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Abstract

Motivation: Identifying microRNAs associated with diseases (disease miRNAs) is helpful for

exploring the pathogenesis of diseases. Because miRNAs fulfill function via the regulation of their

target genes and because the current number of experimentally validated targets is insufficient,

some existing methods have inferred potential disease miRNAs based on the predicted targets. It

is difficult for these methods to achieve excellent performance due to the high false-positive and

false-negative rates for the target prediction results. Alternatively, several methods have con-

structed a network composed of miRNAs based on their associated diseases and have exploited

the information within the network to predict the disease miRNAs. However, these methods have

failed to take into account the prior information regarding the network nodes and the respective

local topological structures of the different categories of nodes. Therefore, it is essential to develop

a method that exploits the more useful information to predict reliable disease miRNA candidates.

Results: miRNAs with similar functions are normally associated with similar diseases and vice

versa. Therefore, the functional similarity between a pair of miRNAs is calculated based on their

associated diseases to construct a miRNA network. We present a new prediction method based on

random walk on the network. For the diseases with some known related miRNAs, the network

nodes are divided into labeled nodes and unlabeled nodes, and the transition matrices are estab-

lished for the two categories of nodes. Furthermore, different categories of nodes have different

transition weights. In this way, the prior information of nodes can be completely exploited.

Simultaneously, the various ranges of topologies around the different categories of nodes are

integrated. In addition, how far the walker can go away from the labeled nodes is controlled by re-

starting the walking. This is helpful for relieving the negative effect of noisy data. For the diseases

without any known related miRNAs, we extend the walking on a miRNA-disease bilayer network.

During the prediction process, the similarity between diseases, the similarity between miRNAs,

the known miRNA-disease associations and the topology information of the bilayer network are

exploited. Moreover, the importance of information from different layers of network is considered.

Our method achieves superior performance for 18 human diseases with AUC values ranging

from 0.786 to 0.945. Moreover, case studies on breast neoplasms, lung neoplasms, prostatic neo-

plasms and 32 diseases further confirm the ability of our method to discover potential disease

miRNAs.
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1 Introduction

MicroRNAs (miRNAs) are small non-coding RNAs that play im-

portant roles in gene regulation by targeting mRNAs for cleavage or

translational repression (Bartel, 2004; Chatterjee and Grobhans,

2009). Recently, accumulating evidence has indicated that miRNA

dysregulation is closely related to the development, progression and

prognosis of various human diseases (Alvarez-Garcia et al., 2005;

Lynam-Lennon et al., 2009; Meola et al., 2009). Therefore, identify-

ing the miRNAs associated with diseases (disease miRNAs) contrib-

utes to the exploration of the pathogenesis of diseases.

Recently, computational prediction methods have been used to ob-

tain reliable disease miRNA candidates for further experimental stud-

ies. Since miRNAs fulfill their functions via the regulation of target

mRNAs (target genes) expression, several methods based on the tar-

gets have been presented. Jiang et al. (2010a) estimated the similarity

between miRNAs by measuring the similarity of their associated tar-

get genes. The miRNA network based on targets was combined with

a disease phenotype network to infer the correlation scores between

miRNAs and diseases. In addition, they improved the score calcula-

tion by further integrating the similarities of miRNAs with the pheno-

type similarities of diseases (Jiang et al., 2010b). Li et al. (2011) also

collected miRNA targets, and measured the function consistence score

(FCS) between the target genes and the disease-related genes.

However, when calculating the FCS, this method ignored the topo-

logical structure that is composed of the targets and disease genes.

Moreover, as the current number of targets that have been verified by

biological experiments is insufficient, both Jiang and Li obtained the

target genes by using target prediction programs, such as TargetScan

(Lewis et al., 2003) and PITA (Kertesz et al., 2007). Because these

programs have high false-positive and false-negative rates (Bartel,

2009; Liu et al., 2014; Ritchie et al., 2009), it is difficult for the meth-

ods based on targets to achieve high prediction performance. Shi et al.

(2013) exploited the functional link between miRNA targets and dis-

ease genes in protein–protein interaction network to identify miRNA-

disease associations. This method was also affected by the low accur-

acy of target prediction. In addition, it ignored the functional similar-

ity between genes.

It is well known that miRNAs with similar functions are nor-

mally implicated in similar diseases and vice versa (Bandyopadhyay

et al., 2010; Goh et al., 2007; Lu et al., 2008). Chen’s method (Chen

and Zhang, 2013) focused on the phenotype similarity between

diseases and the associations between miRNAs and diseases. For a

specific miRNA mi, the novel diseases that are similar to the known

mi-related diseases were obtained as mi-related candidates. Due to

not considering the similarity between miRNAs, this method could

not achieve excellent performance. As the functionally related

miRNAs tend to be associated with similar diseases, the functional

similarity of two miRNAs has been successfully estimated based on

the semantic similarities of their associated diseases (Wang et al.,

2010). HDMP integrated the functional similarities with the charac-

teristics of miRNAs to predict candidates associated with a given

disease (Xuan et al., 2013). It only considered the k most similar

neighbors of a candidate and ignored the topology formed by

the neighbors. To construct a miRNA network derived from

miRNA-associated diseases, the functional similarity between any

two miRNAs was used as the weight of edge connecting them. By

integrating known miRNA-disease associations, the similarity be-

tween diseases and the miRNA network, RLSMDA (Chen and Yan,

2014) developed the prediction method based on regularized least

squares to uncover potential miRNA candidates for a specific dis-

ease. RLSMDA achieved excellent prediction performance not only

for the diseases with some related miRNAs but also for the diseases

without any known related miRNAs. Unfortunately, it ignored the

topology information of the miRNA network. RWRMDA (Chen

et al., 2012) obtained the putative disease miRNAs that have similar

functions to known disease miRNAs via random walk through the

miRNA network. However, the network is composed of two catego-

ries of nodes. For a specific disease, some nodes are validated by bio-

logical experiments to be implicated in the disease, but the other

nodes have no evidence to verify their association with the disease.

