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ABSTRACT  

 

Background  

Preeclampsia, a pregnancy-specific condition associated with new-onset hypertension after 20 

weeks gestation, is a leading cause of maternal and neonatal morbidity and mortality.  Predictive 

tools to understand which individuals are most at risk are needed.  

 

Methods 

We identified a cohort of N=1,125 pregnant individuals who delivered between 05/2015-05/2022 

at Mass General Brigham hospitals with available electronic health record (EHR) data and linked 

genetic data. Using clinical EHR data and systolic blood pressure polygenic risk scores (SBP 

PRS) derived from a large genome-wide association study, we developed machine learning 

(xgboost) and linear regression models to predict preeclampsia risk.  

 

Results 

Pregnant individuals with an SBP PRS in the top quartile had higher blood pressures throughout 

pregnancy compared to patients within the lowest quartile SBP PRS. In the first trimester, the 

most predictive model was xgboost, with an area under the curve (AUC) of 0.73. Adding the 

SBP PRS to the models improved the performance only of the linear regression model from 

AUC 0.70 to 0.71; the predictive power of other models remained unchanged. In late pregnancy, 

with data obtained up to the delivery admission, the best performing model was xgboost using 

clinical variables, which achieved an AUC of 0.91.  
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Conclusions 

Integrating clinical and genetic factors into predictive models can inform personalized 

preeclampsia risk and achieve higher predictive power than the current practice. In the future, 

personalized tools can be implemented in clinical practice to identify high-risk patients for 

preventative therapies and timely intervention to improve adverse maternal and neonatal 

outcomes. 

 
 

 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 7, 2023. ; https://doi.org/10.1101/2023.02.03.23285385doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.03.23285385


 5 

NON-STANDARD ABBREVIATIONS AND ACRONYMS 

AUC, area under the receiver operator curve 

BMI, body mass index 

DBP, diastolic blood pressure 

GWAS, genome-wide association study 

IUGR, intrauterine growth restriction  

PCA, principle components of ancestry 

PRS, polygenic risk score 

SBP, systolic blood pressure 

SGA, small for gestational age  

SNP, single-nucleotide polymorphism 

XGB, xgboost 
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INTRODUCTION 

 

Preeclampsia, defined as new onset of elevated blood pressure after 20 weeks gestation, is a 

leading cause of maternal and neonatal morbidity and mortality worldwide.1 Preeclampsia affects 

2-8% of all pregnancies2 and contributes to 26% of maternal deaths worldwide and 15% of 

preterm births3. In the US, preeclampsia incidence is increasing and results in significant 

healthcare utilization.2 Maternal complications include end-organ damage, eclamptic seizures, 

and death. Fetal/neonatal complications include growth restriction and iatrogenic preterm birth. 

Timely diagnosis and treatment can reduce the risk for severe maternal and neonatal morbidity 

by 72-89%.4,5 

 

Current clinical practice in patients at risk for preeclampsia is focused on close surveillance, 

early detection, and prompt management.6,7  Pregnant patients’ risk for preeclampsia is assessed 

at the first prenatal visit and, in those at high risk, prophylaxis with low-dose aspirin and close 

blood pressure monitoring is recommended. Patients at high risk for preeclampsia should be 

managed by providers with experience in high-risk pregnancy at tertiary care hospitals. 

Currently, high-risk individuals are identified based on clinical factors, including pre-existing 

hypertension, obesity, pregestational diabetes, advanced maternal age, multiple gestation, and 

prior preeclampsia; however, this approach fails to identify 46-60% of pregnancies that develop 

preeclampsia.8-10 Improved tools to understand each individual’s personalized disease risk has 

the potential to markedly improve pregnancy care and clinical outcomes.   Machine learning 

methods, based on implicitly learning relationships in large datasets allow for  precise outcome 

prognostication and may improve preeclampsia prediction. Recent machine learning studies 
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about the risks of hypertensive disorders of pregnancy11  and preeclampsia10,12 demonstrate the 

potential of these methods to generate highly accurate predictions.13 However, models published 

to date have low predictive power in early pregnancy when little clinical information is available; 

in addition, a significant number of patients – especially nulliparous patients without clinical risk 

factors – develop preeclampsia and, thus, fail to be identified by current models. 

 

While preeclampsia has substantial heritability based both on maternal and fetal factors, 14 the 

specific genetic factors contributing to risk are just beginning to be identified, as detailed in 

recent genome-wide association studies (GWAS).15-17 Importantly, in the largest published 

maternal preeclampsia GWAS, the top hits were all loci previously implicated in essential 

hypertension risk. In addition, several studies have demonstrated that the overall genetic 

architecture of maternal preeclampsia overlaps with the genetics of both systolic and diastolic 

blood pressure, as well as body mass index (BMI).15-18 Given that essential hypertension is a 

known clinical risk factor for preeclampsia,19,20  and genetic predisposition to hypertension is 

associated with increased preeclampsia risk, we hypothesized that a machine learning model 

incorporating both clinical risk factors and a hypertension genetic risk score (i.e., polygenic risk 

score, PRS, generated from GWAS summary statistics21,22) could improve preeclampsia risk 

prediction for pregnant individuals. As PRS are associated with disease risk independent of other 

clinical and environmental risk factors, all factors can be combined additively in a single model. 

