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Abstract

In this study, the influence of temperature and relative humidity on the plasticity controlled fail-

ure of polyamide 6 was investigated. Uniaxial tensile tests (constant strain rate) are performed

at several temperatures, strain rates and relative humidity; creep tests under constant load

are instead performed at different relative humidity and applied load. In order to describe and

predict the yield kinetics, the Ree-Eyring equation was used and modified in order to include

the effect of relative humidity. Thus, employing the concept of critical plastic strain, the yield

kinetics can be successfully translated to prediction of time-to-failure. A good agreement be-

tween predictions and experimental results is obtained, showing that the model is a suitable and

versatile tool to predict mechanical properties of a temperature and moisture sensitive material

as polyamide 6.
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1 Introduction

Polyamide 6 is an engineering polymer commonly known as ”Nylon 6”; it is one of the most used

engineering polymers, which can be found in the form of fibers, films and also injection molded

products. In the last decades it was also introduced in the field of load-bearing applications

such as mechanical parts, under-hood components and sport items which are often exposed

to demanding conditions combining high load, challenging temperature regimes and elevated

relative humidities. These applications require a high level of reliability, thus an investigation

of humidity and temperature influence on the mechanical properties is required. PA6 belongs

to the family of aliphatic polyamides. Its monomer has two polar groups; the amide and

carbonyl groups. These groups can form hydrogen bonds between chains, leading to high

modulus and yield strength [1]. However, the polar character also causes a crucial issue of

polyamide 6: hygroscopicity [2]. Indeed, if exposed to a humid environment, PA6 absorbs up

to a saturation level which typically depends on temperature and relative humidity [3]. If this

occurs, part of the hydrogen bonds are broken and new H bonds are formed with the absorbed

water molecules [4]. This phenomenon leads to plasticization and results in a depression of the

glass transition temperature [5] which also results in a considerable decrease of the mechanical

properties [6, 7, 8, 9]. In case of exposure to humidity, Tg can drop to values lower than room

temperature, in which case structural changes at room temperature may occur [10]. Another

characteristic of PA6 is polymorphism; it can crystallize in (mainly) two forms, i) the most stable

α-phase (monoclinic cell), which is obtained in low under-cooling or isothermal crystallization

temperature higher than 170°C, and ii) the less stable γ-mesophase (pseudo-hexagonal cell)

obtained at high under-cooling or isothermal crystallization at temperature between Tg and

170°C. In case of very fast cooling (>100°C/s) also a completely amorphous sample can be

obtained [11].

Although lifetime prediction of polymers is a widely investigated topic, studies regarding PA6
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neat are hardly found in literature [12, 13]. In general it is known that three different failure

modes can be distinguished: a) plasticity controlled failure (high applied load), b) slow crack

growth (medium load) and, c) molecular degradation (low or no load). The latter is regarded to

be independent of applied stress, and is, at least in PA6, not regarded as a limiting factor. Crack

growth controlled failure is mainly studied by cyclic fatigue [14, 15, 16], however it is a failure

regime hardly achieved in the case of polyamide 6, due to its excellent fatigue properties. Finally,

the plasticity controlled regime, where failure occurs by accumulation of plastic deformation,

can be studied by uniaxial tensile test at constant applied strain rate and constant applied load

(creep).

In this study, a model able to predict the plasticity controlled failure of polyamide 6 at different

temperature and relative humidity is presented.

2 Background

Under constant load, solid polymers tend to display time dependent deformation (creep) and,

ultimately failure occurs. A creep curve can be divided in three regimes: primary creep where

the strain rate decreases in time, secondary creep in which strain rate remains constant, and

tertiary creep where strain rate increases in time due to intrinsic or geometric softening and

eventually failure occurs. The time-to-failure depends on the applied load and temperature,

where an increase of these two leads to a decrease of time-to-failure, as shown in literature by