Unfortunately, the prior information regarding the two categories of

nodes and their respective local topological structures are not con-

sidered. Therefore, we propose a novel prediction method based on

random walk, which exploits the characteristics of the nodes and

the various ranges of topologies. In addition, we extend the walk on

a miRNA-disease bilayer network to predict candidates specially for

the diseases without any known related miRNAs.

2 Methods

2.1 Process of predicting disease miRNAs
We model the prediction process as random walk on a miRNA net-

work derived from miRNA-associated diseases. Our method for

miRNAs associated with diseases prediction is referred to as MIDP.

For a specific disease d with some related miRNAs, a random walker

starts at one of known d-related miRNA nodes with equal probability.

If a neighbor of the current node is more likely to be associated with

d, the walker transmits to it with a greater proportion. After the itera-

tive walking process is converged, the steady-state probability with

which the walker stays at a candidate node (possible d-related

miRNA) is defined as its relevance score. In this way, the candidates

with higher scores are more likely to be associated with d.

For the disease d, the known d-related miRNAs, the d-related

miRNA candidates and their relationship form a network, which is

denoted as a weighted graph G(V, E, W). Each vertex (v 2 V) repre-

sents a d-related miRNA or a candidate. Each edge (e 2 E) captures

the relationship between the two vertices that are linked by edge e.

The weight w of e is set as the functional similarity which quantifies

the relationship. A greater w means that the two vertices are more

likely to be associated with a group of similar diseases.

In the network, the known d-related miRNAs are referred to as

the labeled nodes. The remaining miRNAs, which have no evidence

to verify that they are associated with d so far, are the unlabeled

nodes. Because the unlabeled nodes are probably associated with d,

the prediction goal is to rank all the unlabeled nodes and obtain the

potential disease miRNAs. In our method, we correlate an unlabeled

node ui with a relevance score RScore(ui). A higher RScore(ui) repre-

sents a more probable association between ui and d.
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The process of predicting d-related miRNAs by MIDP is illus-

trated in Figure 1. First, the functional similarity of any two

miRNAs is calculated by measuring the semantic similarities of their

associated diseases. The miRNA network derived from miRNA-

associated diseases (Mnet) is constructed by defining the functional

similarity of two miRNAs as their edge weight. Second, we divide

the nodes within Mnet into labeled nodes and unlabeled nodes.

Based on the similarity between the nodes and the prior information

regarding the nodes, the transition matrix of the labeled nodes (MQ)

and that of the unlabeled nodes (MU) are created. Third, we con-

struct a novel prediction model based on random walk to estimate

the relevance score between each unlabeled node and d. Finally, all

the unlabeled nodes are ranked by their scores, and the top ranked

nodes are selected as potential candidates.

2.2 Construction of Mnet
Accurate calculation of the functional similarity between miRNAs

is the basis for constructing Mnet. It has been observed that

miRNAs associated with similar diseases normally have similar

functions and vice versa (Bandyopadhyay et al., 2010; Goh et al.,

2007; Lu et al., 2008). Therefore, the functional similarity of two

miRNAs is successfully estimated by measuring the semantic simi-

larities of their associated diseases (Wang et al., 2010). For instance,

as shown in Figure 1, miRNA vx is associated with disease d1, d2, d3

and d4, and miRNA vy is associated with d1, d3, d5, d6 and d8. Wang

et al. calculated the semantic similarity between {d1, d2, d3, d4} and

{d1, d3, d5, d6, d8} as the similarity of vx and vy, denoted as

Sim(vx,vy).

However, when they calculated the similarity, Wang et al. ex-

tracted the disease information associated with the miRNAs from an

earlier version of the human miRNA-disease database (HMDD

released in September 2009, Lu et al., 2008). The latest version of

HMDD was released in June 2014 (Li et al., 2014). We recalculated

the similarity with the latest data. If the similarity of two miRNAs is

greater than 0, an edge is added to link them. Furthermore, the

weight of their edge is set as the similarity. Thus, Mnet (denoted as a

weighted graph G) is constructed.
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Fig. 1. Illustration of the process of predicting disease d-related miRNA candidates. (1) calculate the functional similarity between miRNAs based on their associ-

ated diseases and construct the miRNA network derived from miRNA-associated diseases (Mnet). (2a) construct the association matrix (A) to obtain the transition

matrix (M). (2b) separate the matrix M into two matrices, MQ (transition matrix of the labeled nodes) and MU (transition matrix of the unlabeled nodes). (3) a novel

prediction model is established to estimate the relevance scores of candidates. (4) rank all the unlabeled nodes and select the potential candidates
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2.3 Two one-step transition matrices
For a given disease d, the prediction of the d-related miRNAs is

modeled as random walk on the weighted graph G. A random

walker starts at the labeled nodes and walks around them. Assume

the walker stays at vertex vx now. As far as vx is concerned, if a

neighbor of vx is more likely to be associated with d, we make the

walker transmit to the neighbor with a higher probability.

