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Abstract

Motivation: The identification of disease-related microRNAs (miRNAs) is an essential but challeng-

ing task in bioinformatics research. Similarity-based link prediction methods are often used to

predict potential associations between miRNAs and diseases. In these methods, all unobserved as-

sociations are ranked by their similarity scores. Higher score indicates higher probability of exist-

ence. However, most previous studies mainly focus on designing advanced methods to improve

the prediction accuracy while neglect to investigate the link predictability of the networks that

present the miRNAs and diseases associations. In this work, we construct a bilayer network by inte-

grating the miRNA–disease network, the miRNA similarity network and the disease similarity net-

work. We use structural consistency as an indicator to estimate the link predictability of the related

networks. On the basis of the indicator, a derivative algorithm, called structural perturbation

method (SPM), is applied to predict potential associations between miRNAs and diseases.

Results: The link predictability of bilayer network is higher than that of miRNA–disease network, indi-

cating that the prediction of potential miRNAs–diseases associations on bilayer network can achieve

higher accuracy than based merely on the miRNA–disease network. A comparison between the SPM

and other algorithms reveals the reliable performance of SPM which performed well in a 5-fold cross-

validation. We test fifteen networks. The AUC values of SPM are higher than some well-known meth-

ods, indicating that SPM could serve as a useful computational method for improving the identification

accuracy of miRNA–disease associations. Moreover, in a case study on breast neoplasm, 80% of the

top-20 predicted miRNAs have been manually confirmed by previous experimental studies.
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1 Introduction

MicroRNAs (miRNAs) are a class of small, endogenous, non-coding

RNAs that function in post-transcriptional regulation of gene expres-

sion and RNA silencing (Ambros, 2004; Bartel, 2004). Accumulated

experimental evidence suggests that miRNAs are involved in close re-

lationships with the emergence and development of human diseases

(Alvarez-Garcia and Miska, 2005; Jopling et al., 2005). Therefore,

identifying the associations between miRNAs and diseases may

largely help to understand the diseases’ pathogeneses. Multiple data-

bases, such as HMDD v2.0 (Li et al., 2014), miR2Disease (Jiang

et al., 2009), miRCancer (Xie et al., 2013) and dbDEMC (Yang,

2010) have been constructed to store useful data regarding RNAs.

Given that biological experimental methods involve many restrictions,

such as high costs and long execution times, computational prediction

methods are useful by prioritizing candidate miRNAs for specific diseases

(Zeng et al., 2016). How to well utilize the known information to predict

the potential disease-associated miRNAs? The question is actually the link

prediction problem on miRNA–disease networks (Lü and Zhou, 2011).

Jiang et al. (2010a) proposed the first computational method, which con-

structed a human phenome–miRNAome network. The similarity scores

were calculated by the cumulative hypergeometric distribution. To fur-

ther ameliorate their method, Jiang et al. (2010b) integrated multiple

genomic data using the naı̈ve Bayes model. The scholars then calcu-

lated the functional similarity between genes under the biological

knowledge that miRNAs regulate diseases through their target genes.

Xu et al. (2011) focused on extracting features from the miRNA–

disease network data. These network data were constructed under

two considerations, namely, a feature set primarily related to miRNA

information and disease phenotype information. Chen et al. (2012)

presented the RWRMDA model to identify potential miRNA–disease

pairs by adopting random walks on the miRNA functional similarity

network. Moreover, Shi et al. (2013) improved the RWRMDA by

considering miRNA–target associations, disease–gene associations

and protein–protein interaction networks. HDMP (Xuan et al., 2013)

evaluated the k most functionally similar neighbors by considering the

disease terms and phenotype similarity. Chen and Yan (2015) pre-

sented a semi-supervised method based on regularized least squares

(RLSMDA). In the study, the authors used their proposed method to

integrate known miRNA–disease associations, disease–disease simi-

larity datasets and miRNA–miRNA functional similarity networks.