23,24,25  
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In this study, we utilize a rich database derived from the electronic health record (EHR) of 

patients who have had a pregnancy in our healthcare system linked with genetic data from the 

biobank. We investigate the relative importance of different clinical risk factors and polygenic 

risk scores in the first trimester, as well as late pregnancy (before admission for delivery), to 

predict preeclampsia.  
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METHODS 

 

The data that support the findings of this study are available from the corresponding author upon 

reasonable request and based on institutional guidelines. 

 

Population 

This study was approved by the Mass General Brigham Institutional Review Board, protocol # 

2020P002859, with a waiver of patient consent. Pregnant patients were selected based on 

documentation of pregnancy greater than 20 weeks gestation and associated billing codes for 

cesarean or vaginal delivery. We included all available patients from May 2015 to May 2022 

with genetic data available in the Mass General Brigham Biobank and analyzed each pregnancy 

independently. These dates were chosen as May 2015 is when our institution implemented 

electronic health records across all outpatient offices and inpatient sites. All data (including 

sociodemographic, clinical diagnoses, laboratory, vital signs, and genotyping) was obtained and 

analyzed using our machine learning platform,26 which extracts, transforms, and harmonizes data 

from multiple sources.  Preeclampsia diagnosis was based on the established American College 

of Gynecologists and Obstetricians guidelines.6 All preeclampsia cases (N =87 ) were further 

validated by an experienced clinician.  

 

Genotyping and Imputation 

Genome-wide genotyping for each patient was obtained from the Mass General Brigham 

Biobank,27 a prospective biobank launched in 2010 that contains genotyping data, samples, and 

questionnaires with ongoing links to tEHR. This effort is continuing, with 129,000 patients 
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enrolled and more than 56,000 genotyped. Genotyping was performed using one of two Illumina 

single nucleotide polymorphism (SNP) Arrays: the MultiEthnic Genotyping Array (containing 

>1.6M SNPs) or the Global Screening Array (containing > 575K SNPs). Imputation was 

performed using the TOPMed Imputation Server.  

 

Polygenic Risk Scores 

As systolic blood pressure (SBP) is the trait with the highest genetic correlation with the genetics 

of maternal preeclampsia and has the highest predictive power for future hypertensive disorders 

and cardiovascular disease29, we created an SBP PRS using the open-source PRS-CS tool.28 

PRS-CS computes SNP effect sizes by high-dimensional Bayesian regression using GWAS 

summary statistics and a linkage disequilibrium reference panel. We selected the largest blood 

pressure GWAS meta-analysis to date, with over 1 million individuals,19 and used a European 

linkage disequilibrium reference panel with 1.1 million variants derived from samples from the 

1000 Genomes Project to create SBP PRS in our study population. We categorized the PRS into 

quartiles of risk ranging from lowest to highest genetic risk: <25%, 25-49%, 50-75%, and >75%. 

We adjusted all models in which the SBP PRS was used by the first 10 principal components of 

ancestry (PCAs) to account for population structure. 

 

Statistical Analyses and Definitions 

For the analyses, we used all available EHR data from before conception to up to 6 weeks 

postpartum. Variables were treated as parametric or non-parametric according to their 

distribution; continuous parametric variables were expressed as mean ±  SD, and nonparametric 

variables as the median with interquartile range (IQR). Significance was determined using the 
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Student’s t-test and one-way ANOVA for parametric variables, the Kruskal-Wallis rank sum test 

for non-parametric variables, and Fisher’s exact or Chi-squared test for categorical variables. A 

p-value of less than 0.05 was considered significant. 

 

Machine Learning and Linear Regression Predictive Models 

Our machine learning platform,26 which utilizes Python 3.9 (sci-kit learn library), was used for 

the development of predictive models. We selected established clinical risk factors known to be 

associated with preeclampsia risk in published studies and guidelines. 6,7,9,10,12,30 For the 

predictive models, we created datasets in which only data obtained up to the selected time point 

was included to minimize the risk of data leakage. When adding the SBP PRS to the models, we 

considered the PRS as an independent predictor and adjusted by the first 10 PCAs. When 

incorporating time-series data of blood pressure measurements across pregnancy, we divided the 

pregnancy period into the following intervals: 0-14, 14-20, 20-24, 24-28, 28-32, and >32 weeks 

gestation. When incorporating time-series data for pregnancy weight gain, we used the BMI 

measured in the following intervals: 0-14, 14-28, and >28 weeks gestation. To assess the 

discrimination performance of the models, receiver operator characteristic curves (ROC) were 

developed, and the area under the curve (AUC), accuracy, sensitivity, specificity, and precision 

were calculated. 