Furthermore, the walker iteratively walks to sufficiently exploit the

topological structural information of graph G. After the iterative

walking process is converged, the steady-rate probability for a ver-

tex indicates the possibility that the walker will finally stay at the

vertex. A greater probability reveals a closer association relationship

between the vertex and d.

The key to our prediction model is to determine the one-step

transition probability of the walker. As far as a vertex (such as vi)

within graph G is concerned, if one of its neighbors (such as vj) is

more likely to be associated with d, we assign vj with higher transi-

tion probability (mij). Therefore, the transition probability assign-

ment mainly includes two steps. First, we estimate the degree of

association (aij) between the neighbor vj and d with respect to vi.

Second, we make the transition probability mij proportional to aij.

The detailed probability assignment strategy is illustrated as follows.

The association matrix A(aij)N�N is constructed first. aij repre-

sents the degree of association between vertex vj and d, with respect

to vi. A greater aij means a more probable association between vj

and d, and N is the number of vertices within graph G. The elements

of matrix A are then classified into the following four cases:

1. Assume Q is a set composed of all the labeled nodes and vi2Q.

As the neighbors of vi have similar function with vi, they are

likely to be associated with a group of similar diseases.

Therefore, if vi is associated with disease d, its neighbors are also

likely to be associated with d. For instance, as shown in

Figure 1, v7 is a labeled node (d-related miRNA) and v1 is one of

its neighbors. The higher the functional similarity between v7

and v1 [denoted as Sim(v7,v1)], the greater the association possi-

bility between v1 and d. In addition, the association possibility

when v7 is a labeled node, is greater than that when v7 is an un-

labeled node. Therefore, the former and the latter are multiplied

by wQ and wU, respectively. wQ 2 (0,1) represents the weight

of the association information from the labeled nodes, and wU

2 (0,1) represents that from the unlabeled nodes. Obviously,

wQ is greater than wU. Thus, with respect to v7, the degree of as-

sociation between v1 and d (a71) is set as Sim(v7,v1)�wQ¼
0.7wQ. In this way, a72, a74, a75 and a76 are 0.6wQ, 0.7wQ,

0.7wQ and 0.7wQ, respectively.

2. Assume U is a set composed of all the unlabeled nodes (possible

d-related miRNAs) and vi 2 U. As vi has similar function with

its neighbors, vi and its neighbors tend to be associated with

similar diseases. In other words, if vi is likely to be associated

with d, its neighbors are also likely to be associated with d. For

instance, v8 is an unlabeled node and it is possibly associated

with d. For one thing, the higher the functional similarity be-

tween v8 and its neighbor v3 [denoted as Sim(v8,v3)], the greater

the association possibility between v3 and d. For another,

the weight of the association information from the unlabeled

nodes is wU. So as far as v8 is concerned, the association degree

between v3 and d (a83) is set as Sim(v8,v3)�wU¼0.7wU. In this

way, a84, a86 and a89 are 0.7wU, 0.8wU and 0.8wU, respectively.

3. If there is no edge between two miRNAs, such as vi and vj, aij is

set as 0. For instance, as v1 is not connected with v5, a15 is 0.

4. The a value from a miRNA to itself, such as aii, is set as 0. For in-

stance, a11 is 0.

We can construct the association matrix A(aij)N�N

according to the above rules. The formal definition of aij is as

follows,

aij ¼

Simðvi; vjÞ �wQ; vi 2 Q; ðvi; vjÞ 2 E

Simðvi; vjÞ �wU; vi 2 U; ðvi; vjÞ 2 E

0; ðvi; vjÞ 62 E

0; vi ¼ vj

8>>>>><
>>>>>:

(1)

where vi is a vertex and vj is one of its neighbors.

Subsequently, assume that the walker stays at vertex vi now.

Here, vi might be a labeled node or an unlabeled node. To make the

probability of the walker reaching each its neighbors proportional

to the degree of association between the neighbor and d, we must

construct the transition matrix M(mij)N�N. Matrix A is row-normal-

ized by the following equation to obtain the one-step transition

probability matrix M(mij)N�N.

mij ¼ aij=
XN
j¼1

aij (2)

mij represents the transition probability from vi to vj. Therefore, the

higher the degree of association between a neighbor of vi and d, the

greater the transition probability from vi to the neighbor. For ex-

ample, v3, v4, v7 and v8 are the neighbors of v6. As v6 is an unlabeled

node, and when only considering v6, the association degree between

its neighbors and d are 0.6wU, 0.6wU, 0.7wU and 0.8wU, respect-

ively. The transition probabilities are 0.222, 0.222, 0.259 and 0.296

after row-normalization.

However, after the rows of A are normalized, the weights (wQ

and wU) used to differentiate the association information from the

labeled nodes and the unlabeled nodes are lost. For example, when

normalizing the 6th row, the process of transforming a63 into m63 is

as follows.

m63 ¼
0:6wU

0:6wU þ 0:6wU þ 0:7wU þ 0:8wU

¼ 0:6

0:6þ 0:6þ 0:7þ 0:8
¼ 0:222

(3)

No matter what the value of wU is, its values in both the numer-

ator and the denominator can be removed. Therefore, the effect of

wU is lost. In addition, when normalizing the 5th row, the process of

transforming a53 into m53 is as follows.

m53 ¼
0:6wQ

0:8wQ þ 0:6wQ þ 0:6wQ þ 0:7wQ

¼ 0:6

0:8þ 0:6þ 0:6þ 0:7
¼ 0:222

(4)

In this way, the effect of wQ is also lost. As a result, the influence of

the prior information as to whether a vertex is associated with d, is

ignored.