Xuan et al. (2015) developed the MIDP method, which uses the fea-

tures of different nodes on the basis of random walks with a restart.

An extension method, named MIDPE, was proposed by constructing

a miRNA–disease bilayer network. This approach was formulated be-

cause nearly all the previous methods based on random walks could

not be applied without any known related miRNA. The KATZ

method (Lü et al., 2009; Zou et al. 2015) denotes the associations on

the basis of paths of different lengths in the miRNA–disease network.

Luo et al. (2016) used the local neighbors of different node types

and developed a collection prediction method on the basis of trans-

duction learning (CPTL) to predict the miRNA–disease interactions.

WBSMDA method (Chen, 2016) integrates several heterogeneous

biological datasets on the basis of between-scores and within-scores

for miRNA–disease associations. Meanwhile, PBMDA (You et al.,

2017) is an effective path-based model for miRNA–disease associ-

ation prediction. This model adopts the depth-first search algorithm

by integrating the disease semantic similarity, miRNA functional simi-

larity, known human miRNA–disease associations and Gaussian

interaction profile kernel similarity for miRNAs and diseases.

The existing methods can be categorized into four aspects: (i)

neighborhood-based methods, such as HDMP (Xuan et al., 2013) and

CPTL (Luo et al., 2016); (ii) random walk-based methods, such as

RWRMDA (Chen et al., 2012), Shi’s method (Shi et al., 2013), MIDP

and MIDPE (Xuan et al., 2015); (iii) machine learning-based methods,

such as Jiang’s method (Jiang et al., 2011), Xu’s method (Xu et al.,

2011) and the RLSMDA (Chen and Yan, 2015); (iv) path-based meth-

ods, such as KATZ (Zou et al., 2015) and PBMDA (You et al., 2017).

Most previous studies mainly focus on designing advanced methods

to improve the prediction accuracy while neglect to investigate to what

extend the miRNAs–diseases associations can be predicted. In this study,

we use an indicator for estimating link predictability, named the structural

consistency index (Lü et al., 2015), to solve the above problems. Given

the perturbation of the adjacency matrix, the structural consistency index

is free of prior knowledge of network organization. The predictability of

a network is reflected by the consistency of the structural features before

and after a removal of a part of links randomly. Then, we apply the struc-

tural perturbation method (SPM), to predict potential miRNA–disease as-

sociations. In the prediction process, we first construct a bilayer

network which integrates the verified miRNA-associated diseases

with the disease and miRNA similarity networks. Then, we randomly

select a part of links from the bilayer network to form a perturbation

set. We use the perturbation set to agitate the remaining links by first-

order approximation and then compute the perturbed adjacency ma-

trix. The unobserved links are ranked by their scores in the perturbed

matrix. The top-ranked miRNAs are selected as the prediction results.

We summarize our major contributions as follows. First, a bilayer

network is constructed for miRNA–disease prediction. This network

integrates three single networks, namely the miRNA–miRNA similarity

network, the disease–disease similarity network and the miRNA–

disease bipartite network where the edges represent the associations

between miRNAs and diseases. Second, we employ the structural con-

sistency indicator to investigate the link predictability of the con-

structed bilayer network and find that it is predictable with structural

consistency equal to 0.581 which is much higher than any of the three

single networks. Third, we apply the SPM to predict potential

miRNA–disease associations. We select new associations that cannot

seriously affect the structural consistency of a network. Finally, we exe-

cute an iterative operation for effectively improving the performance,

given that the miRNA–disease bilayer network is incomplete. The ex-

perimental results show that our method can achieve higher accuracy

than many previous methods in a 5-fold cross-validation. Moreover, in

a case study on breast neoplasm, 80% of the top-20 predicted miRNAs

have been manually confirmed by previous experimental studies.

2 Materials and methods

2.1 Construct miRNA–disease bilayer network
We first construct a bilayer network which integrates three networks,

namely the bipartite network with verified miRNA–disease associations,

the diseases similarity network and the miRNAs similarity network.

