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Prediction of postoperative
cardiopulmonary complications
after lung resection in a Chinese
population: A machine
learning-based study

Guanghua Huang, Lei Liu, Luyi Wang and Shanqing Li*

Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of
Medical Sciences & Peking Union Medical College, Beijing, China
Background: Approximately 20% of patients with lung cancer would

experience postoperative cardiopulmonary complications after anatomic

lung resection. Current prediction models for postoperative complications

were not suitable for Chinese patients. This study aimed to develop and

validate novel prediction models based on machine learning algorithms in a

Chinese population.

Methods: Patients with lung cancer receiving anatomic lung resection and no

neoadjuvant therapies from September 1, 2018 to August 31, 2019 were

enrolled. The dataset was split into two cohorts at a 7:3 ratio. The logistic

regression, random forest, and extreme gradient boosting were applied to

construct models in the derivation cohort with 5-fold cross validation. The

validation cohort accessed the model performance. The area under the curves

measured themodel discrimination, while the Spiegelhalter z test evaluated the

model calibration.

Results: A total of 1085 patients were included, and 760 were assigned to the

derivation cohort. 8.4% and 8.0% of patients experienced postoperative

cardiopulmonary complications in the two cohorts. All baseline

characteristics were balanced. The values of the area under the curve were

0.728, 0.721, and 0.767 for the logistic, random forest and extreme gradient

boosting models, respectively. No significant differences existed among them.

They all showed good calibration (p > 0.05). The logistic model consisted of

male, arrhythmia, cerebrovascular disease, the percentage of predicted

postoperative forced expiratory volume in one second, and the ratio of

forced expiratory volume in one second to forced vital capacity. The last two

variables, the percentage of forced vital capacity and age ranked in the top five

important variables for novel machine learning models. A nomogram was

plotted for the logistic model.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2022.1003722/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1003722/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1003722/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1003722/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1003722/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.1003722&domain=pdf&date_stamp=2022-09-23
mailto:lishanqing@pumch.cn
https://doi.org/10.3389/fonc.2022.1003722
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.1003722
https://www.frontiersin.org/journals/oncology


Huang et al. 10.3389/fonc.2022.1003722

Frontiers in Oncology
Conclusion: Three models were developed and validated for predicting

postoperative cardiopulmonary complications among Chinese patients with

lung cancer. They all exerted good discrimination and calibration. The

percentage of predicted postoperative forced expiratory volume in one

second and the ratio of forced expiratory volume in one second to forced

vital capacity might be the most important variables. Further validation in

different scenarios is still warranted.
KEYWORDS

lung cancer, prediction model, machine learning, postoperative complication,
ppoFEV1%, FEV1/FVC
Introduction

Lung cancer is the most common cancer in China,

accounting for 23.9% of new cancer cases and 18.1% of cancer

deaths (1). Surgery is a mainstay in the treatment of lung cancer.

Postoperative cardiopulmonary complications may occur in

approximately 20% of patients (2, 3). They are associated with

higher risks of readmission, chronicity of these complications,

and cancer recurrence (2–5). Therefore, reducing the incidence

of complications is of vital importance for clinicians. Some

strategies have been developed, such as prehabilitation and

standardized enhanced recovery after surgery programs (6, 7).

Among them, preoperational screening has the highest cost-

effectiveness. An accurate prediction model is critical for

screening and can enhance shared preoperative decision-

making and medical care quality monitoring.

Several prediction models have been established over the

past few years, including the Brunelli, Eurolung, and

parsimonious Eurolung models (8–10). Some comorbidity risk

calculators, such as the age-adjusted Charlson Comorbidity

Index (ACCI), have also shown potential predictive efficacy

(11). Most of these models were built based on the European

population. However, these models did not perform satisfactory

discrimination among the Chinese population due to patient

characteristics discrepancies, with the values of the area under

the curve (AUC) less than 0.7 (12). Predictive studies based on

Chinese populations have mainly focused on a certain type of

complication, a subgroup of patients, or a particular predictor

(13–18). For example, Li et al. developed two prediction models

for pneumonia and arrhythmia, but they did not pay attention to

prolonged air leak, atelectasis, and other complications (16).