To solve this problem, we separate matrix M into two matrices,

MQ and MU. MQ represents the transition matrix of the labeled

nodes and MU represents that of the unlabeled nodes. All the rows

of the labeled nodes in MQ are consistent with the corresponding

rows in M. The remaining rows of MQ are set as 0. In MU, all the

rows of unlabeled nodes are consistent with the corresponding rows

in M. The remaining rows are set as 0.
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2.4 Establishing MIDP prediction model
Based on the transition matrices MQ and MU, we can further estab-

lish the prediction model of MIDP as follows.

Sðt þ 1Þ ¼ rQMT
QSðtÞ þ pQð1� rQÞXþ rUMT

USðtÞ þ pUð1� rUÞX
(5)

First, S(tþ1) is a probability vector that indicates the walker ar-

rives at the ith vertex with the probability Si(tþ1) at time tþ1.

Similarly, S(t) demonstrates the probability of arriving at each vertex

at time t. For a given disease d, since the vertices near the labeled

nodes are more likely to be associated with d than those near the un-

labeled nodes, a walker starts from a labeled node. S(0) is the initial

probability vector that indicates the walker starts walking from one

of the labeled nodes with equal probability at time 0. The ith elem-

ent of S(0), Si(0), is set as follows.

Sið0Þ ¼
1=jQj if vi 2 Q

0 otherwise

(
(6)

Second, to exploit the prior information, the labeled nodes and

the unlabeled nodes are assigned different weights, rQ (0< rQ<1)

and rU (0< rU<1). Furthermore, rQ is greater than rU. Actually, rQ

and rU have same functions as wQ and wU. They are used to tune

the weights of the association information from the labeled nodes

and the unlabeled nodes. The ultimate goal is to make the transition

probability proportional to the degree of association between each

neighboring vertex and d. For instance, the actual transition prob-

ability from labeled node v5 to v3 is rQ�m53, and that from unlabeled

node v6 to v3 is rU�m63. The former is higher than the latter when

both m53 in MQ and m63 in MU are 0.222.

In addition, rQ and rU also affect how far the walker can go

away from the labeled nodes and the unlabeled nodes. This means

that the greater the rQ (rU), the wider the range of topology around

the labeled nodes (unlabeled nodes) involved in the walking process.

For instance, when considering (rQ¼0.4, rU¼0.1) and (rQ¼0.8,

rU¼0.2), the proportion of rQ:rU for both is 4:1. However, for the

latter, the walker can go farther from the labeled nodes (and un-

labeled nodes) than the former.

Third, if the walker locates a labeled node, it will return to the

starting vertices (labeled nodes) with the probability pQ(1� rQ) at

time tþ1 and restart walking. pQ is the sum of the probability that

the walker arrives at each labeled node at time t. This can be defined

as,

pQ ¼
X

vi 2Q

SiðtÞ (7)

In the same way, if the walker locates an unlabeled node, it will

go back to the starting vertices with the probability pU(1� rU) in the

next time. pU represents the sum of the probability that the walker

arrives each unlabeled node at time t, which equals 1�pQ. X is a

vector defining the nodes that are chose by the walker to go back

and restart walking. Since the walker restarts from one of the

labeled nodes, X equals S(0).

The advantage of restarting walking is to control the overall de-

gree to which the walker can go far from the labeled nodes.

According to the above formula, the walker restarts walking with

the probability pQ(1� rQ)þpU(1� rU). The closer to 0 the prob-

ability is, the more nodes around the labeled nodes the walker can

reach. If the probability is too small, the walker goes too far away

from the labeled nodes, which results in the inclusion of noisy data.

It is not helpful for improving the prediction performance. If the

probability is too great, there is not enough data to accurately

estimate the relevance score. Therefore, it is essential to select suit-

able values for rQ and rU. In our experiments, rQ ranges from 0.9 to

0.1, and for a specific rQ, rU (rU< rQ) ranges from (rQ�0.1) to 0.1.

For instance, if rQ is 0.5, rU is 0.4, 0.3, 0.2 or 0.1. Our prediction

model achieves the best performance when rQ¼0.4 and rU¼0.1.

The walker starts from the labeled nodes and begins to walk it-

eratively. The iterative process stops when the convergence condi-

tion is satisfied. The convergence condition means that the L1-norm

between the two consecutive vectors, S(t) and S(tþ1), is less than

10�10. The steady-state probability with which the walker stays at

an unlabeled node, is defined as its relevance score. All the unlabeled

nodes are ranked by their scores. A higher score indicates a more

probable association between an unlabeled node and the given dis-

ease d. The algorithm for predicting d-related miRNAs by MIDP is

demonstrated in Figure 2.

2.5 Prediction based on the bilayer network
For the diseases with some known related miRNAs, cross-validation

(Section 3.3) demonstrates the superior performance of MIDP.

However, for the diseases without any known related miRNAs, al-

most all the previous methods and MIDP could not be applied to

them. To provide the potential miRNA candidates for them, we fur-

ther propose an extension method based on MIDP, referred to as

MIDPE.

MIDPE is also motivated by the observation that miRNAs with

similar functions tend to be associated with similar diseases and vice

versa. Besides Mnet, a network composed of diseases is exploited to

construct a miRNA-disease bilayer network. Given a specific disease

d without known related miRNAs, the walker starts from the node

d and walks on the bilayer network. If a disease node (di) and the

node d are more possibly related with similar miRNAs, or a neigh-

bor (mj) of a miRNA node is more likely to associate with d, the

walker transmits to di or mj with greater possibility. After the walk-

ing process is converged, the greater probability the walker arriving

at a miRNA node indicates the closer association between the

miRNA and d.