To construct the miRNA–disease network, we download the lat-

est version of the human miRNA–disease database (HMDDv2.0) (Li

et al., 2014). If a miRNA is related to a disease, an edge is added to

link them. A total of 6441 associations between 577 miRNAs and

336 diseases are available after removing duplications.

Functionally similar genes demonstrate a greater probability of reg-

ulating similar diseases. Therefore, we use gene functional information

to construct disease similarity network. We download the data from

the HumanNet database (Lee et al., 2011), which contains an associ-

ated log-likelihood score (LLS) of each interaction between two genes

or gene sets. We calculate the similarity DS di; dj

� �
between diseases di

and dj based on the gene functional information, as follows:
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DS di;dj

� �

¼

P
x2SðdiÞLLSðx;SðdjÞÞþ

P
y2SðdjÞLLSðy;SðdiÞÞ

S dið Þj jþ S dj

� ��� �� ; S dið Þj jþ S dj

� ��� �� 6¼0

0; otherwise

8><
>:

(1)

where SðdiÞ and S dj

� �
represent the gene sets that related to diseases

di and dj, respectively. jSðdiÞj and jSðdjÞj are the cardinalities of gene

sets SðdiÞ and S dj

� �
; respectively. LLS(x, SðdjÞ) is the LLS between

gene x and gene set SðdjÞ where x2SðdiÞ. Similarly, we can define

LLS(y, SðdiÞ). If DS di;dj

� �
>0, it can be considered as the weight of

the link connecting diseases di and dj. Hence, we obtain a weighted

disease similarity network containing 112896 similar associations

between 336 diseases.

The miRNA similarity network is constructed by employing four

main parameters of two miRNAs, namely the verified miRNA-

target associations, family information, cluster information and veri-

fied miRNA–disease associations. First, we download the verified

miRNA–target associations experimentally supported from the

miRTarBase (Hsu et al., 2014). Two miRNA nodes are connected

if they share common targets; the edge weight, RST (miRNA

Similarity based on Target), represents the number of shared targets

between miRNAs. Therefore, we obtain 463 483 pairwise RST. We

subsequently download the miRNA family data from ftp://mirbase.

org/pub/mirbase/CURRENT/mi-Fam.dat.gz (Griffiths-Jones, 2003).

Different miRNAs belong to 299 miRNA families. If two miRNAs

belong to the same miRNA family, we set their RSF (miRNA

Similarity based on Family) value as 1, otherwise 0. Third, the

miRNA cluster information is accessible in miRbase (Kozomara and

Griffiths-Jones, 2014). We obtain 153 clusters of miRNAs. If two

miRNAs belong to the same cluster, then the RSC (miRNA Similarity

based on Cluster) value set as 1. Obviously, RSF and RSC are both

Boolean type matrix. Finally, according to pervious literatures (Wang

et al., 2010), miRNAs with similar function are more likely to associ-

ate with similar diseases. Therefore, we utilize MISIM (downloaded

from http://www.cuilab.cn/files/images/cuilab/misim.zip), a miRNA

similarity network based on verified miRNA–disease associations, to

define RSD (miRNA Similarity based on Disease). After data prepar-

ation, we combine the RST, RSF, RSC and RSD to calculate the simi-

larity RS ri; rj

� �
between miRNA ri and miRNA rj, as follows:

RS ri; rj

� �
¼ a � RST ri; rj

� �
þ b � RSF ri; rj

� �
þ c � RSC ri; rj

� �
þ h

� RSD ri; rj

� �
(2)

where a, b, c and h are the corresponding parameters to adjust the

weights of the four parts, and aþbþ cþ h¼1. RST, RSF, RSC and

RSD values are calculated based on the miRNA–target, miRNA

family, miRNA cluster and miRNA–disease, respectively. Selecting

the suitable values for a, b, c and h is essential. In our experiments,

we tune the parameters a, b and c from 0 to 1 with step 0.1, whereas

h¼1—a—b – c. The prediction achieves the best performance when

a¼0.2, b¼0.1, c ¼0.2 and h¼0.5. The RS value between two

miRNAs can be considered as the weight of the link if it is greater

than 0. Hence, we obtain a weighted miRNA similarity network

which contains 332 928 similar associations between 577 miRNAs.

