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Introduction

When a customer orders a product, which is not available in the store or temporary out 

of stock, and the customer decides to wait until the product is available and promised to 

be shipped, then this scenario is called backorder of that specific product [1, 2]. If back-

orders are not handled promptly, they will have high impacts on the respective compa-

ny’s revenue, share market price, customers’ trust, and may end up losing the customer 
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or sale order. On the other hand, the prompt actions to satisfy backorders put enormous 

pressure on different stages of the supply chain which may exhaust the supply chain pro-

cesses or may appear with extra labor and/or production costs, and associated shipment 

expenses [3, 4]. Moreover, the uncertainty in customers’ demands causes difficulty in 

forecasting the demand which makes the traditional supply chain management systems 

less effective in many ways such as inaccurate demand forecasting or misclassifying of 

back-ordered products [5, 6]. Nowadays, some companies predict the backorders of 

products by applying machine learning prediction processes to overcome the associated 

tangible and intangible costs of backorders [7].

Machine learning models may misclassify many records if the dataset contains mis-

leading or missing information. �is issue is a challenge to analyze the dataset of this 

study. �ere are very high negative and positive values in several predicting features of 

this dataset. Our dataset contains the number of negative records related to the inven-

tory. �e negative inventory level suggests that the current stock level of the product is 

less than zero. �e causes and effects of negative inventory are well understood in the 

supply chain industry [8]. An inventory level dependent ordering model discusses the 

relationship between inventory level and demand which reflects how negative inventory 

level can affect the demand [9]. Recent studies suggest that the correlation factor among 

the product variety, sales, and inventory level is biasing the inventory level [10, 11].

Backorder aging prediction can be feasible for the market with non-volatile demand 

where the lead time, price per unit, quantity of placed order, and product stock level 

are the main drivers [12]. However, a sudden change in the demand may raise other risk 

flags associated with the supply chain and may lead to a loss [13, 14]. To cope with the 

challenges of stochastic demand, a few researchers developed multi-objective inventory 

models [15]. It has been proven mathematically that the hybrid backorder (i.e., fixed and 

time-weighted backorder) inventory model is more efficient than the fixed backorder 

inventory model in the market with volatile demand. To subside the stochastic demand 

problem, forecasting partial backorders based on the periodic count on the current stock 

level seems profitable, but this process may exhaust the local inventory system [8].

In this work, a flexible inventory solution is provided by listing easily understandable 

probable backorder scenarios. “Literature review” section of this paper focuses on the 

literature review. �en, “Dataset and exploratory analysis” section is devoted to the data-

set and exploratory analysis. �e methodology is described in “Methodology” section. 

�en, the experiments and the results are discussed in “Experiment” and “Results on test 

data” sections, respectively. Besides, conclusions are provided in “Conclusions” section.

We have performed some hypothesis tests considering backorder scenarios. �e out-

comes of the hypothesis’s tests are helpful to choose the appropriate machine learning 

model for prediction. Distributed Random Forest (DRF) and Gradient Boosting Machine 

(GBM) techniques [16, 17] are chosen on the H2O platform. To resolve the imbalanced 

class problem, a synthetic minority oversampling technique (SMOTE) [18] on the tar-

get class is selected. We have divided our predicting features in different ranges, and we 

have passed it to GBM and DRF models for prediction. Besides, the actual data is fed 

to those models. It can be observed that the two models show different characteristics 

in the test run. �is research considers backorder forecasting using DRF and GBM and 

reports easily understandable probable backorder decision scenarios.
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Literature review

Machine Learning (ML) techniques enable us to forecast accurately multiple aspects 

related to supply chain management such as demand, sale, revenue, production, and 

backorder. ML approaches have been used to predict manufacturers’ garbled demands 

where some researchers applied a representative set of ML-based and traditional fore-

casting methods to the data to compare the precision of those used methods [19]. �ose 

researchers found that the average performances of the ML method did not outperform 

the traditional methods, but when a Support Vector Machine (SVM) was trained on sev-

eral demand-series, it produced the most precise predictions [20]. �e same research-

ers extended their research works using Support Vector Machines (SVM) and Neural 

Networks (NN) [21]. �ey have found that the techniques of applying machine learning 

models provided noticeable improvements over the traditional models [22].