 

RESULTS 

 

Patient Characteristics 
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Of 105,673 pregnancies recorded in our healthcare system after May 2015, genotyping data were 

available for 1,125 pregnancies (828 unique patients), all of whom were included in the study. 

The patient population was multi-ancestry, with 32.7% of patients self-identifying as non-White. 

Of the 1,125 pregnancies, 87 had a clinical diagnosis of preeclampsia (7.8%). Patients with 

preeclampsia were older and more likely to be nulliparous (Table 1). Patients who self-identified 

as Black or Hispanic were more likely to have hypertension and were more likely to develop 

preeclampsia (p<0.01). In addition, patients with any hypertensive disorder, including 

preeclampsia, chronic, or gestational hypertension, were more likely to have a family history of 

chronic hypertension and preeclampsia compared to normotensive patients (p<0.01). Patients 

with preeclampsia delivered before the 37th week of gestation more often as compared to patients 

who were normotensive or who had chronic or gestational hypertension. As expected, patients 

with preeclampsia had the highest systolic and diastolic blood pressure during pregnancy 

compared to those with chronic or gestational hypertension, and normotension (p<0.01). 

 

Polygenic Risk Scores and Maternal Blood Pressure 

Patients with SBP PRS in the highest quartile had higher maximal systolic and diastolic blood 

pressure during pregnancy compared to patients with the lowest quartile SBP PRS (Table 2). 

Patients with higher SBP PRS were more likely to be diagnosed with a hypertensive disorder 

(preeclampsia, chronic or gestational hypertension); in contrast, patients with lower SBP PRS 

were more likely to be normotensive throughout gestation, p<0.05. As SBP PRS was developed 

using a European population, we performed a sensitivity analysis applying SBP PRS only in the 

subset of the population that self-identified as White. This sensitivity analysis demonstrated 

similar findings (Suppl. Fig. 1) and additionally identified that patients with the highest PRS had 
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a higher incidence of chronic hypertension. Also, patients with any hypertension diagnosis 

(gestational, chronic, or preeclampsia) had higher SBP PRS compared to normotensive patients 

(Suppl. Fig. 2). 

 

Models to Predict Preeclampsia  

We sought to predict patient preeclampsia risk at two-time points – early in pregnancy, at the 

first prenatal visit, and late in pregnancy, before admission for delivery. If a patient had a 

preeclampsia diagnosis or delivered before the time point, any data after that event was excluded 

to minimize data leakage. Because relationships between predictors may not be linear, we 

developed both linear regression and nonlinear machine learning models. Subsequently, we 

investigated if the addition of SBP PRS improved the predictive power of the respective model 

and evaluated the predictive power of each model using only clinical, only genetic, or both 

genetic and clinical variables, respectively (Table 3). 

 

In early pregnancy, patients are screened for preeclampsia risk based on the presence of 

established clinical risk factors.  We used these risk factors to develop predictive models (Suppl. 

Table 1). The relationship between all variables is shown in Fig 1A. The clinical linear 

regression model, which was developed using only clinical variables available up to 14 

gestational weeks, had an AUC of 0.70 (Table 3).  We also created a separate genetic linear 

regression model using only SBP PRS, adjusted for the PCAs; this model had a weak predictive 

power, AUC 0.62. Adding the SBP PRS to the clinical risk factors in a combined linear 

regression model increased the AUC to 0.71, which was higher than either the clinical or PRS 

models alone. As machine learning allows for the incorporation of multiple variables with 
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complex relationships, we developed a clinical xgboost model, which achieved the highest 

performance, AUC 0.74 (Fig 1B). In this case, adding the SBP PRS did not improve the 

performance. The most predictive variables in the model (determined using the Shapley 

interpretability method) were blood pressure, maternal age, and history of preeclampsia in a prior 

pregnancy (Fig 2). 

 

By the time of delivery, more clinical information becomes available from scheduled outpatient 

prenatal visits, which become more frequent during the 3rd trimester (Fig. 3A). The late 

pregnancy models were generated using clinical information available prior to (but not after) the 

admission associated with preeclampsia diagnosis (Table 3). In late pregnancy, the linear 

regression model had an AUC of 0.84 and performed better than the early pregnancy model. 

Similarly, the machine learning model using clinical risk factors had the best performance of all, 

AUC 0.91 (Fig. 3B). At this timepoint, the addition of the SBP PRS to the clinical risk factors in 

the linear regression and machine learning models did not significantly improve the 

performance. In the best-performing model, the most predictive variables (determined using the 

Shapley interpretability method) were blood pressure, body mass index, uric acid level, and past 

medical history of renal disease (Fig. 4). 
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DISCUSSION 

 

Here, we investigated the ability of machine learning and linear regression models based on 

electronic health records and genetic data to predict preeclampsia. Our results demonstrate that, 

in a multi-ethnic cohort, SBP PRSs correlate with systolic and diastolic blood pressure during 

pregnancy, as well as with the diagnoses of gestational and chronic hypertension. In early 

pregnancy, when less clinical information is available, the addition of SBP PRS to clinical risk 

factors improves prediction. However, in later pregnancy, when more clinical information is 

available and overall performance of the predictive models is improved, SBP PRS does not add 

to the predictive power. In both early and late pregnancy, machine learning models performed 

better than linear regression models; xgboost in late pregnancy was the most predictive. 