By integrating the above three networks, we constructed a bi-

layer network. We define matrix RSnet as the miRNA similarity net-

work, the weights are RS values. We define matrix DSnet as the

disease similarity network, the weights are DS values. We define ma-

trix RDnet as the known disease–miRNA associations, if miRNA i

and disease j are connected, the element RDnetij ¼ 1; otherwise,

RDnetij ¼ 0.Therefore, miRNA–disease bilayer network can be ex-

pressed by a N�N (N¼913, the total number of miRNAs and dis-

ease in the network) undirected adjacency matrix AN�N.

A ¼
RSnet RDnet

RDnetT DSnet

" #
(3)

For prioritizing the most possibly potential miRNA–disease asso-

ciations, Figure 1 demonstrates a flowchart of how to construct the

bilayer network.

2.2 Structural consistency index
Structural consistency is used to quantify the link predictability of

complex network (Lü et al., 2015). It is defined as the consistency of

structural features before and after a removal of a partial of associ-

ations randomly. In this paper, we extend this method to weighted

bilayer networks.

The weighted miRNA–disease bilayer network can be presented

by a graph GðV;E;WÞ. V is the set of nodes, which include both

miRNA and disease nodes, E is the set of edges and W is the set of

weights. We select a fraction of the links to compose a perturbation

set DE, whereas the rest of the links define as ER. DA and ARdenote

the corresponding weighted adjacency matrices respectively; and

A ¼ AR þ DA. Obviously, AR is a real symmetric matrix, therefore

AR can be diagonalized as follows.

AR ¼
XN
k¼1

kkxkxT
k (4)

where kk are the eigenvalues for AR, and xk are the corresponding

orthogonal and normalized eigenvectors. Using DE as perturbation

set, we obtain a perturbed matrix by first-order approximation.

First-order approximation allows the eigenvalues to change but

keep the eigenvectors constant. Two cases are considered. First, con-

sidering the non-degenerated case without any repeated eigenvalues.

After perturbation, the eigenvalue kk is adjusted to be kk þ Dkk, and

the corresponding eigenvector is adjusted to be xk þ Dx. By multi-

plying the eigenfunction, we have

AR þ DA
� �

xk þ Dxkð Þ ¼ ðkk þ DkkÞ xk þ Dxkð Þ: (5)

By neglecting the second-order terms xT
k DADxk and DkkxT

k Dxk, we

obtain

Fig. 1. The process of constructing a bilayer network and calculating per-

turbed network
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Dkk �
xT

k DAxk

xT
k xk

: (6)

Keeping eigenvectors unchanged, using the perturbed eigenvalues,

the following perturbed matrix can be obtained,

A0 ¼
XN
k¼1

ðkk þ DkkÞxkxT
k (7)

which is considered as linear approximation.

Next, considering the adjacency matrix contains repeated

eigenvalues. If kki as eigenvalues, the index i denotes M related

eigenvectors of the same eigenvalues and the index k denotes differ-

ent eigenvalues. Given that any linear combination of eigenvectors

belonging to the same eigenvalue is still an eigenvector. After adding

a perturbation into the network, we choose the degenerate eigen-

values, which can be changed successively into the perturbed non-

degenerate eigenvalues. If we define the chosen eigenvectors to be

x0ki ¼
PM

j¼1 bkjxkj, the eigenfunction becomes

ðAR þ DAÞx0ki ¼ ðkki þ Dk0kiÞx0ki (8)

giving us

Dk0ki

XM
j¼1

bkjxkj ¼
XM
j¼1

bkjDAxkj (9)

For any n¼1���M, left multiplying Equation (9) by xT
kn, we obtain

Dk0kibkn ¼
XM
j¼1

bkjx
T
knDAxkj: (10)

Written in matrix form, Equation (10) becomes

WBk ¼ Dk0kBk (11)

where Wnj ¼ xT
knDAxkj, which is a M�M matrix, and Bk is the col-

umn vector of bkj.Then, according to eigenfunction (11), we obtain

Dk0k and Bk, the perturbed adjacency matrix A0 is obtained by sim-

ply replacing xk and Dkk in Equation (7) with x0k and Dk0k.