An analysis of the supply chain’s demand prediction was carried out by applying the 

Support Vector Regression (SVR) method in the paper of Guanghui [23]. �e outcome of 

that investigation indicated that the prediction performance of SVR is superior to Radial 

Basis Function (RBF) [24], as SVR produced smaller results of the relative mean square 

error along with higher forecast precision of the supply chain. However, several factors 

were not taken into account in that research (e.g., imbalance class problem, application 

of machine learning techniques like neural network and ensemble methods due to the 

limitations of the computational resources).

To minimize the supply chain and inventory control costs, a risk-based dynamic back-

order replenishment planning framework was proposed by Shin et al. [25] applying the 

Bayesian Belief Network. A similar framework was prescribed by Acar and Gardner [26], 

using optimization and simulation techniques. Rodger [12] presented a risk triggering 

model using fuzzy feasibility Bayesian probabilistic evaluation of backorder.

To deal with the imbalanced class problem efficiently, ML classifiers were examined in 

[27] to identify a suitable forecasting model. To carry out this task, they applied differ-

ent measures along with the ensemble learning. �e results of that investigation showed 

that the ensemble learning method provided feasible performance when precision-

recall curves were considered, and also minimized the computational costs. �ey also 

suggested applying different ML algorithms such as SVM and NN for the verification 

of potential performance improvements. Prak and Teunter [28] investigated the predic-

tion uncertainty in an inventory model, and they proposed a framework to estimate the 

demand to obtain more accurate inventory decisions.

�e competition among different ML techniques produces a higher rate of accuracy of 

forecasts which improvises the necessitous decisions to increase revenue. Dancho [29] 

predicted the product backorders using a stack-ensemble machine learning approach. 

�e author also discussed the cost–benefit of early prediction of the backorder. How-

ever, the demonstration of a probable backorder situation has not been discussed in that 

paper. �e research in [30] and [31] have proposed an order policy-based inventory sys-

tem model to observe the performance using ARIMA models, �eta method, and mul-

tiple temporal aggregation techniques. Performances of ML models with and without 

Google trends were measured to identify the trend of oil consumption in the paper of 

Yu et al. [32]. Comparisons among different error measures such as Mean Square Error 

(MSE) and Root Mean Square Error (RMSE) are shown in the research of Hyndman and 
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Koehler [33] to indicate the models’ performance. Kim and Kim [34] introduced a new 

metric of measuring the performance known as Mean Arctangent Absolute Percentage 

Error (MAAPE), and they compared with the other ML error calculations. Martínez 

et  al. [35] evaluated the performance of ML models such as Lasso, Extreme learning 

machine, and Gradient tree boosting to forecast future purchase trends. �e efficiency 

and impact of different types of forecasting methods were measured for promotional 

products in business in the research of De Baets and Harvey [36].

Some related papers to our research have been classified in Table 1. Based on the liter-

ature review, there are some research gaps. To our knowledge, just a few researchers [10, 

11] have explored the negative values in the supply chain data. Besides, very few papers 

have considered flexible inventory control and cost minimization techniques separately, 

but none of them provided the probable backorder scenarios in inventory management.

As our research problem falls under the decision-making problem, we have investi-

gated the decision tree-based predictive modeling approach in this research. Decision 

trees are supervised learning techniques that can be used to solve both classification and 

regression problems. Each branch of a decision tree is highly traceable, and a decision 

tree model can be easily interpreted without having expert knowledge in the predictive 

modeling domain [37]. �ese characteristics of the decision tree make it popular among 

the organizational decision-makers to solve different decision-making problems. How-

ever, when the input data size is very large, predictions using decision trees suffer from 

both execution time and performances. If the training data size is big, the tree construc-

tion during the training phase of a decision tree based predictive model increases the 

computational complexity in terms of memory consumption and execution time [38]. 

Moreover, the constructed trees with big input data suffer from the same input label dis-

tribution among different classes which lowers the predictive performance of a decision 

tree model [39]. To overcome these problems, a few researchers adopted the tie braking 

method [40] for a decision tree. �e tie-breaking method increases the performance of 

model. However, the memory overflow problem remains in the big data environment 

[41]. Random sampling [42], tree pruning on input space [43], and few-shot samplings 

[44] are some techniques proposed by a few researchers to undersize the input space. 