[17, 18]. Important in lifetime prediction is an estimate of the plastic flow during secondary

creep. Bauwens-Crowet et al. [19], has shown that the steady state reached at yield point in

constant strain rate experiment is the same of the one reached in the secondary creep. Thus,

stress- and temperature-dependence measured in constant strain rate experiments can be used

to describe the kinetics of plastic flow. The deformation kinetics are described by the Eyring’s
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activated flow theory [20]:

ε̇pl(σ ,T ) = ε̇0 exp

(
−

∆U

RT

)
sinh

(
σV ∗

kT

)
(1)

where ε̇0 is a rate factor, σ is the yield stress, V ∗ is the activation volume, ∆U is the

activation energy, R is the universal gas constant, k is the Boltzmann’s constant and T the

absolute temperature.

Plotting the plastic flow rate for each applied load as a function of the corresponding time-

to-failure, a linear relation with slope -1 (in a double logarithmic plot) is found [21], this implies

that the product of ε̇pl and t f is constant:

ε̇pl(σ)·t f (σ) =C (2)

The constant C, mentioned in equation 2, can be defined as critical strain, εcr, which equals

the accumulated plastic strain for a material subjected to the plastic flow rate, ε̇pl. By this

phenomenological approach and by the stress- temperature-dependence of the plastic flow rate,

the prediction of time-to-failure under a constant load is achieved:

t f (σ ,T ) =
εcr

ε̇pl(σ ,T )
(3)

In order to determine the stress- and temperature-dependence of plastic flow rate, constant

strain rate experiments are the most suitable because of their low time consumption and planning

possibilities. In a stress strain response curve obtained by tensile test the first part (at low strain)

is the elastic region, in which chain mobility is negligible and the elastic modulus depends on

intermolecular interactions among chains; when strain achieves a certain level, changes in chain

conformation take place and plastic deformation occurs; increasing the strain even further,

mobility increases with stress until a point in which it matches the applied strain rate, this

point is called yield stress. In order to strain a solid polymer at higher strain rate, higher stress

is required to induce higher mobility [22].

5



3 Experimental

3.1 Materials

The material employed in this work was a polyamide 6 (Akulon K122) kindly provided by DSM

(The Netherlands). This PA6 has a viscosity average molar mass (Mv) of about 24.9 kg/mol.

3.2 Sample preparation

Sheets with a thickness of 0.5mm were prepared by compression molding. After a careful

drying procedure (1 night at 110°C under vacuum) the pellets were placed in a ”sandwich”

consisting of two thick steel plates (about 3mm), two thin aluminum foils (about 0.2mm) and

a 250×250×0.5mm steel mold. The material was melted at 265°C for 5 minutes, while a force

of about 10kN was applied. Then, the ”sandwich” was rapidly moved to a cold press set at

80°C where the material was solidified in quiescent condition for 3 minutes. According to the

ISO527 type 1BA, dog-bone samples were prepared using a cutting die (main measures: width

5mm, length 22mm).

3.3 Sample conditioning

In order to investigate the influence of hydration, samples were stored at four different relative

humidities, RH0% (dry), RH35%, RH50% and RH75%. In the case of dry conditioning, samples

were stored in a desiccators under vacuum at room temperature; for RH50% an environmental

chamber was employed. While in the case of RH35% and RH75% two desiccators, containing

supersaturated salt solutions able to maintain a constant relative humidity in a close environ-

ment, were used. The salts were sodium chloride and magnesium chloride hexahydrate for 75

and 35% respectively.
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3.4 Mechanical tests

Uniaxial tensile tests and creep tests under constant load were performed using a Zwick Z010

Unviversal Testing Machine equipped with a 1kN load-cell. The testing area is surrounded by

an environmental chamber which allows to test at controlled temperature and humidity. The

tensile tests were performed, at least in duplicates, in a range of strain rates from 10
−5 s−1 up

to 3·10
−2 s−1, temperatures between -40°C and 120°C (in dry condition) and relative humidity

of 35, 50 and 75% (at room temperature). Before starting the experiments, a pre-load of 0.1

MPa was applied at a speed of 1mm/min. Creep measurements were performed at relative

humidity of 35, 50, and 75%. The stress was applied within 10 seconds and subsequently

kept constant until failure. The time-to-failure was estimated as the time at which the strain

reaches the value of 25%, which was defined as stain at failure. The plastic flow rate (ε̇pl) was

estimated as the minimum in the Sherby-Dorn plot [23].