Matrix eigenvectors can reflect the network structural features. If

the eigenvectors of the matrix A0and the matrix A are nearly the

same, it indicates that the perturbation set not significantly changes

the structural features. In other words, the network is of high struc-

tural consistency. All unobserved links and perturbed links are ranked

in descending order according to their corresponding scores in per-

turbed matrix A0. Denote the set of top-L links as EL, where

L ¼ jDEj. Structural consistency rc is defined as the ratio of shared

links between DE and EL to L, follow as

rc ¼
jEL \ DEj

L
: (12)

Figure 2 shows how to calculate the structural consistency rc of an

exampled network. The left figure shows the adjacency matrix A,

where the number in each square is the corresponding value of the

matrix element. The second figure represents the matrix AR which is

obtained by randomly removing a fraction of the observed links.

The removed links, namely (2, 10), (2, 14), (3, 4), (3, 7) and (8, 12),

constitute the perturbation set DE. Obviously, L ¼ DEj j ¼ 5:

The right figure is the perturbed matrix A0. By ranking the unob-

served links in AR according to their corresponding values in A0, we

obtain that the top-L links in EL are (2, 10), (3, 4), (6, 15), (8, 12)

and (12, 15). Therefore, there are three shared links between DE

and EL; rc ¼ 0:6.

We calculated the structural consistency of the seven related net-

works mentioned in Section 2.1, which is shown in Table 1. For

every network, 10% of total links are selected at random to com-

pose the perturbation set. Note that in this experiment, we randomly

select links in the bilayer network, which means the perturbation set

may contain three kinds of links. The network RSnet that contains

more information has higher structural consistency than MISIM. The

constructed miRNA–disease bilayer network has the highest structural

consistency, indicating that higher structural consistency can be ob-

tained by considering more information. Moreover, RDnetþRSnet

has higher rc than RDnetþDSnet, indicating that RSnet is more help-

ful than DSnet on improving the link predictability.

2.3 Structural perturbation link prediction method
Different from the experiments in (Lü et al., 2015), in our paper the

perturbation is carried out on a weighted bilayer network. To evalu-

ate the performance of SPM, we adopted 5-fold cross-validation

based on verified miRNA–disease associations downloaded from

HMDD database (Li et al., 2014). In 5-fold cross-validation, the ori-

ginal set is random divided into five equal sized subsets. Of the five

subsets, a single subset is retained as the validation data for testing

the model, and the remaining four subsets are used as training data.

The cross-validation process is then repeated five times, with each

of the five subsets used exactly once as the validation data. The five

results from the folds can then be averaged to produce a single esti-

mation. For a bilayer network A, we predict miRNA–disease poten-

tial associations by using SPM. The observed miRNA–disease

associations are partitioned into five equal subsets randomly. One of

the five subsets is selected as probe set, and the rest four subsets to-

gether with the RSnet and DSnet constitute the training set. Then,

we randomly remove a fraction of links from training sets to

Fig. 2. An example of calculating rc
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constitute the perturbation set. The perturbed matrix can be ob-

tained as A0 through Equation (7) (see Section 2.2).

The final prediction matrix A0h i is obtained by averaging over t in-

dependent selections of perturbation set. Under this framework, the

entries for A0h i can be considered as score between a pair of nodes of

the given bilayer network A. Their scores in A0h i determine the rank

of all unobserved miRNA–disease associations with the assumption

that links with higher scores have greater existence likelihood.