Currently, no generalized models have been established, which

could predict the overall incidence of complications and be

suitable for the broad Chinese population. Recent advances in

machine learning enhance the development of prediction

models. The random forest and extreme gradient boosting

(XGBoost) algorithms show promising performance and often
02
outperform the logistic model (19). However, only a few studies

applied machine learning to develop models for postoperative

cardiopulmonary complications (20).

Therefore, this study aimed to develop and validate

generalized prediction models for postoperative cardiopulmonary

complications based on a Chinese population. It would be the first

to address the needs of Chinese patients while applying machine

learning. This article was presented based on the transparent

reporting of a multivariable prediction model for individual

prognosis or diagnosis reporting checklist (21).
Materials and methods

Patient selection

This retrospective study collected information on patients

who underwent lung surgeries at our center from September 1,

2018 to August 31, 2019. Patients were eligible if they were > 18

years old, had undergone anatomic lung surgeries, and had no

prior neoadjuvant therapies. Patients who lacked lung function

metrics or were confirmed to have non-lung cancer by

pathological reports were excluded. The study protocol was

reviewed and approved by the Institutional Review Board of

Peking Union Medical College Hospital (No. K2038). The

requirement for informed consent was waived due to the

study’s retrospective nature.
Variables and outcomes

Information on sex, age, body mass index (BMI), history of

smoking and alcohol intake, comorbidities, forced expiratory

volume in one second (FEV1), forced vital capacity (FVC),

surgical procedure, and extended resection was collected. The

Charlson Comorbidity Indices (CCI) and FEV1/FVC were
frontiersin.org
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calculated. The percentage of predicted postoperative forced

expiratory volume in one second (ppoFEV1%) was calculated

as follows: (FEV1/predicted FEV1) x (1-a/b), where a was the

number of removed segments and b was the number of total

segments (22). The predicted FEV1 and FVC were estimated

using formulas initially developed from Chinese populations

rather than Caucasian populations (23).

Outcome variables included prolonged air leakage,

pneumonia, pulmonary edema, atelectasis, arrhythmia, acute

myocardial infarction, and other complications listed at length

in our previous study (12). Their definitions were based on the

instructions of the Society of Thoracic Surgeons and the

European Society of Thoracic Surgeons (24).
Model development and validation

Pearson or Spearman correlation analysis was first performed

using the ‘stats’ R package for age, ACCI, CCI, and lung function

metrics, according to their normality. Those pairs with correlation

coefficients > 0.7 were carefully screened based on clinical

experiences. The remaining variables were used to develop

predictive models through three algorithms: logistic regression,

random forest, and XGBoost. The entire dataset was randomly

split into a derivation cohort and a validation cohort at a 7:3 ratio

using the ‘caret’ R package. As for the logistic model performed

using the ‘stats’ R package, all variables were screened by

univariate analysis first, and then those with p values < 0.05

were further underwent backward stepwise selection. Akaike’s

information criterion was implemented during stepwise selection,

simplifying the model and maintaining its efficacy. A nomogram

was plotted using the ‘rms’ package based on the logistic model to

facilitatemodel interpretation. Random forest, performed with the

‘randomForest’ package, is a bagging-based machine learning

method that reduces the risk of overfitting, determines feature

importance, and has high flexibility. XGBoost, performed using

the ‘xgboost’ package, is a boosting-based method designed to

be highly efficient, flexible, and portable. Random searches and

5-fold cross-validation performed with the ‘mlr’ package

were employed for hyperparameter tuning of the machine

learning models. The random forest and XGBoost models were

interpreted based on the mean decreased Gini index and total

gain, respectively.

The models were constructed and internally validated in the

derivation cohort. Five-fold cross-validation is a well-accepted

method for internal validations. The validation cohort was used

solely to measure the model performance. Model discrimination

and calibration must be reported, whereas sensitivity, specificity,

and accuracy are optional. The AUC assessed discrimination. An

AUC > 0.7 was regarded as good discrimination, while AUC > 0.6

meant acceptable discrimination. DeLong’s test was used to

compare the differences between two AUCs. Calibration curves

were plotted after correcting for bias using 1000 bootstrap
Frontiers in Oncology 03
iterations. A perfect curve is closely fitted to the diagonal line.