 

 

In line with prior studies,29 we demonstrate that SBP PRS is associated with clinically measured 

blood pressure and risk of hypertensive disorders. The heritability of hypertensive disorders 

using PRS is well established, and some recent studies have demonstrated that these findings 

also translate to hypertensive disorders of pregnancy.20 A recent study of preeclampsia and blood 

pressure PRS has shown a strong disease correlation in Finnish White patients with higher PRS 

scores.20 The maximal blood pressure measured during pregnancy was elevated in the group with 

the top 25% SBP PRS. We also find that gestational and chronic hypertension, as well as 

hypertensive disorders of pregnancy (in sensitivity analyses of White patients), are associated 

with higher PRS scores. We were not able to find a significant relationship between SBP PRS 

and preeclampsia, hypertensive medication use, and family history in our cohort, likely due to 
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our small sample size. In addition, SBP is only one risk factor for preeclampsia, and future 

studies using preeclampsia-specific or multi-trait PRS may improve the predictive capacity of 

polygenic scores. Also, as the current SBP PRS was generated from a White population, future 

studies utilizing multi-ethnic PRSs, are likely to provide additional insight. 

 

When using only the SBP PRSs and adjusting for the first 10 principal components of ancestry, 

both linear and machine learning models have low predictive power. The relationships between 

SBP PRSs and outcomes are non-linear; individuals in the top 2.5% of the SBP PRSs have a 

disproportionately higher risk of disease and adverse outcomes than those in the lowest 2.5%.29 

We anticipated that the machine learning approaches, which have the ability to capture complex, 

nonlinear relationships, will achieve higher predictive power. However, the low overall and 

inferior performance of the xgboost model is likely due to the small number of variables 

included in those models and the weak association with the outcome leading to overfitting on the 

training data. 

 

In early pregnancy, we demonstrate the good predictive power of the linear regression model, 

which is similar to or better than other studies. 9,10 In order to avoid overfitting with a small 

sample size, we selected only the variables known to be associated with a heightened risk of 

preeclampsia rather than using all available variables from the electronic medical record; the first 

approach has previously demonstrated better performance. 12 Other models31,32 have achieved 

higher predictive power than ours; however, those included biomarkers like serum placental 

growth factor and uterine artery pulsatility index, which are not routinely measured in our 

clinical practice. In addition, we observe increased predictive power with the addition of the 
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genetic risk factors in the early pregnancy linear model. These results highlight the potential 

value of PRSs to complement the clinical predictions, especially in early pregnancy, when little 

clinical data is available.  

 

The best-performing model in early pregnancy was xgboost and similarly, others have 

demonstrated the power of this type of machine learning model in early pregnancy to achieve 

accurate predictions. 10,12 To incorporate information about the rate of change in time-series 

variables like blood pressure and BMI, we included data routinely recorded at the scheduled 

office visits. This approach has demonstrated improved predictions. 10,12 The early pregnancy 

screening and prevention of preeclampsia has been associated with improved maternal and 

neonatal outcomes by 70-89%,4,5 and thus, integrating this type of model in clinical practice has 

the potential for a high-value impact on patient care. 

 

Similar to early pregnancy, the xgboost model in late pregnancy had higher predictive power 

than the linear regression model, demonstrating the superiority of the machine learning approach. 

Similar results have been demonstrated by others. 10 The strongest predictors for preeclampsia 

were blood pressure, history of renal disease, and uric acid values, which have been shown by 

others as well. 10,12 Integrating this type of model in clinical practice will aid more accurate 

personalized prediction and allow for referral of high-risk patients to maternal-fetal medicine 

specialists and planning for delivery at a tertiary care center. 

 

When including SBP PRSs in the clinical model, we demonstrate similar to others29, little to no 

improvement in the risk prediction. In addition to the considerations in early pregnancy, in late 
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pregnancy, as more clinical information is available, the patients may have expressed the genes 

that contribute to preeclampsia risk, or the clinical factors may have greater weight relative to the 

genetic factors. In the future, as better genetic tools and larger datasets become available, this 

approach may yield improved results. 

 

Our study has several strengths, including detailed data for all patients from multiple visits with a 

low level of missingness, recent data collected in the past seven years, when the most current 

clinical guidelines were implemented, 6 and data from both tertiary and community hospitals 

within our large healthcare system. 