3 Results

3.1 Evaluation metrics
We evaluate the ability of SPM to predict potential disease-related

miRNAs by performing a 5-fold cross-validation. For a specific dis-

ease d, d-related relationships are randomly divided into five sub-

sets, four of which are used as known information; the last subset is

used for testing. We introduce three evaluation metrics that are pro-

posed for the evaluation of the performance of miRNA–disease as-

sociation prediction results.

PRE is the precision of specific diseases. PRE is the ratio of

related samples selected to the number of samples selected.

PRE ¼ TP

TPþ FP
(13)

where TP and FP are the number of true positive and false positive

samples with respect to a specific disease, respectively. Based on the

definition, the larger PRE value, the better prediction accuracy.

REC is the recall of the specific diseases.

REC ¼ TP

TPþ FN
(14)

where FN is the number of false negative samples with respect to a

specific disease.

AUC means the area under the receiver operating characteristic

curve, which is a global prediction performance indicator. We calcu-

late the true positive rate (TPR) and the false positive rate (FPR) by

varying the threshold, and obtain the receiver operating characteris-

tic (ROC) curves.

TPR ¼ TP

TPþ FN
(15)

FPR ¼ FP

TN þ FP
(16)

where FN and FP are the number of negative and positive samples

erroneously identified. TN and TP are the number of negative and

positive samples correctly identified.

3.2 Performance on the bilayer network
We firstly investigate the effect of parameter t on the prediction per-

formance of SPM on bilayer network constructed in Section 2.1.

Figure 3 shows the change in AUC values as t increases. Each point is

the average over five AUC values. As can been seen that the AUC values

increase with t, but when t over ten, the AUC values nearly remained

unchanged. Therefore, for simplicity we set t¼10 for all experiments.

Table 2 shows the AUC across all tested diseases of the four

related networks. The prediction accuracy of miRNA–disease relations

on bilayer network is the highest among the four cases, indicating that

the addition of RSnet and DSnet can improve the prediction accuracy.

The existing literatures indicate that many of diseases are related

with only few miRNAs, the number of miRNAs was insufficient to

evaluate the prediction performance. Therefore, we tested the perform-

ance of SPM in three diseases, namely breast neoplasm, heart failure

and lung neoplasm. For a specific disease, we rank the related candidates

according to their scores in A0. We measured the PRE and REC within

the top 10, 20, . . ., 90 and 100 candidates in rank list, because the top

portion of the prediction links are more important. The PRE indicates

the ratio of positive samples in the top-k samples. The REC measures

how many positive samples are correctly identified within the top-k.

ROC curves were used as the global prediction performance indicator.

Table 3 shows the ROC curves, PRE and REC for different dis-

eases. The AUC values of the three diseases achieve relative good

performance. As k increasing, REC is on the rise, but PRE de-

creases. This demonstrates that the links ranked the top places have

a greater probability of being potential associations.

Table 1. The structural consistency of the seven related networks

Network MISIMa RSnet DSnet RDnet RDnetþDSnet RDnetþRSnet Bilayer network (A)

structural consistency 0.317 6 0.03 0.340 6 0.06 0.316 6 0.05 0.223 6 0.04 0.232 6 0.01 0.275 6 0.03 0.58160.02

Note:The bold values show the highest value for each row.
aMISIM is a miRNA similarity network based on verified miRNA–disease associations, and we call it as RSD (miRNA similarity based on disease).

Fig. 3. AUC values versus parameter t

Table 2. The AUC across all tested diseases of the four related

networks

Network RDnet RDnetþDSnet RDnetþRSnet Bilayer network (A)

AUC 0.8456 0.8510 0.8734 0.882

Note: The bold values show the highest value for each row.