3.5 X-ray diffraction

Wide angle x-ray diffraction was performed at the European Synchrotron Radiation Facility in

Grenoble (FR) at the Dutch-Belgian beamline (DUBBLE). After normalization, the crystallinity

was estimated by subtracting an amorphous halo (experimentally obtained) to the measured

patterns. The degree of crystallinity is finally calculated by:

χc =
A+C

C
(4)

where C is the total scattered intensity and A is the scattering from the amorphous halo.

In order to estimate the effect of different conditioning on the crystallographic structures, a

deconvolution analysis was performed. This was obtained by fitting Lorentzian functions, in

proximity of each characteristic reflection. Eventually, all the Lorentzian functions and the

amorphous halo were summed to verify the fidelity of the fitting procedure (green markers in
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figure 1). Thus, the relative quantities χc,α and χc,γ were calculated by the following:

χc,α = (
Al −Aγ

Am

) and χc,γ = (
Al −Aα

Am

) (5)

where Aα and Aγ are the total area of the Lorentzian functions for the α and γ peaks, Am

is the total area of the measured pattern, and Al is the sum off all the Lorentzian functions (α

and γ). An example is given in figure 1.

5 10 15 20 25 30 35

2θ[°]

c
o
u
n
ts

γ
1
(002)

γ
2

α
2
(002/(202))α

1
(002/(202))

γ
3
(020)

 

 

measurement

amorphous halo

α−phase

γ−form

sum

Figure 1: Example of WAXD pattern deconvolution analysis. The green line is the result of the
deconvolution procedure, the orange line is the measured amorphous halo, blue and red curves
are the Lorentzian functions.

3.6 Dynamical mechanical thermal analysis

In order to measure the glass transition temperature before and after conditioning, dynamical

mechanical thermal analysis (DMTA) was performed by a TA instruments Q800 DMA. Samples

were rectangular bars of about 5mm width, 0.5mm thickness. The experiments were carried

out at a single frequency of 1Hz and along a temperature ramp from -40°C to 100°C with a

heating rate of 3°C/min. The glass transition temperature was defined as the maximum in log

tan(δ ).
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4 Results and discussion

The first step of this investigation was a crystallographic characterization performed by wide

angle x-ray diffraction experiments. These were carried out on the dry samples at room tem-

perature; in figure 2a a 2D image is shown, as expected, the pattern is isotropic. In figure 2b,

the result of a radial integration is given. The pattern shows the characteristics of γ-form, i.e.

the main peak at about 2θ 21°, and the secondary peak at about 2θ 10°. By deconvolution

analysis, the crystallinity was estimated to be around 30%.
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Figure 2: a) Two-dimensional pattern of wide angle x-ray; b) radial integration of WAXD with
deconvolution analysis.

4.1 Yield kinetics - dry state

The mechanical characterization started with tensile tests at several temperatures in dry con-

dition at strain rates ranging from 10
−4 s−1 to 3·10

−2. In figure 3a and 3b, the stress-strain

response of dry samples at several temperatures and strain rates is shown; as expected, an

increase of strain rate results in an increase of yield stress. Figure 4a shows the yield stress as a

function of strain rate for different testing temperatures, in the case of samples at the dry state.
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It is possible to notice that the strain rate-dependence of yield stress shows two different slopes,

suggesting that the deformation occurs through two different molecular deformation, as already

proposed by several authors [24, 25, 26, 21]. These two processes are generally attributed to

an intra-lamellar deformation for processes I (low slope) and inter-lamellar for the processes II

(high slope) [27, 28, 22]. It is stated that the stress contributions are additive, therefore the

equation 1 is re-written and a part is added:

σy(ε̇,T ) =
kT

V ∗

I

sinh−1

(
ε̇

ε̇0,I

exp

(
∆UI

RT

))
+

kT

V ∗

II

sinh−1

(
ε̇

ε̇0,II

exp

(
∆UII

RT

))
(6)

where ε̇0,I, ∆UI and V ∗

I are rate factor, activation energy and activation volume related to

process I and ε̇0,II, ∆UII and V ∗

II are related to the process II. In order to describe the results

shown in figure 4a, the set of parameters shown in table 1 was employed.