 

Our study has several limitations. We had a small cohort of patients; however, accurate 

predictions using a dataset of similar size have been previously achieved. 12 To avoid the risk of 

overfitting, we limited the types of analyses we performed; for example, we were not able to 

investigate the predictions of early-onset preeclampsia. In addition, some of the variables are 

based on billing codes which may be inaccurate and do not reflect disease severity. To overcome 

this limitation for the preeclampsia phenotype, we developed our own algorithm using the 

current standard of care and manually validated the cases. We used SBP PRS developed in a 

White population, which may not have optimally assessed risk in our multiethnic cohort. The 

SBP PRS we selected were developed from the largest GWAS to date, which was performed in 

White patients; currently, large multiethnic GWAS are lacking, which is a well-recognized 

limitation of the field.33 Similarly, we were not able to externally validate this model as most 

large genetic biobanks lack detailed pregnancy information. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 7, 2023. ; https://doi.org/10.1101/2023.02.03.23285385doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.03.23285385


 19 

PERSPECTIVES 

 

We demonstrate that models using clinical and genetic data in early and late pregnancy have 

high predictive power and can accurately predict the individual risk for preeclampsia. In 

addition, SBP PRSs correlate with risk factors for preeclampsia and improve the predictive 

power of clinical risk factors in the linear regression model in early pregnancy. Since the 

machine learning models using clinical data available from routine visits had the highest 

predictive power, these types of models can be implemented in clinical practice to function 

within the electronic medical records longitudinally. In this way, the risk predictions can be 

made available to the treating physician, in addition to the contributing factors, who can advise 

about prophylactic and therapeutic options, as well as referral to a maternal-fetal medicine 

specialist. As more pregnancy data in multi-ancestry cohorts becomes available, such strategies 

can be expanded.  
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Table 1. Pregnant patient clinical characteristics  

 

 Preeclampsia (n=87) 
Chronic and 
gestational 

hypertension (n=95) 

Normotensive 
(n=943) 

P-
value 

Maternal age at 
delivery, y 32.9 (29.5 - 36.4) 34.4 (30.5 – 37.8) 33.5 (30.5 - 36.3) 0.27 
Self-reported race 

White 60 (69%) 56 (67%) 691 (72%) 0.8 
Black 13 (15%) 14 (17%) 61 (6%) < 0.01 
Other 15 (17%) 15 (18%) 211 (22%) 0.49 

Self-reported 
ethnicity 

Hispanic 3 (3%) 4 (5%) 41 (4%) 0.91 
Non-Hispanic 84 (97%) 80 (95%) 913 (96%) 1 

Hospital 
Tertiary 84 (97%) 82 (98%) 886 (93%) 0.87 

Community 3 (3%) 2 (2%) 68 (7%) 0.13 
Gravidity 2.0 (1.0 - 3.0) 2.0 (2.0 - 4.0) 2.0 (1.0 - 3.0) 0.15 
Parity 1.0 (0.2 - 2.0) 1.0 (0.5 - 2.0) 1.0 (1.0 - 2.0) 0.35 
Gestational age at 
delivery, weeks 37.1 (35.3 - 38.3) 38.3 (37.0 - 39.1) 39.3 (38.6 - 40.1) < 0.01 
Last BMI before 
pregnancy, kg/m2 29.3 (23.8 - 34.3) 28.7 (24.5 - 34.3) 24.9 (22.0 - 29.2) < 0.01 
BMI at delivery 
(kg/m2) 32.9 (28.6 - 37.86) 33.1 (30.0 - 37.5) 29.62 (26.3 - 33.2) < 0.01 
Maximal SBP during 
pregnancy, mmHg 151.0 (142.0 - 160.5) 146.0 (135.5 - 154.0) 128.0 (120.0 - 136.0) < 0.01 
Maximal DBP during 
pregnancy, mmHg 93.0 (87.2 - 98.7) 91.0 (84.0 - 94.7) 80.0 (74.0 - 84.0) < 0.01 
Family history of 
chronic hypertension 39 (45%) 55 (65%) 409 (43%) 0.012 
Family history of 
preeclampsia 1 (1%) 4 (5%) 11 (1%) 0.028 

 

Median (IQR) for continuous variables; n (%) for categorical variables; p-values for continuous 
variables based on Kruskal-Wallis rank sum test; for categorical variables based on Fisher’s 
exact or Chi-squared test.  
Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure, BMI, body mass 
index 
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Table 2. Patient clinical characteristics by lowest and highest quartiles of SBP PRS 

 

 PRS<25% (n=280) PRS>75% (n=281) p-value 

Self-reported race  
White 134 (48%) 255 (91%) < 0.01 
 Black 74 (26%) 2 (1%) < 0.01 
Other 74 (26%) 26 (9%) < 0.01 