Prediction of potential disease-associated microRNAs 2429

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/14/2425/4911531 by guest on 16 August 2022

Deleted Text: miRNA-disease
Deleted Text: , 
Deleted Text: ,
Deleted Text: ,


3.3 Comparison with other existing methods
We compare the SPM with four widely applied miRNA–disease pre-

diction algorithms: (i) RWRMDA (Chen et al., 2012); (ii) HDMP

(Xuan et al., 2013); (iii) RLSMDA (Chen and Yan, 2015);

(iv) MIDP (Xuan et al., 2015). We use the same bilayer network

(constructed in section 2.1) for different methods. Table 4 shows the

prediction performance measured by AUC for different diseases.

The highest value for each row is in boldface. For all fifteen tested

diseases, SPM is superior to all other algorithms, including MIDP.

The average AUC values of RWRMDA, HDMP, RLSMDA, MIDP

and SPM are 79.9, 81.6, 82.6, 86.2 and 91.4%, respectively.

The average AUC of SPM is higher than that of the other four meth-

ods by 11.5, 9.8, 8.8 and 5.2%, respectively. The highest AUC value

of acute myeloid leukemia is 0.957.

Table 3. ROC curves, precision and recall for SPM by using a 5-fold cross-validation

Disease Name ROC CERERP

Breast neoplasm

Heart failure

Lung neoplasm

Table 4. The AUC values for five methods by using 5-fold

cross-validation

Disease name AUC

RWRMDA HDMP RLSMDA MIDP SPM

Breast neoplasm 0.785 0.801 0.832 0.838 0.932

Hepatocellular carcinoma 0.749 0.759 0.794 0.807 0.918

Renal cell carcinoma 0.815 0.833 0.839 0.862 0.901

Squamous cell carcinoma 0.819 0.820 0.849 0.870 0.899

Colorectal neoplasm 0.793 0.802 0.831 0.845 0.885

Glioblastoma 0.680 0.700 0.714 0.786 0.840

Heart failure 0.722 0.770 0.738 0.821 0.950

Acute myeloid leukemia 0.839 0.858 0.853 0.915 0.957

Lung neoplasm 0.827 0.835 0.855 0.876 0.892

Melanoma 0.784 0.790 0.807 0.837 0.951

Ovarian neoplasm 0.882 0.884 0.909 0.923 0.949

Pancreatic neoplasm 0.871 0.895 0.887 0.945 0.954

Prostatic neoplasm 0.823 0.854 0.841 0.882 0.928

Stomach neoplasm 0.779 0.787 0.797 0.821 0.859

Urinary bladder neoplasm 0.821 0.850 0.845 0.897 0.898

Average AUC 0.799 0.816 0.826 0.862 0.914

Note: The bold values show the highest value for each row.
Fig. 4. The ROC across all tested diseases
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We compare SPM with MIDP in AUC and REC, see Figure 4.

The AUC value of MIDP corresponding to all diseases is 0.829,

whereas the AUC value of SPM is 0.882, which improves by 5.3%.

Moreover, as shown in Figure 5, within the top 30, the average re-

call of MIDP and SPM for all fifteen diseases are 43.5 and 49.4%,

respectively. The REC for SPM is higher by 5.9% than that for

MIDP. SPM produces superior results by considering the universal

structural feature information.

3.4 Case study: breast neoplasm
Now we analyze in detail the prediction accuracy on breast neoplasm,

and mainly focus on the top-20 miRNA candidates in Table 5. We

adopt three ways to evaluate the performance. First, we use the

miR2Disease, a database including manually curated miRNAs, which

is abnormally regulated in multiple diseases (Jiang et al., 2009). As

shown in Table 5, 6 of 20 candidates are contained in miR2Disease.

Secondly, we uses dbDEMC, a database to identify the potential

cancer-related miRNAs (Yang, 2010). Table 5 shows that 9 of 20

candidates are included in dbDEMC, indicating that they are upregu-

lated or downregulated in breast neoplasm. Besides, we also find that

8 miRNAs have been supported by literatures, see the candidates

labeled with ‘literature’ in Table 5. In general, 16 of 20 candidates

can be confirmed by other databases or literatures. In addition to

breast neoplasm, we also analyze the prediction accuracy of prostatic

neoplasms and lung neoplasms. The details of top-20 miRNA candi-

dates of prostatic neoplasms and lung neoplasms are provided in

Supplementary Tables S1 and S2, respectively.