Table 1 Review of the related papers

Authors Prediction 
domain

ML models Performance 
metrics

Flexible 
inventory control 
with ranged data

Probable 
decision 
scenarios

Carbonneau et al., 
(2008)

Manufacturers’ gar-
bled demands

SVM, NN ✓

Guanghui (2012) Supply chain’s 
demand

SVR, RBF ✓

Shin et al., (2012) Backorder replen-
ishment planning

✓ ✓

de Santis et al., 
(2017)

Material backorder 
in supply chain

LOGIST, CART, 
Ensemble

✓

Prak and Teunter 
(2019)

Prediction uncer-
tainty

✓ ✓

Proposed work Product backorder 
in supply chain

DRF, GBM ✓ ✓ ✓
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�ese proposed techniques decrease the computational complexity, but also they reduce 

the model’s performance. �e different data types and data structures in the input space 

also affect the performance of a tree-based model [37]. In this study, we have proposed 

the technique of clustering the input space to reduce the data dimensionality and the 

computational cost. �is ranged based clustering technique also improves the model 

predictive performances where there are many ties. Besides, we have used a correla-

tional factor among clusters to have better performance. �e main research contribu-

tions of this work are as follow.

Proposing a ranged based clustering method to reduce the dimensionality of input 

space and to decrease the computational cost.

Implementing the correlational factor among ranged clusters in the input space to 

increase the performance of the model.

Developing a tunable ranged based model for flexible inventory control by incorpo-

rating both negative and positive data types.

Demonstrating probable backorders scenarios using a decision-based approach 

where the number of ties for classification is minimized.

To our knowledge, the range-based clustering to reduce data dimensionality, combined 

with the association establishment among clusters for better prediction accuracy is new. 

�e ranged method that is used in this research can be easily tunable based on the types 

of businesses. We have chosen a tree-based method in our study because the tree-based 

algorithm is appraised as one of the easiest and strongest supervised machine learning 

techniques which is widely used by many researchers e.g., [45, 46]. It is well established 

that predictive models incorporating tree-based techniques provide high accuracy along 

with the interpretive ease. Tree-based algorithms are very effective at mapping nonlinear 

associations which are the shortcomings of other available linear methods [47]. Decision 

trees, random forest, and gradient boosting are some examples of tree-based methods 

that are used in the data science research domain frequently. Some researchers e.g., [45, 

46, 48] have preferred the GBM model for prediction purposes as it provides very good 

accuracy when it is tuned correctly. Considering these advantages, GBM and DRF are 

utilized in this paper.

Dataset and exploratory analysis

�e dataset of this research has been published in Kaggle. It is divided into the train-

ing and testing datasets. Each dataset contains 23 attributes with 1,687,862 and 242,077 

observations for the training and testing sets, respectively. Both datasets contain a mix 

of features with floating-point, integer, and string values. For this study, we intend to use 

the most common data attributes that can be readily available for any business. Hence, 

we have chosen inventory, lead time, sales, and forecasted sale as our predicting varia-

bles and ‘went on backorder’ as our response variable. Our target variable is labeled with 

two classes. Hence, this scenario falls under the binary classification problem. �e inven-

tory feature indicates an available stock of products, although it contains high numbers 

of negative records. �e negative inventory may arise due to the machine or human 

error. It may also occur when a shipment is recorded as complete before it arrives. �e 
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‘lead time’ feature indicates the elapsed time between the placement of products’ orders 

and delivery of those products to the customers. �e lead time in our dataset ranges 

from 0 to 52  weeks. �e sales features are divided into four parts as one-month sale, 

three months sale, six months sale, and nine months sale. �e forecasted sale is divided 

into three columns showing the forecast of three months, six months, and nine months.

Figure 1 shows the distribution of some samples in the dataset. It is observable in this 

figure that the data points of different features have many outliers with different ranges. 

In both training and testing datasets, a large number of missing values across the pre-

dicting variables are observed. Moreover, our response variable is highly imbalanced 

with 0.669% data from ’Yes’ class, and 99.33% data from ’No’ class. Figure 1 depicts how 

the data samples are distributed among two classes, where 0 indicates ‘No’ class or non-

backorder items and 1 indicates ‘Yes’ class or backorder items.