Self-reported ethnicity 
Hispanic 19 (7%) 2 (1%) < 0.01 

Non-Hispanic 261 (93%) 279 (99%) 0.46 
Chronic hypertension 14 (5%) 23 (8%) 0.14 
Gestational hypertension 3 (1%) 12 (4%) 0.021 
Preeclampsia 22 (8%) 24 (9%) 0.78 
Any Hypertensive disorder  39 59 0.04 
SBP at the first prenatal visit, 
mmHg  119.0 (112.0 - 128.0) 117.0 (110.0 - 125.7) 0.029 
DBP at the first prenatal visit, 
mmHg  73.0 (68.0 - 79.0) 72.0 (66.0 - 80.0) 0.71 
Maximal SBP at any time in 
pregnancy, mmHg 140.0 (130.0 - 148.0) 142.0 (133.0 - 156.0) < 0.01 
Maximal DBP at any time in 
pregnancy, mmHg 86.0 (80.0 - 92.0) 89.0 (81.0 - 96.0) < 0.01 
Antihypertensive drugs during 
pregnancy 19 (7%) 22 (8%) 0.65 
Family history of chronic 
hypertension 130 (46%) 122 (43%) 0.59 
Family history of preeclampsia 5 (2%) 6 (2%) 0.77 
Median (IQR) for continuous variables; n (%) for categorical variables; p-values for continuous 

variables based on Kruskal-Wallis rank sum test; for categorical variables based on Fisher’s 

exact or Chi-squared test.  

Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure, PRS polygenic risk 
scores 
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Table 3.  Power of clinical, genetic, and combined models to predict preeclampsia in the patient 

cohort using linear regression or machine learning models (n=1125) 

 

Model variables Type of model AUC accuracy sensitivity specificity precision 

Early pregnancy 

Clinical  linear 0.70 0.76 0.79 0.48 0.16 

Genetic  linear 0.62 0.62 0.63 0.58 0.11 

Clinical and genetic linear 0.71 0.76 0.79 0.46 0.16 

Clinical  xgboost 0.74 0.91 0.97 0.26 0.41 

Genetic xgboost 0.58 0.90 0.98 0.02 0.04 

Clinical and genetic xgboost 0.71 0.92 0.97 0.27 0.45 

Late pregnancy 

Clinical  linear 0.84 0.84 0.85 0.68 0.28 

Genetic linear 0.62 0.62 0.63 0.58 0.11 

Clinical and genetic linear 0.83 0.84 0.85 0.66 0.27 

Clinical xgboost 0.91 0.93 0.97 0.43 0.57 

Genetic xgboost 0.58 0.90 0.98 0.02 0.04 

Clinical and genetic xgboost 0.91 0.92 0.96 0.44 0.55 
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Fig 1. Correlation matrix and preeclampsia predictive model development in early pregnancy, 
before 14 weeks gestation. 
Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure, BMI, body mass 
index 
A. 

B.  
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Fig. 2 SHapley Additive exPlanations (SHAP) plot of the top variables contributing to the 

xgboost output in early pregnancy. The horizontal position of each point shows the impact of the 

feature on the model’s prediction. Red, high feature value; blue low feature value. 
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Fig 3. Correlation matrix and preeclampsia predictive model development at late pregnancy, 
before the admission for delivery. 
Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure, BMI, body mass 
index. 
A. 
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Fig. 4 SHapley Additive exPlanations (SHAP) plot of the top variables contributing to the 

xgboost output in late pregnancy. The horizontal position of each point shows the impact of the 

feature on the model’s prediction. Red, high feature value; blue low feature value. 
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SUPPLEMENTARY MATERIAL 

 

Supplementary Methods 

Limiting Data 

Before training the predictive models, we excluded any data that was recorded after the date of 

delivery for healthy patients, or whichever came first, the preeclampsia diagnosis or delivery 

date for preeclamptic patients. This data constitutes the dataset for late pregnancy models, while 

the early pregnancy dataset also excludes any measurements taken after 13 weeks of gestation.  

 

Feature Engineering and Selection 

To capture trends in vital signs over time, measurements were assessed across different 

gestational age windows in pregnancy. The systolic and diastolic blood pressures (maximum, 

difference between maximum and minimum, and mean) were calculated before 14 weeks, 14-20, 

20-24, 24-28, 28-32, 32-34, and after 34 weeks. The same measurements were calculated by 

trimester ( <14 weeks, 14-28, and >28 weeks) for BMI since weight and height measurements 

were recorded less frequently. A simple variance threshold was applied to features prior to cross-

validation to remove any features with a variance below the best-performing threshold of 0.04. 

 

Cross Validation 

We performed a 5-fold cross-validation using sklearn’s StratifiedGroupKFold, which creates 

folds that tend to preserve the percentage of samples for each class as much as possible, given 

the constraint of non-overlapping groups between splits. 34 For each training and test set created, 

the data were imputed, scaled, and oversampled. Missing information in binary variables was 
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assumed to be false, while missing continuous variables were imputed with the mean of the 

feature. Sklearn’s MinMaxScaler was fit on the training data of each fold and modified features 

to contain values between 0 and 1. We applied several methods to correct for an imbalanced 

dataset, including SMOTE, BorderlineSMOTE, RandomOverSampler, and 

RandomUnderSampler. Of these methods, the RandomOversampler produced the best-

performing models and was subsequently applied to all cross-validation folds. 