In addition, the Spiegelhalter z test assessed the calibration

accuracy, and a non-significant p value indicated good

calibration (25, 26). The AUC and DeLong’s test were

performed with the ‘pROC’ package, while calibration curves

and z test were performed with the ‘rms’ package. Numeric

variables with normal distribution were described as means and

standard deviations, and non-normally distributed variables were

expressed as medians and interquartile ranges. Categorical

variables were presented as counts and percentages. Group

differences of numeric variables were tested using the t-test

or the median test, and those of categorical variables were

compared using the chi-square test or Fisher’s exact test,

according to their distributions. Statistical significance was set at

p < 0.05. All analyses were performed using R version 4.1.2

(RRID: SCR_001905).
Results

The flow chart of patient selection is presented in Figure 1.

After selection, 1085 patients were included in the final analysis,

of whom 760 patients (70%) were randomly assigned to the

derivation cohort. This was a complete case analysis. No missing

data needed to be handled. The correlation coefficients among

the aforementioned variables are listed in Supplementary

Table 1. CCI not ACCI, ppoFEV1% not FEV1 or FEV1%,

FVC% not FVC, and FEV1/FVC were selected. The

demographic, clinical, and surgical characteristics of the two

cohorts are summarized in Table 1. All baseline characteristics

were balanced. The ppoFEV1%, FVC%, and FEV1/FVC for both

cohorts were 76.8 vs. 75.2 (p = 0.094), 89.8 vs. 88.5 (p = 0.192),

and 76.0 vs. 75.9 (p = 0.865), respectively. Sixty-four (8.4%) and

26 (8.0%) patients experienced postoperative cardiopulmonary

complications in the derivation and validation cohorts,

respectively. Details of postoperative cardiopulmonary

complications were described in our previous study (12).
Logistic model

The results of the univariate logistic analysis are summarized

in Supplementary Table 2. Nine variables were statistically

significant: male sex, age, smoking status, alcohol use, chronic

obstructive pulmonary disease, arrhythmia, cerebrovascular

disease, ppoFEV1%, and FEV1/FVC ratio. They were further

screened using a backward stepwise selection, which yielded five

variables. The coefficients and odds ratios (OR) are listed in

Table 2. Male sex (OR 1.986, 95% confidence interval [CI] 1.142-

3.454, p = 0.015), arrhythmia (OR 3.606, 95%CI 1.095-11.880, p

= 0.035), and cerebrovascular disease (OR 5.415, 95%CI 1.852-

15.832, p = 0.002) were independent risk factors, while FEV1/

FVC (OR 0.020, 95%CI 0.001-0.810, p = 0.038) was an
frontiersin.org
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independent protective factor. The logistic equation was as

follows: 1.430 + 0.686 × male (yes = 1) + 1.283 × arrhythmia

(yes = 1) + 1.689 × cerebrovascular disease (yes = 1) - 1.859 ×

ppoFEV1% - 3.894 × FEV1/FVC. The mean value of the AUC in

the 5-fold cross-validation was 0.722, and its mean accuracy

reached 0.787, indicating a qualified model performance for

further validation. Table 3 summarizes the metrics of model

performance. The validation cohort also displayed good

discrimination (AUC 0.728, 95% CI 0.619-0.836, Figure 2) and

good calibration (p = 0.656 > 0.05). A nomogram was also

plotted to facilitate clinical use (Figure 3). Moreover, an online

calculator of the nomogram can be found at https://

onlinepresentation.shinyapps.io/complication.
Machine learning models

In the random forest model, the hyperparameters were set as

follows: number of trees = 300, node size = 8, maximum nodes =

8, and mtry = 1. The mean AUC was 0.718 in the 5-fold internal

cross-validation. In the validation cohort, the AUC reached

0.721 (95% CI 0.614-0.828), and good calibration was obtained

(p = 0.628 > 0.05). The calibration curve of the random forest

model was the closest to the diagonal line (Figure 2). Sensitivity

and specificity were 0.692 and 0.699, respectively. The feature

importance is illustrated in Figure 4A. PpoFEV1%, FEV1/FVC,

FVC%, age, and cerebrovascular disease were the top five

important variables. Male sex ranked seventh, while
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arrhythmia ranked tenth. The mean decreases in the Gini

indices of ppoFEV1% and FEV1/FVC were visually higher

than others, indicating their prominent roles in prediction.