2.5.1 Construction of bilayer network and its association matrix

The miRNA-disease bilayer network is composed of the miRNA

network derived from the miRNA-associated diseases (Mnet), the

disease network (Dnet), and the edges between two networks. If a

miRNA has been verified to associate with a disease, an edge is

added to connect them. In Dnet, each node di represents a disease. If

the similarity between two nodes di and dj is more than 0, an edge is

added to connect the two nodes. The weight of the edge between di

and dj is set as the similarity between them. The disease similarity

was calculated in the same way as the literature (Wang et al., 2010).

Wang’s method represented a disease with a directed acyclic graph

(DAG), and the DAG contained all the annotation terms relative to

the disease. Furthermore, these annotation terms were obtained

from the U.S. National Library of Medicine (MeSH, http://www.

nlm.nih.gov/mesh). The similarity between diseases was measured

based on their DAGs. When constructing the association matrix for

the bilayer network, the following three aspects should be

considered.

1. The similar diseases are more likely to associate with function-

ally related miRNAs. For instance, the disease node d1 in

Figure 3 has no any known associated miRNAs. Since d1 is simi-

lar to d2 and d2 has been associated with the miRNA m6, d1 is

possibly associated with m6. Furthermore, the greater similarity

between d1 and d2 means the more possible association between
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d1 and m6. Therefore, assume ADD is the association matrix of

Dnet. (aij)DD is set as the similarity between diseases di and dj.

2. The miRNAs with similar functions are more possibly related to

a group of similar diseases. Therefore, if there is an edge con-

necting a disease node and a miRNA node, the walker can jump

from Dnet to Mnet along the edge. Through walking on the

Mnet, the miRNAs associated with d1 can be further searched.

For example, the walker transmits from d1 to d2 and then jumps

to m6. Here, m6 has been inferred to probably associate with d1

in the last paragraph. Moreover, m6 and its neighbors (m2 and

m4) have similar functions. So m2 and m4 are also possibly asso-

ciated with d1. Therefore, the walker is allowed to jump from

Dnet to Mnet. ADM is a matrix indicating the jumping case. If

the disease node di is connected with the miRNA node mj,

(aij)DM is set as 1. Otherwise, it is set as 0.

3. During the process of walking on Mnet, if a neighbor (m2 or m4)

has greater functional similarity with the current node (m6), it

has higher possibility to associate with d1. Therefore, AMM de-

scribes the association matrix of Mnet and (aij)MM is set as the

similarity between mi and mj.

At last, assume Mnet consists of N miRNAs and Dnet consists of

R diseases, and the association matrix of the bilayer network is AB.

As shown in Figure 3, AB is composed of AMM, 0 (0 2 <N�R), ADM,

and ADD.

2.5.2 Establishing MIDPE prediction model

For a random walk on the bilayer network, the transition matrix MB

is defined as follows,

MB ¼
A�MM

aA�DM

0

ð1�aÞA�DD

2
4

3
5 (8)

where A�MM, A�DM, and A�DD are the matrices obtained by row-nor-

malizing AMM, ADM and ADD respectively. a controls the relative

importance of the information from Mnet or Dnet.

Based on the transition matrix MB, the prediction model of

MIDPE is defined as follows.

Pðt þ 1Þ ¼ ð1� cÞMT
BPðtÞ þ cY (9)

Let P(t) be the probability distribution that the walker arrives at the

NþR nodes of the bilayer network at time t. It is defined as follows.

PðtÞ ¼
PMðtÞ

PDðtÞ

" #
(10)

The walker arrives at the ith miRNA node with the probability

PMi(t) and arrives at the jth diseases node with PDj(t) at time t. As

the walker starts from a specific disease node, such as di, only the ith

element of PD(0) is set as 1 and other elements are 0. Moreover, all

the elements of PM(0) are set as 0. Since the walker restarts from the

node di, Y equals P(0). The restart probability c 2 ð0; 1Þ controls

how far the walker can go away from the starting node. After the

walking process is converged, the ith probability element of PM

with which the walker stays at mi, is defined as its relevance score.

Both a for adjusting the importance of network information and

the restart probability c range from 0.1 to 0.9. MIDPE achieved the

best prediction performance when a¼0.9 and c¼0.8. a¼0.9 indi-

cates that the information of Mnet accounts for the majority in predic-

tion process. It is consistent with that Mnet plays more important role

in the miRNA-disease association prediction (Chen and Yan, 2014).

3 Results

3.1 Data preparation
The human miRNA-disease database (HMDD) collected the experi-

mentally validated associations between miRNAs and diseases by

Fig. 2. Algorithm for predicting the miRNA candidates associated with dis-

ease d

Fig. 3. The miRNA-disease bilayer network and its association matrix AB
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text mining (Li et al., 2014). For one thing, as done in previous stud-

ies (Wang et al., 2010; Chen and Yan, 2014), we merged different

miRNA-disease copies that produce the same mature miRNA. For

another, there are a few associations with irregular disease names

which are not included by the U.S. National Library of Medicine

(MeSH, http://www.nlm.nih.gov/mesh). After merging the redun-

dant data and eliminating the irregular data, the latest version of

HMDD (updated in June 2014) contains 5100 associations between

490 miRNAs and 326 diseases.

3.2 Evaluation of prediction performance
A specific disease d was used as a query to rank the d-related candi-

dates by their relevance scores. To evaluate the performance of

MIDP and other methods, fivefold cross-validation was performed.