 

Regression and XGB Models 

Two types of models were trained with the data: a linear regression and an xgboosted ensemble. 

In addition to the features removed during feature selection, other highly correlated variables 

were combined or removed when trained on the linear regression. The xgboost ensemble 

consisted of 3 separate models with a maximum depth of 2, 10, and 20 with 10, 50, or 100 

estimators respectively. Higher depth and number of estimators lead to an increased complexity 

that can be prone to overfitting. Final predictions are the equally weighted average between the 

individual predictions of each xgboost model. Metrics were calculated on the test set for each 

fold and averaged together to obtain final statistics.  
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Supplemental Table 1. Variables included in the first prenatal visit (early pregnancy) model. 
  

Preeclampsia (n=87) No preeclampsia 
(n=1038) 
(includes 

normotensive, 
chronic, and 

gestational HTN)  

P-value 

Maternal age, y 32.9 (29.5 - 36.4) 33.6 (30.5 - 36.4) 0.29 
Self-reported White race 60 (69%) 747 (72%) 0.75 
Self-reported Black race 13 (15%) 75 (7%) 0.013 
Self-reported Hispanic ethnicity 3 (3%) 45 (4%) 0.7 
Gravidity 2.0 (1.0 - 3.0) 2.0 (1.0 - 3.0) 0.84 
Parity 1.0 (0.25 - 2.0) 1.0 (1.0 - 2.0) 0.15 
Interpregnancy interval, y 2.1 (1.6 - 3.2) 2.3 (1.8 – 3.0) 0.54 
In vitro fertilization 4 (5%) 43 (4%) 0.84 
Multiple gestation 7 (8%) 39 (4%) 0.057 
Smoking before pregnancy  21 (24%) 126 (12%) < 0.01 
Drugs of abuse before 
pregnancy 

8 (9%) 59 (6%) 0.2 

Drugs of abuse during 
pregnancy 

6 (7%) 46 (4%) 0.3 

Alcohol use before pregnancy 45 (52%) 541 (52%) 0.96 
High-risk pregnancy 51 (59%) 578 (56%) 0.72 
Maximal BMI before 
pregnancy, kg/m2 

30.8 (25.1 - 36.7) 26.7 (23.5 - 31.3) < 0.01 

Last BMI before pregnancy, 
kg/m2 

27.7 (23.0 - 33.9) 24.6 (21.5 – 29.0) < 0.01 

Mean BMI in the period 0-14 
gestational weeks, kg/m2 

29.7 (23.7 - 34.4) 24.9 (21.9 - 29.1) < 0.01 

SBP at the first prenatal visit, 
mmHg 

123.0 (116.0 - 138.0) 111.0 (104.0 - 120.0) < 0.01 

DBP at the first prenatal visit, 
mmHg 

78.0 (70.0 - 82.5) 68.0 (61.0 - 74.0) < 0.01 

History of pregestational 
diabetes 

8 (9%) 62 (6%) 0.25 

History of kidney disease 
before pregnancy 

17 (20%) 38 (4%) < 0.01 

History of gestational diabetes 
in a prior pregnancy 

4 (5%) 54 (5%) 0.81 

History of a prior high-risk 
pregnancy 

28 (32%) 334 (32%) 1 

History of autoimmune disease 7 (8%) 88 (8%) 0.89 
History of preeclampsia in a 
prior pregnancy 

23 (26%) 40 (4%) < 0.01 

Family history of hypertension 39 (45%) 464 (45%) 0.99 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 7, 2023. ; https://doi.org/10.1101/2023.02.03.23285385doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.03.23285385


 31 

Family history of preeclampsia 1 (1%) 15 (1%) 0.82 
Minimal platelet count in the 
period 0-14 gestational weeks 

270 (219 - 315) 254 (217 - 288) < 0.01 

Maximal uric acid in the period 
0-14 gestational weeks, mg/dL 

3.8 (3.3 - 3.4) 3.0 (2.3 - 3.7) 0.03 

Presence of proteinuria in the 
period 0-14 gestational weeks 

3 (3%) 3 (0%) < 0.01 

SBP PRS 1.8 (1.4 - 2.2) 1.8 (1.4 - 2.1) 0.94 
 
 
Median (IQR) for continuous variables; n (%) for categorical variables; p-values for continuous 

variables based on Kruskal-Wallis rank sum test; for categorical variables based on Fisher’s 

exact or Chi-squared test.  

Abbreviations: BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood 

pressure; PCA, principle components of ancestry; PRS, polygenic risk scores. 