In the XGBoost model, the tuned hyperparameters are

indicated as follows: booster = gbtree; objective = binary:logistic,

nround = 97, max_depth = 13, eta = 0.29, min_child_weight =

15.7, subsample = 0.558, colsample_bytree = 0.659, gamma = 0. It

performed well in internal validation, with a mean AUC of 0.727.

The XGBoost model also showed good discrimination (AUC

0.767, 95% CI 0.671-0.862) and calibration (p = 0.368 > 0.05)

simultaneously in the validation cohort. The sensitivity, specificity,

and accuracy were 0.692, 0.749, and 0.745, respectively (Table 3).

Figure 4B shows the importance of variables. The top five

variables were ppoFEV1%, BMI, FVC%, FEV1/FVC, and age,

while male sex ranked sixth.

Although the AUC of the XGBoost model was the highest

among the three models, no significant differences were

observed after examining by DeLong’s test (logistic vs. random

forest, p = 0.801; logistic vs. XGBoost, p = 0.600; random forest

vs. XGBoost, p = 0.534).
Discussion

This was the first study that met Chinese patients’ demand of

prediction of postoperative cardiopulmonary complications after

lung resection. Three models using various algorithms were

developed and validated internally, and all of them showed
FIGURE 1

The flow chart of patient selection.
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good discrimination and calibration. PpoFEV1% and FEV1/FVC

were identified as the most important predictive factors.

Three algorithms were used for model development: logistic

regression, random forest, and XGBoost. They all have their

strengths and weaknesses. The conventional logistic regression is

strong in convenient implementation, clear presentation, and

intuitive interpretation, but weak in capturing nonlinear

relationships between outcomes and variables. As for novel

machine learning algorithms like random forest and XGBoost,
Frontiers in Oncology 05
although they are difficult to interpret and apply in clinical

settings due to technical problems, they can provide more

insights when dealing with high-dimensional and nonlinear

datasets. Hence, they are widely applied in prediction using

radiomics, genomics, and large databases (27–29). Many studies

showed the predictive ability of novel machine learning models

was better than that of the logistic model, but Choi et al. still

suggested the logistic model should serve as a benchmark due to

its easy interpretation (19, 30). Our results showed that the AUC
TABLE 1 Characteristics of the derivation cohort and the validation cohort.

Terms Total (N = 1085) Derivation (N = 760) Validation(N = 325) p

Male, N (%) 423 (39.0) 285 (37.5) 138 (42.5) 0.142

Age, mean (SD) 58.4 (10.4) 58.0 (10.6) 59.2 (9.8) 0.100

Body mass index, mean (SD) 24.2 (3.1) 24.2 (3.0) 24.3 (3.3) 0.647

Smoker, N (%) 235 (21.7) 167 (22.0) 68 (20.9) 0.761

Alcohol use, N (%) 139 (12.8) 94 (12.4) 45 (13.8) 0.570

Hypertension, N (%) 312 (28.8) 209 (27.5) 103 (31.7) 0.185

Diabetes mellitus, N (%) 130 (12.0) 92 (12.1) 38 (11.7) 0.928

COPD, N (%) 41 (3.8) 31 (4.1) 10 (3.1) 0.536

Arrhythmia, N (%) 23 (2.1) 16 (2.1) 7 (2.2) 1.000

Coronary artery disease, N (%) 59 (5.4) 39 (5.1) 20 (6.2) 0.593

Cerebrovascular disease, N (%) 23 (2.1) 18 (2.4) 5 (1.5) 0.523

Chronic kidney disease, N (%) 5 (0.5) 4 (0.5) 1 (0.3) 1.000

Interstitial lung disease, N (%) 4 (0.4) 3 (0.4) 1 (0.3) 1.000

CCI, median [IQR] 0 [0-0] 0 [0-0] 0 [0-0] 0.828

ppoFEV1%, mean (SD) 76.3 (14.1) 76.8 (13.8) 75.2 (14.8) 0.094

FVC%, mean (SD) 89.4 (14.0) 89.8 (13.9) 88.5 (14.2) 0.192

FEV1/FVC, mean (SD) 76.0 (7.9) 76.0 (7.8) 75.9 (8.2) 0.865

Thoracotomy, N (%) 25 (2.3) 18 (2.4) 7 (2.2) 1.000

Surgical procedures, N (%) 0.774

Segmentectomy 209 (19.3) 146 (19.2) 63 (19.4)