In the fivefold cross-validation, the labeled nodes were randomly

divided into five subsets, four of which were used as known infor-

mation to predict potential candidates, while the omitted subset was

added to the d-related testing dataset as positive samples. The data-

set also consisted of all the unlabeled nodes (negative samples). The

relevance score of each node in the testing dataset was calculated,

and these nodes were ranked by their scores. The higher the positive

samples were ranked, the better the performance.

If a labeled node has higher score than a given threshold h, it is

regarded as a successfully identified positive sample. If an unlabeled

node has a score lower than h, it is regarded as a correctly identified

negative sample. By varying h, the true positive rate (TPR) and the

false positive rate (FPR) were calculated to obtain the receiver oper-

ating characteristic (ROC) curves.

TPR ¼ TP

TPþ FN
; FPR ¼ FP

TN þ FP
(11)

TP and TN are the number of positive samples and the number

of negative samples that were correctly identified, respectively. FP

and FN are the number of positive samples and the number of nega-

tive samples that were identified incorrectly. The area under the

ROC curve (AUC) was used as the global prediction performance.

As the top portion of the prediction results is more important,

we measured the AUC within the top 30, 60, . . . , 210 and 240 can-

didates of the ranking list. In addition, we also reported the recall

rate, which measures how many positive samples are successfully

identified within the top k.

In the latest association data of HMDD, as the majority of the

diseases were associated with only a few miRNAs, they were not

sufficient to evaluate the performance of the prediction methods.

Therefore, we tested 15 diseases associated with at least 80

miRNAs.

3.3 Comparison with other methods
RWRMDA (Chen et al., 2012), HDMP (Xuan et al., 2013),

RLSMDA (Chen and Yan, 2014), Shi’s method (Shi et al., 2013),

and Chen’s method (Chen and Zhang, 2013) are the-state-of-art

methods. According to the literatures, RWRMDA and HDMP have

achieved significantly better performance than Li’s method (Li et al.,

2011) and Jiang’s method (Jiang et al., 2010a). In addition, Shi’s

method concentrated on the functional links between miRNA tar-

gets and disease-related genes in PPI network. It exploited the inter-

actions between disease-related genes, the associations between

miRNAs and their targets and the protein interactions, which were

completely different from the datasets used in our method (MIDP).

Therefore, Shi’s method could not be compared with MIDP in a rea-

sonable and fair way. On the basis of this consideration, we

compared MIDP with RWRMDA, HDMP, RLSMDA and Chen’s

method.

As RWRMDA, HDMP and RLSMDA were developed based on

the association data in the earlier versions of HMDD, we imple-

mented these methods with the latest data. Specially, Chen’s method

focused on the earlier miRNA-disease associations and the pheno-

type similarity information between diseases. The disease names in

Chen’s method came from the Online Mendelian Inheritance in

Man (OMIM) database (Hamosh et al., 2005), while those in the as-

sociations of HMDD came from U.S. National Library of Medicine

(MeSH, http://www.nlm.nih.gov/mesh). Therefore, we firstly

mapped the disease names contained by HMDD into OMIM disease

names, and then updated Chen’s method with the latest association

data.

When analyzing all the methods, MIDP, RWRMDA, HDMP

and Chen’s method contained parameters that need to be fine-tuned.

The parameters rQ and rU of MIDP were chosen from

{0.1,0.2, . . . ,0.9}. Furthermore, rQ should be greater than rU. The

parameter r of RWRMDA ranged from 0.1 to 0.9. The parameter k

of HDMP varied from 1 to 50. The parameter r of Chen’s method

changed from 0.1 to 0.9. The results of each method that were pro-

duced by using the optimum parameters are illustrated in Table 1

and Figure 4 (rQ¼0.4 and rU¼0.1 for MIDP, r¼0.9 for

RWRMDA, k¼20 for HDMP, r¼0.8 for Chen’s method). The de-

tailed parameter tuning for our method (MIDP) is demonstrated in

supplementary Figure S1.

As shown in Table 1, the average AUC values of MIDP,

RWRMDA, HDMP, RLSMDA and Chen’s method for all 15 dis-

eases, are 86.2, 79.9, 81.6, 82.6 and 65.2%, respectively. MIDP

achieved the best prediction performance, and its average AUC is

6.3, 4.6, 3.6 and 21% higher than other four methods, respectively.

Although RWRMDA, HDMP and RLSMDA also obtained high

performance, MIDP consistently outperformed them in all measures

for the 15 diseases. Chen’s method produced inferior result. The

possible reason is that Chen’s method ignored the similarity infor-

mation between miRNAs. Furthermore, the method strongly de-

pended on how much of the known disease information related to a

given miRNA. Currently, more than 30% of miRNAs are only asso-

ciated with 1–2 diseases. It is difficult to infer accurate disease candi-

dates for these miRNAs.

The results measured by AUC and recall within the top k candi-

dates are shown in Figures 5 and 6, respectively. MIDP also per-

formed the best for the top k ranking list, and ranked approximately

44% of positive testing samples in the top 30 and 86% in the top

120. HDMP ranked approximately 34% in the top 30 and 82% in

the top 120, which is not as high as MIDP but better than

RWRMDA. However, in the top 180, top 210 and top 240, HDMP

had lower recall values than RWRMDA. Similarly, RLSMDA

ranked 32.8% in the top 30, which is lower than HDMP.