. 
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Supplemental Table 2. Variables included in the late pregnancy model (before admission for 
delivery) 
  

Preeclampsia (n=87) No preeclampsia 
(n=1038) 
(includes 

normotensive, 
chronic, and 

gestational HTN)  

p-
value 

Maternal age, y 32.3 (29.5 - 36.4) 33.5 (30.5 - 36.4) 0.29 
Self-reported White race 60 (69%) 747 (72%) 0.75 
Self-reported Black race 13 (15%) 75 (7%) 0.013 
Self-reported Hispanic ethnicity 3 (3%) 45 (4%) 0.7 
Gravidity 2.0 (1.0 - 3.0) 2.0 (1.0 - 3.0) 0.84 
Parity 1.0 (0.25 - 2.0) 1.0 (1.0 - 2.0) 0.15 
Interpregnancy interval, y 2.1 (1.6 - 3.2) 2.3 (1.8 – 3.0) 0.54 
In vitro fertilization 4 (5%) 43 (4%) 0.84 
SGA or IUGR 20 (23%) 101 (10%) < 0.01 
Multiple gestation 7 (8%) 39 (4%) 0.057 
Smoking before pregnancy 21 (24%) 127 (12%) < 0.01 
Drugs of abuse before pregnancy 8 (9%) 59 (6%) 0.2 
Alcohol use before pregnancy 46 (53%) 551 (53%) 0.98 
High-risk pregnancy 64 (74%) 715 (69%) 0.61 
Last BMI before pregnancy, kg/m2 27.7 (23.0 - 33.9) 24.6 (21.5 – 29.0) < 0.01 
Last BMI during pregnancy before 
preeclampsia diagnosis or delivery, 
kg/m2 

32.9 (28.6 - 37.9) 30.0 (26.4 - 33.6) < 0.01 

Maximal BMI before pregnancy, kg/m2 30.8 (25.1 - 36.7) 26.7 (23.5 - 31.3) < 0.01 
Maximal SBP during pregnancy, mmHg  151.0 (142.0 - 160.5) 129.0 (120.0 - 138.0) < 0.01 
Maximal DBP during pregnancy, 
mmHg 

93.0 (87.2 - 98.7) 80.0 (74.0 - 85.7) < 0.01 

SBP at the first prenatal visit, mmHg 122.0 (115.5 - 136.0) 111.0 (104.0 - 120.0) < 0.01 
DBP at the first prenatal visit, mmHg 75.0 (69.0 - 81.0) 68.0 (60.0 - 74.0) < 0.01 
Prescription of antihypertensive 
medication during pregnancy 

11 (13%) 5 (0%) < 0.01 

Diagnosis of gestational hypertension 
during pregnancy 

17 (20%) 36 (3%) < 0.01 

History of pregestational diabetes 8 (9%) 62 (6%) 0.25 
History of kidney disease before 
pregnancy 

17 (20%) 38 (4%) < 0.01 

History of gestational diabetes in a prior 
pregnancy 

4 (5%) 54 (5%) 0.81 

History of a prior high-risk pregnancy 28 (32%) 334 (32%) 1 
History of autoimmune disease 7 (8%) 88 (8%) 0.89 
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History of preeclampsia in a prior 
pregnancy 

23 (26%) 40 (4%) < 0.01 

Family history of hypertension 39 (45%) 464 (45%) 0.99 
Family history of preeclampsia 1 (1%) 15 (1%) 0.82 
Minimal platelet count in pregnancy 
before preeclampsia diagnosis or 
delivery 

212 (168 - 270) 212 (181 - 248) 0.19 

Maximal uric acid in pregnancy before 
preeclampsia diagnosis or delivery, 
mg/dL 

5.0 (4.1 - 5.8) 4.3 (3.5 - 5.2) < 0.01 

Proteinuria in pregnancy before 
preeclampsia diagnosis or delivery 

12 (14%) 7 (1%) < 0.01 

SBP PRS 1.8 (1.4 - 2.2) 1.8 (1.4 - 2.1) 0.94 
 
Median (IQR) for continuous variables; n (%) for categorical variables; p-values for continuous 

variables based on Kruskal-Wallis rank sum test; for categorical variables based on Fisher’s 

exact or Chi-squared test.  

Abbreviations: BMI, body mass index, SBP, systolic blood pressure, SGA, small for gestational 

age, IUGR, intrauterine growth retardation, DBP, diastolic blood pressure, PCA, principle 

components of ancestry, PRS, polygenic risk scores. 
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Suppl. Fig. 1 Relationship between BP and SBP PRS in patients with self-reported White race.  
A. PRS histogram, B. SBP at the first prenatal visit, C. DBP at the first prenatal visit, D. Max 
SBP during pregnancy E. Max DBP during pregnancy  
*  p<0.05 
Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure; PRS polygenic risk 
score 
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Suppl. Fig. 2. Polygenic risk scores (PRS) in patients with preeclampsia (PE), chronic and 

gestational hypertension (HTN), and normotension.(A) All patients, (B) Patients with self-

reported White race. 
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Suppl. Fig 3A. Missing data or data not collected in early pregnancy. Available data is shown in 

black. 
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Suppl. Fig 3B. Missing data or data not collected in late pregnancy. Available data is shown in 

black. 
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