Lobectomy 863 (79.5) 604 (79.5) 259 (79.7)

Bilobectomy 11 (1.0) 9 (1.2) 2 (0.6)

Pneumonectomy 2 (0.2) 1 (0.1) 1 (0.3)

Extended resection, N (%) 12 (1.1) 10 (1.3) 2 (0.6) 0.488

Postoperative complications, N (%) 90 (8.3) 64 (8.4) 26 (8.0) 0.912
frontiersi
OR, odds ratio; CI, confidence interval; SD, standard deviation; COPD, chronic obstructive pulmonary disease; CCI, the Charlson Comorbidity Index; IQR, interquartile range; ppoFEV1%,
the percentage of predicted postoperative forced expiratory volume in one second; FVC%, the percentage of forced vital capacity; FEV1/FVC, the ratio of forced expiratory volume in one
second to forced vital capacity.
TABLE 2 Risk factors and their parameters of the logistic model.

Variables Coefficients OR (95%CI) p

Intercept 1.430 – –

Male 0.686 1.986 (1.142-3.454) 0.015

Arrhythmia 1.283 3.606 (1.095-11.880) 0.035

Cerebrovascular disease 1.689 5.415 (1.852-15.832) 0.002

ppoFEV1% -1.859 0.156 (0.016-1.543) 0.112

FEV1/FVC -3.894 0.020 (0.001-0.810) 0.038
OR, odds ratio; CI, confidence interval; ppoFEV1%, the percentage of predicted postoperative forced expiratory volume in one second; FEV1/FVC, the ratio of forced expiratory volume in
one second to forced vital capacity.
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of the logistic model (AUC = 0.728) was lower than that of

XGBoost model (AUC = 0.767), but higher than that of random

forest model (AUC = 0.721). The p values for DeLong’s test and

z test were all greater than 0.05. Therefore, we concluded that the

logistic model had non-inferior performance to the random

forest and XGBoost models. The possible reason was that the

nonlinear relationships were weak, concealing the performance

gaps among them. After a thorough consideration of model

performance and interpretation, we recommend using the

logistic model rather than the random forest or XGBoost

model in clinical practice.

The three models had several important variables in

common: ppoFEV1%, FEV1/FVC, FVC%, age, and

cerebrovascular diseases. These contributed to postoperative

cardiopulmonary complications in different ways. PpoFEV1%,

FEV1/FVC, and FVC% reflect lung function. Patients’ lung

function decreases significantly after surgery. The resistance of

small airways increases, while the mucociliary clearance ability

decreases. Afterward airway obstruction occurs, resulting in
Frontiers in Oncology 06
atelectasis, pneumonia, and more complications. On the other

hand, the reduced pulmonary perfusion and increased

circulatory resistance lead to elevated cardiac load and

decreased oxygen supply, causing hypoxemia, arrhythmia, and

others. PpoFEV1% is regarded as one of the most important

indicators of postoperative cardiopulmonary complications and

mortality. One reason is that ppoFEV1% is a synthetic parameter

adjusted by height, age, sex, and the extent of surgical resections.

Hence, it was also included in the Brunelli, Eurolung model, and

European Society Objective Scores (8, 9, 13, 31, 32). A lower

ppoFEV1% reflects the reduction of lung volume and decreased

lung function. This study showed that a lower FEV1/FVC value,

indicating weaker lung function, was associated with a higher

risk of complications, which was consistent with results of

previous studies (33, 34). FVC%, an adjusted ventilatory

function indicator, also served as a predictor in the Brunelli

model (8). Old age has been identified as a risk factor for

postoperative complications consistently (32, 35–37). Elder

patients have poor physical performance in terms of
TABLE 3 Model performance of the logistic model, random forest model and XGBoost model.