Table 1: Eyring parameters.

V ∗ [m3] ∆U [Jmol1] ε̇0 [s−1]
I 9·e−27 1·e6 1·e123

II 1.9·e−27 3·e5 2·e45
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Figure 3: Stress-stain response of uniaxial tensile tests at a) 23, 65°C and b) 40, 55 and 80°C.
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Finally, in figure 4b the yield kinetics of polyamide 6 at dry state is shown, in this case the

lines are results of equation 6.
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Figure 4: a) Yield kinetics of samples tested at different temperature at the dry state, lines are
guides to the eye. b) Yield kinetics of polyamide 6 at dry state, the lines are results of equation
6 with parameter shown in table 1.

To further explore the kinetics, the stress-strain response was also investigated in a wide

range of temperatures, from -40°C to 120°C, as shown in figure 5a. In figure 5b the yield

stress is plotted as a function of temperature, the line is the result of equation 6 in the case

of a fixed strain rate (10
−2 s−1) and a vector of temperatures. As shown, the model describe

the results well in the range of temperature between 23°C and 100°C; as far as the description

at low temperature is concerned, the deviation from the prediction is due to a geometrical

effect. This is due to stress localization which takes place while stretching the sample beyond

yield. It is visible also in figure 5a, in which it is possible to notice that the strain at yield

sensibly shifts towards lower strain when the temperature decrease below 23°C. In appendix A

examples of compression tests are given; in this case, the localization does not occur, thus the

prediction results in good agreement with the results. At very high temperature (T>100°C),

the temperature-dependence of yield stress flattens; this is due to an evolution of the crys-
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tallographic structure during the test. In fact, at high temperature, well above Tg, the chain

mobility is higher and lamellar thickening and/or cold crystallization occur (this phenomenon

will be called ”annealing”); this lead to an increase of yield stress in time. An example of this

effect is given in figure 6a, where the samples are tested at 110°C in a range of strain rates from

3·10
−4 s−1 up to 3·10

−2 s−1. Figure 6a shows that the yield stress increases for decreasing

strain rate, which is possible only in case of structural evolution during the test. Annealing is a

time- and temperature-dependent phenomenon, its effect increases with increasing temperature

and/or exposure time; thus, during an experiment at low strain rate, where the exposure time is

high, more annealing will occur and yield stress will increase. Moreover, to understand whether

the stress plays a role in annealing kinetics, another kind of experiment was performed; tensile

tests were performed at constant strain rate after conditioning the samples at 110°C for several

different exposure time. In figure 6b yield stress is plotted as a function of exposure time; the

increase of yield due to annealing starts only after about 10
4 seconds, while in the case of

figure 6a, an increase of yield stress is visible already in the case of strain rate 10
−2 s−1 which

is equivalent to about 350 seconds (300 s without stress + 50 s with stress).
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Figure 5: a) Examples of temperature-dependence of stress-strain response at the dry state and
strain rate of 10

−2 s−1; b) yield stress as a function of testing temperature.

12



10
−4

10
−3

10
−2

10
−1

10

15

20

25

30

35

strain rate [s
−1

]

y
ie

ld
 s

tr
e

s
s
 [

M
P

a
]

 

 

110°C

(a)

10
2

10
3

10
4

10
5

15

20

25

30

35

exposure time [s]

y
ie

ld
 s

tr
e

s
s
 [

M
P

a
]

(b)

Figure 6: a) Yield kinetics for dry samples testes at 110°C and different strain rates. This plot
shows the result of the structure evolution which takes place during testing. b) Yield stress as
a function of exposure time at 110°C prior to test.