Hypothesis testing

�e central limit theorem states that the distribution of the sample is normal if the sam-

ple size is large or greater than 30. For large size samples, the distribution of the data can 

be ignored, and parametric tests can be applied. In this study, the Wilcoxon rank-sum 

test with continuity correction is used for the hypothesis test.

We would like to examine the relationship between the products that went on back-

order with some features of our training dataset. First, we want to see whether the 

current level of products’ stock affects the decision of the backorder or not. We have 

assumed a null hypothesis that if the stock level of a product reaches zero, it results in 

backorder. �e significance Alpha level of 0.05 is selected, which means that there is a 5% 

chance of rejecting the null hypothesis when the hypothesis is true. It has been observed 

that the p-value for this null hypothesis is far below the significance level. Hence, we 

cannot accept this hypothesis.

In the next stage, it is assumed that the most sold items per month went on backorder. 

To consider this assumption, all the sales columns are added, and the average is calcu-

lated. It is observed that the p-value for this null hypothesis is far below the significance 

level. �erefore, the alternative hypothesis is true.

It is examined whether the lead time factor or the high forecasted demands cause 

backorders. It is observed that the p-value is less than the significance level in both 

Fig. 1 Distribution of samples among features
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cases. �us, the null hypothesis cannot be accepted. Table 2 includes a summary of the 

hypothesis testing results and decisions.

Methodology

In this study, we build our proposed model mainly focusing on sales and forecasted 

sales. As the product stock level and the lead time of products are commonly known 

attributes, we include these two factors with the sales and forecasted sales data.

Prediction outline

�e proposed model can be described using a five-level decision tree to predict back-

order products. In the first level, the current inventory level is considered. Lead time, 

past sales, forecasted sales, and prediction decisions are in levels two, three, four, and 

five, respectively. Figure 2 shows the different levels of the prediction method.

Converting into different range levels isolates the nodes and they may not have the 

same association with other features as the actual numerical values will change to the 

categorical levels. For instance, when the inventory level is converted into different range 

groups, it can be considered as an isolated node as the actual value in this feature is not 

changed. To minimize this issue, the associated factors of inventory level and other fea-

tures are captured. After converting the inventory level into ranges, the range levels are 

multiplied with the association factors. A similar idea is used in path analysis. If A and B 

are two independent nodes and both are associated with a third node, C, then the asso-

ciation between A and B will be the multiplication of the correlation coefficient of AC 

and BC.

In this study, the Spearman correlation method is utilized to capture the association. A 

Spearman correlation coefficient measures the strength of association between two vari-

ables [49]. In the real world, most of the data can be classified as nonparametric. Spear-

man’s method can handle this issue efficiently. If some non-linear relationships among 

two variables exist, Pearson correlation would produce zero which can be interpreted 

as no linear relationship among two variables. Spearman’s method can figure out both 

linear and non-linear relationships among two variables. Moreover, this technique can 

be used for both continuous and discrete variables.

Table 2 Hypothesis testing summary

Question Hypothesis Result analysis Decision

a) Are the products out 
of stock resulting back-
orders?

H0: n = 0; where n = Quan-
tity of product in the 
stock

Ha: n ≥ 1

p-value < 2.2e−16, for  
α = 0.05

Alternative hypothesis 
is true

b) Were the most sold 
items per month pro-
ducing back-ordered?

H0:BackorderYes = n , 
n = Average number 
of products sold per 
month

p-value < 2.2e−16, for 
α = 0.05

The alternative hypothesis 
is true

c) Are the lead time factors 
producing backorders?

H0: BackorderYes = 
factorslead−time .

p-value < 2.2e−16, for 
α  = 0.05

The alternative hypothesis 
is true

d) Are the forecasted 
demands of products 
resulting in backorders?

H0: BackorderYes = 
Forecasthigh

p-value < 2.2e−16, for 

α  = 0.05
The alternative hypothesis 

is true



Page 8 of 22Islam and Amin  J Big Data            (2020) 7:65 

Inventory level

In the current inventory stock, there are negative, zero, and positive values. To deter-

mine the stock level, the safety stock is calculated. �e safety stock is calculated by 

assuming the most common service level in the retail industry which is 90% [50, 51]. 