Logistic Random forest XGBoost

AUC 0.728 0.721 0.767

95% CI 0.619-0.836 0.614-0.828 0.671-0.862

Spiegelhalter z test 0.656 0.628 0.368

Sensitivity 0.769 0.692 0.692

Specificity 0.645 0.699 0.749

Positive predictive value 0.159 0.167 0.194

Negative predictive value 0.970 0.963 0.966

Accuracy 0.655 0.698 0.745
fro
AUC, area under the curve; CI, confidence interval.
BA

FIGURE 2

Performance of three models. (A) shows the receiver operating characteristic curves. (B) shows the calibration curves. The blue line indicates
the logistic model The red line indicates the random forest model. The yellow line indicates the XGBoost model.
ntiersin.org

https://doi.org/10.3389/fonc.2022.1003722
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huang et al. 10.3389/fonc.2022.1003722
respiratory muscle strength and eliminating pathogens.

Cerebrovascular diseases may impair a patient’s neurological

function and mobility. Therefore, they are not conducive to

postoperative recovery, but are prone to develop complications.

An accurate prediction model shows great importance in

multiple settings. Regarding preoperative decision-making, the
Frontiers in Oncology 07
risk of complications can be easily calculated using the logistic

model or nomogram, which makes precise management

possible. For example, according to our logistic model, the

probability of developing complications would be 36.5% for a

male patient with a ppoFEV1% of 60%, an FEV1/FVC of 40%,

and no arrhythmia or cerebrovascular diseases. The patient
BA

FIGURE 4

The feature importance of (A) the random forest model and (B) the XGBoost model. PpoFEV1%, the percentage of predicted postoperative
forced expiratory volume in one second; FEV1/FVC, the ratio of forced expiratory volume in one second to forced vital capacity; FVC%, the
percentage of forced vital capacity; CVD, cerebrovascular disease; BMI, body mass index; COPD, chronic obstructive pulmonary disease; CCI,
the Charlson Comorbidity Index; CAD, coronary artery disease; ILD, Interstitial lung disease; DM, diabetes mellitus; HTN, hypertension; CKD,
chronic kidney disease.
FIGURE 3

The nomogram of the logistic model. CVD, cerebrovascular disease; ppoFEV1%, the percentage of predicted postoperative forced expiratory
volume in one second; FEV1/FVC, the ratio of forced expiratory volume in one second to forced vital capacity.
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could directly know his risk of complications before surgery,

which may help him better weigh the risks against the benefits

and would improve compliance during subsequent treatment.

Moreover, to gain better outcomes, clinicians could advise the

patient to use bronchodilators and perform preoperative

pulmonary rehabilitation which significantly improves FVC%,

FEV1%, and FEV1/FVC (38–40). Clinicians could also consider

performing a segmentectomy rather than lobectomy to improve

ppoFEV1% if possible. For hospital managers and policymakers,

a risk-adjusted model facilitates medical care quality monitoring.

For instance, Pompili et al. used the Eurolung models to evaluate

the performance of three thoracic medical centers (41). The

rationale for this is clear; if the observed morbidity or mortality

are lower than the predicted values, it indicates good

performance. Risk models could also help audit the

performance of a surgeon, a new instrument, or a novel

surgical technique. By collecting these quantitative data,

managers and policymakers can further identify root causes of

problems and take appropriate actions to improve the quality of

care. As regards medical education, a good prediction model

helps students recognize the most meaningful factors and

perform patient assessments quickly.

Nevertheless, our study has several limitations. First, an

inevitable selection bias may exist because of the study’s

retrospective nature. For instance, very few patients had chronic

kidney disease or interstitial lung disease at our center. Therefore,

our results cannot be directly applied to medical centers with

different patient distributions. Second, some potentially essential

variables could not be captured, which is a common phenomenon

in model development using large databases. For example, the

percent of diffusion capacity for carbon monoxide of the lung

(DLco%) and the maximal oxygen consumption (VO2max), which

were strongly associated with postoperative complications, were not

included in this study (42, 43). DLco% and VO2max are not

routinely evaluated in many medical centers including ours.

Third, the models did not undergo extensive external validation;

therefore, their efficacy must be further verified. However, we

applied a 5-fold cross-validation for internal validation and tested

their performance in a separate cohort, and the models showed

consistently good predictive ability.

In conclusion, three models using logistic regression, random

forest and XGBoost were developed and validated successfully for the

prediction of postoperative cardiopulmonary complications after

anatomic lung resection. The models were suitable for Chinese

patients. PpoFEV1% and FEV1/FVC may be the most important

predictive factors. Extensive external validation is warranted to verify

the model’s performance in various clinical scenarios.
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