to test the efficiency of miPlantPre

(Table 6).

miPlantPre performed better than Triplet-SVM and

microPred for most species. The sub-sequences in pre-

miRNAs that begin from the miRNAs and end at the miR-

NAs or that form a stem-loop structure were selected.

These nine species were also used to test the efficiency of

miPlantMat regarding miRNA classification. The results

are shown in Table 7. These pre-miRNAs and miRNAs

were published in miRBase release 20.0.

The accuracies found using these species were all

greater than 87%, demonstrating the utility of miPlant-

Mat for classification in plants. Moreover, the false

positive rates (FPRs) obtained were all lower than

13.36%.

Searching miRNAs in Solanum lycopersicum

Studies have shown that miRNAs are relatively con-

served during the evolutionary process. Therefore, some

miRNAs exhibit conservative evolutionary relationships

among species [38]. There are two basic principles be-

hind our method. One is that homologous fragments

can be identified according to sequence or structural

similarity. The second is that new miRNAs can be

discovered using known miRNAs [39]. To date, 77 Sola-

num lycopersicum mature miRNAs have been reported in

miRBase (Release 21, 2014.6.26). Through studying these

77 miRNAs, which are distributed among 31 miRNA

families.

MiRNAs of the same family may be found in a large

number of species. In this study, known plant miRNAs

were used to identify potential miRNAs in Solanum lyco-

persicum. First, genome-scale fragments might contain

similarities to known miRNAs. If less than 3 mismatches

were found for two related sequences, we considered the

sequences similar. The KMP [40] algorithm was used to

Table 4 Classification results based on different feature subsets using three methods

Model ML method Feature subset
selection method

Feature
number

Classification results (%)

SE SP Acc Gm

miPlantPre NBC PCA 76 92.2 92.6 92.4 92.4

CFS 20 93.9 97.8 95.8 95.8

B-SVM-RFE 47 93.8 98.6 96.2 96.2

All features 152 92.9 98.0 95.4 95.4

RF PCA 76 93.5 95.3 94.4 94.4

CFS 20 95.0 97.6 96.3 96.3

B-SVM-RFE 47 95.3 97.7 96.5 96.5

All features 152 95.3 97.7 96.5 96.5

SVM PCA 76 94.9 99.2 97.0 97.0

CFS 20 94.3 99.1 96.7 96.7

B-SVM-RFE 47 95.5 99.1 97.2 97.2

All features 152 93.9 98.5 96.2 96.2

miPlantMat NBC PCA 71 88.6 82.3 85.5 85.4

CFS 40 93.2 74.8 83.6 83.5

B-SVM-RFE 63 89.8 88.4 89.1 89.1

All features 152 91.7 79.3 85.5 85.3

RF PCA 71 93.2 73.2 83.2 82.6

CFS 40 89.2 89.1 89.2 89.2

B-SVM-RFE 63 89.7 88.6 89.2 89.2

All features 152 86.6 84.4 85.5 85.5

SVM PCA 71 88.6 84.3 86.4 86.4

CFS 40 90.6 87.5 89.1 89.1

B-SVM-RFE 63 92.9 88.7 90.8 90.8

All features 152 87.1 81.6 84.4 84.4
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compare known miRNAs on a genome-wide scale. A

series of potential miRNAs was obtained for comparison.

Structural information regarding putative miRNAs was

obtained using RNAfold. Potential pre-miRNAs were

obtained by identifying stem-loop-containing fragments.

Several potential miRNAs with hairpins were obtained

by limiting the minimum number of base pairings in the

hairpin structure to 19, %G + C > 0.242 and <0.825,

MFEI >0.522 and <1.39, not allowing multiple loops,

limiting continuous unpaired bases to 3, allowing no

more 7 unpaired bases on a mature miRNA and not

allowing any uncertain bases (“N”) in the pre-miRNA.

Finally, 522 miRNA were identified as real miRNAs by

testing their pre-miRNAs using our classification model.

In this study, we denoted the length of the sequence

as l, the number of sequences as n, the length of the

miRNA sequence as k, and the number of the miRNA

sequences as m. Then, the average time complexity is O

(n *m * l * k).

This time complexity was unacceptable. In this study,

an algorithm was developed based on to the SEED algo-

rithm [41] and the KMP algorithm. The known plant

miRNA sequence was divided into four nearly equal se-

quence lengths. We compared these four sequences with

the complete genome sequence of Solanum lycopersicum

to identify similar fragments. When a matching pattern

occurred, we completed the miRNA pairing with the cor-

responding positioning of the sequence. Sequences with

less than 3 mismatches were saved. The average time

complexity is O(4 * (k/4 + l) * k * n *m/4k/4).