�e average demand is denoted by Davg . Besides, the desired service level is shown 

by Z, and the standard deviation of lead time is expressed as σLT  . �e desired service 

level of 90% is considered in this experiment. �e corresponding Z value is fetched 

from the normal distribution chart which gives the value of 1.28. �e safety stock is 

calculated for each item using Eq. (1).

�e safety stock is subtracted from the current stock value and is distributed among 

five different ranges, namely, negative, zero, low, medium, and high levels. �ese five 

levels denote the status of the current inventory level.

Negative stock values refer to the situation where the inventory count of the prod-

ucts turns to less than zero. It may happen due to several reasons such as accidental 

duplication of sales.

�e zero-stock level happens if no physical unit of products is in the current stock. 

�e low, medium, and high stock levels can be defined based on the prescribed ranges 

of supply chain managers. �is range may vary based on the business types.

Generally, there is a correlation between lead time and inventory. Low cost or fast 

selling products may have a very fast lead time. However, large and expensive items 

usually have a long lead time.  Similarly, actual sales and forecasted demand have a 

(1)SafetyStock = Z ∗ σLT ∗ Davg

Fig. 2 Decision tree structure
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relational factor with the current stock level. �ese correlation factors are used to 

intensify the five levels of inventory which can be shown using Eq. (2).

Inventorylevelstatus denotes the numerical representation of five levels. Negative, zero, 

low, moderate, and high levels are shown by 1, 2, 3, 4, and 5, respectively.

ρIL denotes the Spearman correlation factor between inventory and lead time.

ρIS denotes the Spearman correlation factor between inventory and sales.

ρIF denotes the Spearman correlation factor between inventory and forecasted sale.

Lead time

In this research, the lead time is grouped into four different categories including fast, 

moderate, slow, and very slow. �en, it is converted from the week into the number of 

days, and it is grouped in a range as 0 to 10 days as fast lead time, 11 to 40 days as mod-

erate lead time, 49 to 120 days as slow lead time, and 121 to 364 days as a very slow one. 

�e ranges may vary based on the type of business. Generally, faster sale items may have 

faster lead time and vice versa. We measure the linear relation among lead time, inven-

tory, average forecast, and average sales. �en, we multiply these factors by the four dif-

ferent ranges of lead time as shown in Eq. (3).

Leadtime levelstatus denotes the numerical representation of the four levels (the fast 

level as 1, medium level as 2, slow level as 3, and a very slow level as 4).

ρIL denotes the Spearman correlation factor between inventory and lead time.

ρLS denotes the Spearman correlation factor between lead-time and sales.

ρLF denotes the Spearman correlation factor between lead-time and forecasted sales.

Sales

�e sales quantities are grouped into five different ranges which are very-low, low, 

moderate, high, and very high. �e number of ranges can be tuned based on business 

requirements and policies. Generally, the number of items sold has a direct impact on 

the inventory level, lead time, and forecasted sale. �ese impact factors are used to 

strengthen the sales range as shown in Eq. (4).

Sales levelstatus denotes the numerical representation of five levels, i.e., very-low level 

as 1, low level as 2, moderate level as 3, high level as 4, and very high level as 5.

ρIS denotes the Spearman correlation factor between inventory and sales.

ρLS denotes the Spearman correlation factor between lead-time and sales.

ρSF denotes the Spearman correlation factor between sales and forecasted sale.

Forecasted sale

Companies can forecast based on their sales data. In this study, the forecast is divided 

into five different ranges such as very-low, low, moderate, high, and very high. �e range 

(2)Inventorylevel = Inventorylevelstatus ∗ ρIL ∗ ρIS ∗ ρIF

(3)Leadtime level = Leadtime levelstatus ∗ ρIL ∗ ρLS ∗ ρLF

(4)Sales level = Sales levelstatus ∗ ρIs ∗ ρLS ∗ ρSF
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numbers can be changed based on the business type and requirements. �e average per-

centage error is calculated to report the forecasting error using Eq. (5).

VSF is the variance between the actual sales and forecasted sales. �e range of forecast 

is divided by the forecasting error to eliminate the effect of deviation as shown in Eq. (6).

Forecast levelstatus denotes the numerical representation of the five levels, i.e., very-low 

or 1, low or 2, moderate or 3, high or 4, and very high level or 5.