Nevertheless, for the result from the top 60 to the top 240,

RLSMDA achieved higher recall values than HDMP. The possible

reason is that HDMP only considered the local information regard-

ing the k most similar neighbors. Therefore, the positive testing sam-

ples located in the neighborhood of the labeled nodes could be easily

identified, while it was difficult to discover those located far from

the labeled nodes. MIDP, RWRMDA, HDMP and RLSMDA

worked much better than Chen’s method because they exploited

multiple kinds of information of Mnet while Chen et al. ignored the

information.

In addition, a paired t-test was used to measure the statistical sig-

nificance that MIDP’s AUCs about multiple diseases were higher

than another method. The P-values are listed in Table 2. The results
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confirmed that MIDP performed significantly better than the other

methods at the significance level 0.05.

To estimate the performance of MIDPE for the diseases without

any known related miRNAs, we implemented case studies for three

diseases including breast neoplasms (BN), colorectual neoplasms

(CN) and hepatocellular carcinoma (HC). For a given disease d, we

removed all the known associations related to d. This operation

ensured that predicting d-related miRNA candidates only exploited

the information of other diseases with known related miRNAs and

the information of Mnet. All the removed d-rated associations were

used as positive samples of the testing dataset.

In the previous methods, only RLSMDA can be applied to the

diseases without known related miRNAs. Therefore, MIDPE was

compared with RLSMDA. For BN, CN and HC, we removed 202

known BN-related miRNA-disease associations, 147 CN-related as-

sociations and 214 HC-related associations, respectively.

For MIDPE, AUC values corresponding to the 3 diseases are

0.821, 0.829 and 0.804. For RLSMDA, AUC values are 0.803,

0.812 and 0.789 (Fig. 7). MIDPE achieved slightly better perform-

ance than RLSMDA. The reason is that MIDPE additionally con-

sidered the topology between miRNA nodes in Mnet and that

between disease nodes in Dnet, relative to RLSMDA.

3.4 Case studies: BN, lung neoplasms, prostatic

neoplasms and 32 diseases
To further demonstrate MIDP’s ability for discovering potential

disease miRNA candidates, case studies of BN, lung neoplasms

and prostatic neoplasms were analyzed. We took the lung neo-

plasms-related candidates as examples and analyzed the top 50 can-

didates in detail.

First, we used miR2Disease database, which contains manually

curated miRNAs that have abnormal regulation in various human

diseases (Jiang et al., 2009). This database contains 3273 associ-

ations between 349 miRNAs and 163 diseases. As shown in Table 3,

9 of 50 candidates are included in miR2Disease, which indicates

their dysregulation in lung neoplasms. This confirms that they are

indeed associated with the disease.

Next, the database of differentially expressed miRNAs in human

cancers, dbDEMC (Yang et al., 2008), was constructed to provide

potential cancer-related miRNAs. With analysis of the microarray

datasets, dbDEMC identified 607 miRNAs which were more likely

to have different expression levels in 14 types of cancer when com-

pared with normal tissues. 31 of 50 candidates were contained by

dbDEMC, indicating that they are potentially upregulated or down-

regulated in lung cancer (malignant lung neoplasms).

In Table 3, there are 13 candidates labeled with ‘literature’ (for de-

tails see Supplementary Table S1). Several studies confirmed that 8 of

13 miRNAs are significantly upregulated or downregulated in human

Table 1. Prediction results for MIDP and the other methods using 5-fold cross-validation

Disease name AUC

MIDP RWR-MDA HDMP RLS-MDA Chen’s method

Acute myeloid leukemia 0.913 0.839 0.858 0.853 0.716

Breast neoplasms 0.838 0.785 0.801 0.832 0.653

Colorectal neoplasms 0.845 0.793 0.802 0.831 0.662

Glioblastoma 0.786 0.680 0.700 0.714 0.607

Heart failure 0.821 0.722 0.770 0.738 0.761

Hepatocellular carcinoma 0.807 0.749 0.759 0.794 0.613

Lung neoplasms 0.876 0.827 0.835 0.855 0.606

Melanoma 0.837 0.784 0.790 0.807 0.642

Ovarian neoplasms 0.923 0.882 0.884 0.909 0.644

Pancreatic neoplasms 0.945 0.871 0.895 0.887 0.684

Prostatic neoplasms 0.882 0.823 0.854 0.841 0.629

Renal cell carcinoma 0.862 0.815 0.833 0.839 0.627

Squamous cell carcinoma 0.870 0.819 0.820 0.849 0.676

Stomach neoplasms 0.821 0.779 0.787 0.797 0.628

Urinary bladder neoplasms 0.897 0.821 0.850 0.845 0.632
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Fig. 4. The ROC curves for MIDP and other methods for 15 diseases. The

value in the bracket is the area under MIDP’s ROC curve for the specific

disease
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lung neoplasms versus normal lung tissue. In addition, hsa-mir-708

was found to be associated with poor survival in lung adenocarcin-

omas of non-smokers (Jang et al., 2012). Hsa-mir-302a was identified

to regulate epidermal growth factor receptor which is frequently found

to be activated by mutation or amplification in lung cancer (Chan

et al., 2012). Furthermore, the down-regulation of hsa-mir-320a con-

tributes to the up-regulation of PFKm in lung cancer (Tang et al.,

2012). Hsa-mir-452 was significantly upregulated in current smokers

compared with former smokers (Mascaux et al., 2013). Hsa-mir-122

was upregulated in five of eight lung cancer patients after diagnosis

(Keller et al., 2011). The above analysis indicates that these five

miRNAs are likely to be associated with lung cancer as well.