To further manifest the performance of SPM, we use the old ver-

sion of the human miRNA–disease database (HMDDv1.0, before

Fig. 5. Average recalls across 15 tested diseases

Table 5. The top-20 breast neoplasm related candidates

Top 1–7 Top 8–14 Top 15–20

miRNAs Evidence miRNAs Evidence miRNAs Evidence

hsa-mir-526a-1 miR2Disease,

dbDEMC,

Literature1

hsa-mir-509-1 dbDEMC hsa-mir-148b miR2Disease,

dbDEMC,

Literature1

hsa-mir-526b miRCancer hsa-mir-374a Literature3 hsa-mir-517a miRCancer

hsa-mir-367 dbDEMC,

Literature2

hsa-mir-376c miR2Disease,

dbDEMC,

Literature1

hsa-mir-503 dbDEMC,

miRCancer

hsa-mir-502 dbDEMC,

miRCancer

hsa-mir-302c dbDEMC,

Literature2

hsa-mir-128-2 Literature4

hsa-mir-410 miRCancer hsa-mir-181d miR2Disease hsa-mir-519a-1 Unconfirmed

hsa-mir-331 Unconfirmed hsa-mir-409 miR2Disease,

dbDEMC,

Literature1

hsa-mir-422a Unconfirmed

hsa-mir-490 miR2Disease,

miRCancer

hsa-mir-522 Unconfirmed

Notes: Literature1 is circulating microRNAs as potential blood-based biomarkers for detection of colorectal of colorectal cancer. Literature2 is microRNAs ex-

hibit high frequency genomic alterations in human cancer. Literature3 is microRNA-374a actives Wnt/b-catenin signaling to promote breast cancer metastasis.

Literature4 is downregulation of miRNA-128 sensitizes breast cancer cell to chemodrugs by targeting Bax.

Fig. 6. Recalls of newly discovered miRNAs of breast neoplasm
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June 16, 2013) as training data to construct the bilayer network and

to predict the associations between miRNAs and diseases; then we

employee the newly discovered disease miRNAs in HMDDv2.0 to

verify the prediction results. In this experiment, we still use breast

neoplasm as a case study because the newly discovered breast neo-

plasm related miRNAs are the most among all the diseases. Figure 6

shows the recalls of new discovered miRNAs of breast neoplasm

predicted by SPM and MIDP. In all six groups of investigations,

SPM outperforms MIDP. For the top-50 predicted miRNAs, the re-

call rate of SPM and MIDP are 29.4 and 17.6%, respectively. The

improvement increases if we focus on the top-100 places.

In summary, the results of case studies on breast neoplasm also

demonstrate that SPM is a useful tool to identify the potential

disease-associated miRNAs.

4 Conclusion

We constructed a miRNA–disease bilayer network which consists of

three single networks, namely the verified disease-related miRNAs

associations, the diseases similarity network and the miRNAs simi-

larity network. We used the structural consistency indicator to

quantify the links predictability of this network and found that the

miRNA–disease bilayer network is much more predictable than any

of the three single networks. Subsequently, we applied the structural

perturbation method (SPM) to predict the connections of miRNAs–

diseases in bilayer network. For SPM, we finally obtained the per-

turbed matrix, which is considered as the score matrix between pair of

nodes in the network. SPM does not use the similarity of two nodes to

make prediction, but recovers the missing links (i.e. unknown informa-

tion) by perturbing the network with another set of known links.

We compared SPM with RWRMDA, HDMP, RLSMDA and

MIDP. The results demonstrate that SPM is powerful in discovering po-

tential disease-related miRNA candidates. Furthermore, a case study on

breast neoplasm was carried out and a good prediction can also be

achieved by SPM. We believe that SPM is useful in supplying reliable

candidates for further study on the involvement of disease pathogenesis.
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