Prediction equations and notations

In this subsection, the notations and two equations are discussed.

Invi : Five levels of inventory status (Negative, Zero, Low, Moderate, High).

LT j : Four levels of lead time status (Fast, Moderate, Slow, Very slow).

Sk : Five levels of sales status (Very low, Low, Moderate, High, Very High).

Fl : Five levels of forecast status (Very low, Low, Moderate, High, Very High).

ρIL : Spearman correlation factor between inventory and lead time.

ρIS : Spearman correlation factor between inventory and sales.

ρIF : Spearman correlation factor between inventory and forecasted sale.

ρLS : Spearman correlation factor between lead-time and sales.

ρLF : Spearman correlation factor between lead-time and forecasted sale.

ρSF : Spearman correlation factor between sales and forecasted sale.

ε : Average percentage forecast error.

Dyesx
 : Number of yes decision nodes.

Dnox : Number of no decision nodes.

x : Set of n number of items.

Equations (7) and (8) calculate the final backorder decisions.

(5)The average percentage error for forecast, ε =

∑
|VSF|

∑
Actual Sales

∗ 100

(6)Forecast level = Forecast levelstatus/ε

(7)

Dyes =

n
�

x=1
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Because the number of decision nodes grows exponentially based on the number 

of items, we use a tree-based machine learning model to carry out the solution. One 

advantage of this approach is that we can get the interpretable backorder decision sce-

narios from the tree-based approach regarding the dataset. �ere are some tree-based 

approaches, and among them, the widely used algorithms are Decision Trees, Random 

Forest, Bagging, Boosting, Xgboost, and Gradient Boosted Machine (GBM). �e inabil-

ity to handle continuous numerical variables and overfitting are the disadvantages of 

decision trees. Random Forest (RF) algorithm can cope with large datasets including 

multiple dimensions. It can perform both classification and regression. RF is widely used 

for unsupervised clustering in the real world. It works as a black box when large propor-

tions of data are missing or the data dimensionality is unknown. In this study, RF is cho-

sen as the baseline model. GBM is a type of boosting algorithm which applies gradient 

descent technique to minimize the error rate which has made this model popular among 

many researchers in recent years [45–47]. �e GBM is selected in this study as the sec-

ond model for the backorder prediction solution.

Experiment

Experimental environment setup

We have initialized the  H2O cluster to run our targeted algorithms. Our datasets are in 

the data frame format, and  H2O requires the data in the  H2O frame format. �erefore, 

the datasets are converted into the  H2O frame.

Model construction

�e  H2O models are constructed for both synthetic minority oversampling techniques 

and random oversampling techniques. �e feature variables related to inventory, lead 

time, forecast, and sales along with the response variable for backorder are selected from 

the actual dataset. �ese features are converted into different class ranges and are multi-

plied by previously captured correlational factors from the actual dataset.

Two GBM models are constructed using the actual data and the converted data. Two 

DRF models are also constructed by a similar process. To speed up the models’ training, 

a separate validation frame is used, which is 35% of the training dataset. �e number 

of trees is tuned from 50 to 1000 to have an early stopping or fast runtime. �e learn-

ing rate is set to 0.1 for both models. �e lower learning rate provides a fine output, 

although it may slow down the training process if it is tuned below the range of 0.01. 

�e maximum depth is set to 10 to avoid overfitting of the model and to get interpret-

able outcomes. �e higher depth may provide higher accuracy, but the computational 

time will increase. �e sample rate is set to 0.9 which means that 90% of the training 

data rows will be considered for each tree. �e column sample rate is set to 1 to consider 

100% of the columns per split of the trees.

�e first GBM model with actual data has specified the three months sales as the most 

important factor for identifying back order (see Fig. 3). Besides, it has shown 9 months 

forecasts, and three months forecasts, as the second and third important factors, 

respectively.

Using the proposed grouping methods, the GBM model has identified the inventory level 

as the most important feature, nine months sales, and one-month sales, as the second and 
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third important elements for predicting backorder as shown in Fig. 4. A backorder scenario 

where the inventory is negative/low/very low/ and the sale is moderate/high matches the 

second GBM model.