Finally, we used PhenomiR, which is a systematic and manually

curated resource that demonstrates miRNA dysregulation in diseases

and biological processes (Ruepp et al., 2010). It recorded that hsa-mir-

92b and hsa-mir-449b had abnormal expression in lung cancer. Aside

from PhenomiR, GeneCards provides compendium for non-coding

RNA genes, including the miRNAs (Belinky et al., 2013). The associ-

ation between hsa-mir-211 and lung cancer has been contained by

GeneCards. In addition, it has been reported that miRNAs are often

found in genomic clusters (Baskerville et al., 2005). As the clustered

miRNAs are usually transcribed together and coordinately regulated,

they are more likely to associate with similar diseases (Wang et al.,

2010; Xuan et al., 2013). Hsa-mir-373 and hsa-mir-372 are clustered

within a 10-kb region on chromosome 19, and the latter has been asso-

ciated with lung cancer (Yu et al., 2008). This shows that the former is

likely to participate in the lung cancer-related biological process.

In terms of BN, the top 50 candidates are listed in Supplementary

Table S2. Two candidates were included by miR2disease. Seven candi-

dates were supported by the literature to have dysregulation in BN,

and four additional candidates were also supported by the literature

to be related to breast cancer-related proteins or transcription factors.

dbDEMC identified 37 candidates as potential upregulated or down-

regulated miRNAs in breast cancer (malignant BN). PhenomiR re-

ported that 1 candidate had abnormal expression in breast cancer.

The genes-to-systems breast cancer database (G2SBC) is usually used

for studying breast cancer (Mosca et al., 2010). Furthermore,

miRNAs execute their functions by regulating target genes. For 4 can-

didates, G2SBC showed that at least 11 of their top 100 predicted tar-

get genes were breast cancer-related genes.

In terms of prostatic neoplasms, the top 50 candidates are dem-

onstrated in Supplementary Table S3. Twelve candidates were

included by miR2disease. Eight candidates were supported by the

literature to be upregulated or downregulated in prostate neoplasms,

and five candidates were reported by the literature to have abnormal

expression in metastatic prostate cancer xenografts, relative to their

non-metastatic counterparts. dbDEMC identified 30 candidates as

potential miRNAs which have abnormal expression levels in pros-

tate cancer. PhenomiR reported that one candidate was overex-

pressed in prostate cancer. Three candidates were also ranked higher

by Li’s method, RWRMDA, and Jiang’s method, which indirectly

confirms that they are more likely to be associated with the disease.

In addition, as RLSMDA was applied to the 32 diseases without

any known related miRNAs, MIDPE also investigated these dis-

eases. In the top 3 potential miRNA candidates predicted by

MIDPE, 44 miRNA-disease associations were confirmed by the re-

cent literatures and 3 associations have been included by

miR2Disease (See supplementary Table S4). In summary, these case

studies demonstrate that both MIDP and MIDPE are powerful for

discovering potential disease miRNAs.

3.5 Predicting novel miRNA-disease associations
After the superior performance of MIDP and MIDPE was confirmed

by cross-validation and case studies, MIDP and MIDPE were further

applied to the diseases with known related miRNAs and those with-

out known related miRNAs, respectively. During the prediction pro-

cess, all known miRNA-disease associations were utilized to

construct the prediction model. All the potential disease miRNA

candidates were listed in supplementary table S5. MIDP and MIDPE

will be useful in generating reliable candidates for subsequent ex-

perimental research.

4 Conclusion

A new method based on random walk (MIDP) was developed to

predict potential miRNA candidates for the diseases with known
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Table 2. A pairwise comparison using a paired t-test of the ranking

results based on the AUCs

RWRMDA HDMP RLSMDA Chen’s

method

P-value between

MIDP and

another method

3.24e–09 1.817e–09 2.589e–05 3.222e–10
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Fig. 7. The ROC curves for MIDPE and RLSMDA for 3 diseases which known

related miRNAs were removed
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related miRNAs. We constructed the miRNA network derived from

miRNA-associated diseases to integrate the similarities between

nodes, the prior information of nodes, and the local topological

structure. Based on the characteristics of the labeled and unlabeled

nodes, their transition matrices were established. The transition

probability between the nodes was proportional to the similarity be-

tween them. The labeled nodes were assigned higher transition

weight than the unlabeled nodes, which efficiently exploited the

prior information of nodes and the various ranges of topologies. The

degree to which the walker could deviate from the labeled nodes

was controlled by restarting the walking. This effectively relieved

the negative effect of noisy data.

In addition, an extension method (MIDPE) was proposed specially

for the diseases without any known related miRNAs. The miRNA-dis-

ease bilayer network was constructed to integrate the information in

miRNA network derived from miRNA-associated diseases (Mnet)

and the information in disease network (Dnet). The transition matrix

for the bilayer network was constructed according to the association

degree between the miRNA node (or the disease node) and a given dis-

ease. At the same time, the information in Mnet and that in Dnet

were assigned different weights to balance their relative importance.

Similarly, the restart probability in the bilayer network controlled

how far the walker can go away from the starting node.

MIDP was compared with RWRMDA, HDMP, RLSMDA and

Chen’s method. MIDPE was compared with RLSMDA which was the

single method applied to the diseases without known related miRNAs

before. The results demonstrated that MIDP and MIDPE have super-

ior prediction performance. The cross-validation and the case studies

indicated that MIDP and MIDPE are powerful not only for capturing

known disease miRNAs but also for discovering potential candidates.

It will be useful for providing reliable candidates for future studies of

miRNA involvement in the pathogenesis of diseases.
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