4.2 Influence of humidity

As explained in section 1, the conditioning environment (i.e. temperature and humidity) has

a crucial influence on the glass transition of PA6. Thus, the samples were exposed to four

different moist environment (RH35%, RH50%, RH75% and under water) for a certain time up

to saturation. The absorbed water fraction was calculated by the following:

H2O% = (
Wi −W0

W0

)×100 (7)

where W0 is the weight of the sample before conditioning and Wi is the weight at the time

ti. In figure 7a, an example of water absorption kinetics is shown. As shown, after a certain

time, the absorbed water fraction reaches a plateau, which is considered as saturation level.

an investigation of the moisture-induced glass transition depression was performed by DMTA.

In figure 8a the phase angle (tan(δ )) of samples conditioned at different humidity is plotted as

function of temperature. The maximum defines the glass transition temperature; as expected,

the higher the relative humidity the lower the glass Tg. In figure 8b, the glass transition tem-
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Figure 7: (a) Example of water absorption kinetics, the absorbed water fraction is plotted as a
function of time in the case of samples soaked in water. b) Saturation level as a function of
relative humidity, conditioning at 23°C.

peratures obtained by DMTA, are plotted as a function of up-taken water fraction. Tg drops

from about 60 °C for the dry sample to about -20°C for sample soaked in water. In table 2 the

glass transition temperature are reported.
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Figure 8: (a) DMTA results, log tan(δ ) as a function of temperature for samples conditioned at
different humidity; markers are the Tg. (b) Glass transition temperature (obtained by DMTA)
as function of the water fraction absorbed by the sample.
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Table 2: Glass transition temperature after conditioning.

[°C] dry RH35% RH50% RH75% water
Tg 58 36 19 4 -20

Because of the Tg depression due to hydration, crystallization can occur at room temperature

during conditioning. In figure 9a the wide WAXD patterns are given for the four different relative

humidity; figure 9b shows the crystalline fraction evolution as a function of relative humidity.

Figure 9b shows the effect of hydration on crystallographic structures; as already mentioned,

at dry condition the sample has a crystallinity of about 30% of solely γ-mesophase, upon

hydration part of the gamma phase transform to α-phase till a value of about 8% α-phase and

23% γ-mesophase at 75%RH.
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Figure 9: a) Wide angle x-ray diffraction patterns of samples conditioned at different relative
humidity; b) crystalline fractions as a function of relative humidity.

Table 3: Crystallinity after conditioning.

[%] dry RH35% RH50% RH75%
γ 30 25 24 23
α 0 5 7 9
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Next, the samples conditioned at different RH% are tested, an example is given in figure

10a; as mentioned, hydration lower the stress-strain response. Experiments were performed at

several strain rates and relative humidity, in figure 10b the deformation kinetics for samples

conditioned at different RH% is shown. In this case, the lines are the results of the Ree-

Eyring equation but after a modification which includes the effect of relative humidity. The

modification is based on one simple hypothesis: the enhancement of chain mobility due to an

increase of temperature is comparable to the enhancement obtained by hydration. In order to

quantify the effect of humidity, the drop of glass transition temperature is taken as reference;

thus, the temperature in the equation 6 is replaced with an ”apparent temperature” (T̃):

T̃ = T + (Tg,dry −Tg,wet) (8)

where T is the actual testing temperature, Tg,dry is the glass transition temperature at the dry

state and Tg,wet is the Tg after conditioning. A similar modification can be found in Söntjens at

al [29], where the temperature is replaced by an equation which includes the change in Tg due

different molecular weights in poly-D,L-lactide.

The equation 6 is re-written:

σy(ε̇, T̃ ) =
kT̃

V ∗

I

sinh−1

(
ε̇

ε̇0,I

exp

(
∆UI

RT̃

))
+

kT̃

V ∗

II

sinh−1

(
ε̇

ε̇0,II

exp

(
∆UII

RT̃

))
(9)

As shown in figure 10b, this modification results in a good prediction of yield stress, the

same parameters reported in table 1 were employed.