Using the method described above, several potential

miRNAs were obtained. Structural information regard-

ing the miRNAs was obtained using RNAfold. Potential

pre-miRNAs were obtained by identifying stem-loop-

containing fragments, and potential pre-miRNAs with

hairpins were obtained using the following criteria: sta-

bility above −4.42, %G + C content between 30% and

70%, less than 6 bases of mature miRNA that are not

complementary with the other arm, no gaps in the

complementary miRNA strand, no uncertain base

(“N”) in the pre-miRNA, and less than 3 consecutive

non-complementary bases.

As an important economic crop, Solanum lycopersicum

is not only nutritious but also has various physiological

Table 5 Comparison of miPlantPre against other methods

Methods Training dataset Testing dataset Features
selected

Classification results (%)

pos neg pos neg SE SP Acc Gm

Triplet-SVM 163 168 30 1000 32 93.30 88.10 90.66 90.66

MiPred 163 168 263 265 34 89.35 93.21 91.26 91.26

miPred 200 400 123 146 34 84.55 97.97 91.01 91.01

miRabela Not given clearly in the article 71.00 97.00 82.99 82.99

microPred SMOTE + outer-5-fold-cv 21 90.02 97.28 93.58 93.58

plantMiRNAPred outer-5-fold-cv 68 91.93 97.84 94.84 94.84

miPlantPre outer-5-fold-cv 47 95.50 98.82 97.16 97.16

Table 6 The classification accuracy of four methods for the pre-miRNA of several plants species and for the negative

dataset

Plant species &
negative dataset

Methods

Triplet-SVM MiPred plantMiRNAPred miPlantPreMat

aly 94.29 96.19 96.19 99.05

ath 91.75 90.72 92.78 96.91

gma 91.18 92.65 93.93 95.89

mtr 85.90 88.46 89.74 90.60

osa 92.31 95.10 95.10 95.10

ppt 88.44 91.16 97.96 98.64

sbi 93.38 97.79 96.99 98.53

sly 97.14 100.00 100.00 100.00

zma 89.74 97.44 97.44 98.29

neg 94.80 97.80 98.20 98.60
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functions that are relevant to the exploitation and devel-

opment of plant resources. Currently, only 77 Solanum

lycopersicum miRNAs are reported in miRbase, far less

than the actual number of Solanum lycopersicum miR-

NAs. In this study, we found 522 Solanum lycopersicum

miRNAs in the complete genome. Their sequence and

ID in other plants are shown in Additional file 4.

Figure 5 shows the number of predicted members

which is more than 4 and the corresponding reported

number in Solanum lycopersicum. (i) some of the predicted

miRNAs have been reported as Solanum lycopersicummiR-

NAs in miRBase release 21.0; (ii) the more the members of

miRMA family predicted in other plants, the more the

members verified of this family in Solanum lycopersicum, it

is concluded that their trends are similar with respect to

the number of miRNA family; (iii) the number of miRNAs

verified in Solanum lycopersicum is still less than the

predicted number. Therefore, new miRNAs remain to

be verified in the future.

Discussion
In this study, a new classifier, miPlantPreMat, was de-

veloped for predicting plant pre-miRNAs and miRNAs.

MiPlantPreMat was developed by analyzing existing

miRNA prediction methods, combining the character-

istics of plant pre-miRNAs, extracting features, select-

ing features and training samples to achieve efficient

and effective classification. Importantly, 152 features were

extracted to distinguish the hairpins of real/pseudo

pre-miRNAs based on the characteristics of plant pre-

miRNAs and miRNAs. After selecting the best subset

for classification, 47 informative features were selected

for use with miPlantPre, and 63 informative features

were selected for use with miPlantMat. The accuracy,

sensitivity and specificity of miPlantPreMat were all

greater than 95% in terms of pre-miRNA classification

and greater than 85% in terms of miRNA classification.

Additionally, 522 potential miRNAs with stem-loop

structures were found in the Solanum lycopersicum

genome. The results of our study might prove useful

for subsequent biological experiments.

Conclusions
A comparison method was developed based on miRNA

homology. Some miRNAs with low or specific expres-

sion patterns might not be found using this method. In

the future, we intend to develop better classification

models that can identify miRNAs with low and specific

expression levels.

Figure 5 Number of predicted members and reported number in Solanum lycopersicumis. The number of predicted members which is

more than 4 and the corresponding reported number in Solanum lycopersicum.

Table 7 The classification results obtained using

miPlantMat for various pre-miRNA datasets

Plant species Classification results (%)

Accuracy FPR

aly 89.46 9.46

ath 87.84 10.53

gma 89.50 13.36

mtr 87.67 12.22

osa 88.96 10.31

ppt 90.98 10.46

sbi 89.02 9.53

sly 89.87 8.36

zma 91.42 10.93
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