�e first DRF model with actual data has considered three months forecasts as the main 

predicting factor, nine months forecasts, and national inventory as the second and third 

important factors for predicting backorder as shown in Fig. 5. On the other hand, the sec-

ond DRF model with the ranged data has considered national inventory, nine-month sales, 

Fig. 3 GBM model’s important features with actual data

Fig. 4 GBM model’s important features with range converted data

Fig. 5 DRF model’s important features with actual data
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and six-month sales as the top three important factors for predicting backorders as shown 

in Fig. 6.

Model evaluation

Table 3 shows that the GBM and DRF models with actual data and ranged training data 

have no significant difference in terms of the Area Under the Curve (AUC) value. �e mean 

per class error is high for the RF model with the ranged data.

Making predictions

�e constructed models are used on the testing dataset, and the performances are 

observed by visualizing Receiver Operating Characteristics (ROC) Curve along with 

AUC.

Fig. 6 DRF model’s important features with range converted data

Table 3 Models’ performances during the training phase

Performance metric GBM (with actual 
data)

GBM (with ranged 
data)

DRF (with actual 
data)

DRF (with 
ranged 
data)

LogLoss 0.016 0.019 0.016 0.029

AUC 0.994 0.979 0.987 0.985

Mean per class error 0.029 0.089 0.030 0.060

Table 4 Models’ performances during the testing phase

Performance metric GBM (with actual 
data)

GBM (with ranged 
data)

DRF (with actual 
data)

DRF (with 
ranged 
data)

LogLoss 0.098 0.029 0.036 0.042

AUC 0.795 0.946 0.787 0.959

Mean per class error 0.423 0.07 0.430 0.103
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Results on test data

Model performance

Table 4 shows that how GBM and DRF models perform when they have been exposed to 

the actual and ranged testing dataset. �e mean classification error per class of the GBM 

model with actual data and the DRF model with actual data is high. Moreover, the AUC 

is low for both models with actual data which indicates the overfitting of those two mod-

els in the training phase. One of the main reasons for the overfitting of a model is the 

high diversity of the data in the test phase. It can be observed that the AUC and mean 

class errors are slightly decreased compared to the training phase. �is slight variation is 

tolerable in the test phase.

Confusion matrix

�e first thing we would like to focus on is the model’s Confusion matrix as it is one of 

the easiest ways to get a glimpse of the correctness of the model. Most of the perfor-

mance measures depend on the different term values of the Confusion matrix. �e con-

fusion matrix consists of four terms, namely true positive (TP), true negative (TN), false 

positive (FP), and false negative (FN). Different performance measures are elaborated for 

the prediction run of one model to show how each term can be interpreted. To do so, the 

confusion matrix of the GBM model trained with ranged data is fetched.

�e distributions of TP, FP, TN, FN are shown as a Confusion matrix in Table  5. 

According to Table  5, the classifier has perfectly classified 11,915 products as a back-

order. �ey were marked as went on backorder on the dataset. �erefore, the TP 

instances are 11,915. �is predictive model also classified 426,522 products correctly 

which did not go as the backorder. So, we get 426,522 TN instances. �e classifier 

marked 3265 products as they did not go on backorder which did go on backorder in the 

dataset. Besides, 1518 products were wrongly classified as went on backorder. Hence, 

we get 3265 FN instances and 1518 FP instances. A high number of TN instances are 

observed because most of the products in the dataset did not go on backorder.

To evaluate the model’s strength, several performance measures are investigated. 

First, we have looked at how many backorder and non-backorder decisions have been 

classified by the model correctly. �e classification accuracy of the model in our case 

is 0.9892 which reflects that it predicted approximately 98 products out of every 100 

products correctly, whether those go on backorder or not. �e next measure we have 

looked at is what proportions of the products that are predicted as going to the back-

order, actually became backorder. We have done this by dividing the actual true positive 

instances with the cumulative true positive and false positive instances. �e proposed 

Table 5 Confusion matrix for GBM with ranged data

Models’ prediction Actual values in the dataset

Backorder Non-backorder

Backorder TP
11,915

FP
1518

Non-backorder FN
3265

TN
426,522
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model predicts 88% of the products correctly that went on backorder. In contrast, the 

specificity of the model is also calculated to figure out the percentage of correctly classi-

fied non-back ordered products by the model, which is 99%. �e probable reason for the 

difference between correctly classified true positive instances (88%) and true negative 

instances (99%) is because of the imbalanced class distribution. �e error rate of the pro-

posed model is also calculated as 0.0107 which shows the model’s prediction strength.