4.3 Long-term failure

After a wide investigation of deformation kinetics with experiments at constant strain rate,

creep tests (constant load) are employed to study the influence of hydration on the time-to-

failure. In figure 11a, two examples of creep test are shown; the annotations help to understand

the definition of plastic flow rate (ε̇pl) and critical strain (εcr). Figure 11b reports the ε̇pl as a
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Figure 10: a) Stress-strain response and b) yield kinetics of samples conditioned at different
RH%.

function of time-to-failure for creep tests performed at several applied load and three different

relative humidities. As explained in section 2, the bi-logarithmic plot of ε̇pl versus t f shows a

slope of -1.
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Figure 11: a) Example of creep test at constant applied load, it shows the definition of ε̇pl, εcr

and t f . b) Plastic flow rate as a function of time to failure for samples conditioned at different
relative humidity.
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Finally, in figure 12a and 12b the applied stress is plot as a function of plastic flow rate (a)

and time-to-failure (b), where the lines are results of the equations 9 and 3 respectively. Both

the predictions (lines) describe well the experimental results (markers).
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Figure 12: Applied stress as a function of a) plastic flow rate and b) time-to-failure for samples
conditioned at different relative humidity.

4.4 Deformation mechanisms

As already mentioned, experimental evidences suggest that the deformation takes place through

(at least) two different mechanisms which act in parallel. These two are strain rate- temperature-

activated processes and they are additive to each other, therefore by varying the temperature (or

relative humidity) and strain rate it is possible to observe deformation governed by processes

I or I+II. These two mechanism are usually associated to an intra-lamellar (process I) and

inter-lamellar deformation (process II). More in details, it is proposed that:

• Process I (intra-lamellar) is active below melting temperature (Tm), it is governed by

plastic deformation of lamella via crystallographic slip, which is facilitated by the move-

ment of screw dislocation present in the crystals. Thus, an increase of crystal mobility

18



due to temperature and/or an enhancement of mobility in the amorphous regions due to

hydration improves the movement of these imperfections, facilitating the deformation.

• Process II (inter-lamellar) it is related to the deformation of the inter-lamellar amorphous

region. The depression of glass transition and/or an increase of temperature lead to

higher mobility in the amorphous regions, which results in an easier deformation.

(a) (b)

Figure 13: a) Screw dislocation (schematic), b) mobilization of the inter-lamellar amorphous
region (schematic).
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5 Conclusions

In this study, the effect of temperature and relative humidity on the mechanical properties of

melt processed polyamide 6 was investigated. PA6 shows a strong dependency on tempera-

ture, in the investigated range (from -40°C to 120°C) yield stress varies from about 125 MPa

to 20 MPa at a strain rate of 10
−2 s−1. Hydration strongly lowers the glass transition tem-

perature, this affect substantially the mechanical properties. The pre-existing Eyring equation

was modified in order to include the effect of humidity (Tg depression), the temperature was

replaced by the ”apparent temperature”. After this modification, the Eyring equation is there-

fore suitable to predict the deformation kinetics of polyamide 6 at different temperatures and

relative humidity. Moreover, by the introduction of the critical strain, the predictions made for

the deformation kinetics (tensile test - constant plastic strain rate) can be translated also to

predictions of time-to-failure (creep test - constant load) for different relative humidity.
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5.1 Appendix A

In order to explain the partial mismatch between prediction and results of figure 5a, compression

tests were performed with strain rate 10
−2 s−1 (the same of tensile test) in a range of temper-

atures from -40°C to 120°C. The experiments were performed on cylindrical sample of about

3 mm height and 3 mm diameter; in order to decrease the friction between sample and the

compression tool, they the samples were wrapped in PTFE tape and before every experiment,

a layer of PTFE spray was sprayed on the testing surfaces.
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Figure 14: a) True stress versus true strain of.

Figure 14b proves that the partial mismatch between prediction and experimental results

shown in figure 5a is exclusively due to a geometric effect which unavoidable unless by changing

the testing technique.
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