Comparison table for four models

For simplicity, we did not elaborate on each term of sections 6.2.1 to 6.2.6 for all models. 

�e results for all measures are reported in Table 6. From Table 6, it is observed that the 

overall performances of the models with the ranged data are higher than the others. �e 

GBM and DRF have performed almost similar for the ranged data. However, DRF per-

formed better than GBM for the actual data. Both GBM and DRF with ranged data have 

misclassified 1 product out of 100 products. On the other hand, the models trained with 

the actual data have misclassified 15–0 products out of 100 products.

ROC-AUC curve

In this part, we would like to show the performances of our model by visualizing 

Receiver Operating Characteristics (ROC) Curve along with AUC. �e ROC curve 

tells us how our models have performed throughout the prediction phase for all pos-

sible threshold values whereas the AUC represents the performance summary in a single 

value. �e higher AUC value can lead to a more accurate predictive model. �e ROC 

curve is plotted considering True Positive Rates (TPR) in the y-axis, and False Positive 

Table 6 Models’ characteristics during the testing phase

Performance metric GBM trained 
with ranged data

GBM trained 
with actual data

DRF trained 
with ranged data

DRF trained 
with actual 
data

Classification accuracy 0.9892 0.7919 0.9835 0.8436

Precision 0.8869 0.6896 0.8231 0.7213

Recall/sensitivity 0.7849 0.5876 0.8488 0.6893

Specificity 0.9964 0.7991 0.9986 0.8407

F1 score 0.7845 0.6345 0.8357 0.7049

Misclassification error 0.0107 0.2080 0.0164 0.1563

Fig. 7 Area under the curve of GBM models which are trained differently
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Rates (FPR) in the x-axis on a scale from 0 to 1. �e TPR and FPR are calculated for each 

threshold point of the classification process. �e threshold points are the probability val-

ues that have been used to determine the class.

Figures 7 and 8 depict the performances of the models. �e diagonal dotted lines rep-

resent the random guessing states for each threshold. �e colored portion of Figs. 7 and 

8 denote the area under the curve. Figure 8 shows the AUC of the DRF models. Both 

GBM and DRF trained with the ranged dataset have produced similar characteristics. 

However, the GBM and DRF models that have been trained with the actual data have 

acted differently in the test phase. �e DRF has produced more accurate results than the 

GBM in this case.

Tree investigation for probable backorder cases

We investigate the tree of our models. �e investigation begins with the fetching of the 

tree that has produced the highest AUC. As mentioned in “Model construction” sec-

tion, we have selected the max depth of 10. Figure 9 shows the AUC achieved at differ-

ent depths. �is figure illustrates that the selected model reached AUC of almost 94% at 

Depth 9. �e trees are sorted based on their AUC values in the descending order, and 

the first tree is pulled out. To understand how the tree is grown, the sample representa-

tion for each level is presented.

Figure  10 shows that the negative inventory level has produced the probability of 

positive 0.19 which means that the products with negative inventory may lead to the 

Fig. 8 Area under the curve of DRF models which are trained differently

Fig. 9 AUC of GBM trained with ranged data at different depth
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backorder in 19 cases among 100 cases. In addition, 17 products out of 100 which have 

zero or no stock may go to the backorder. It is also noticed that the high and the medium 

inventory levels produce a 30% chance together that the items may not become a back-

order. �e sign in the prediction denotes the binary class (yes or no, 0 or 1). In our case, 

the positive ( +) sign in prediction denotes the chance to become backorder, and the 

negative (−) sign denotes the probability of non-backorder.

Figure 11 shows that the slow and very slow lead time produces a 25% chance of back-

order scenario. �ere is a 15% chance that the product is not a backorder product if the 

lead time is in the moderate range.

Figure  12 depicts that the moderate and high sales levels produce 9% chances of 

backorder whereas the low and very low sales denote that there is a 2% chance for 

non-backorder.

Figure 13 shows that if the forecast level is very high, there is a 20% chance for the 

product to be backorder. �ese backorder chances are almost 8% for the moderate fore-

cast level, and 5% for the high forecast level.

Figure  14 depicts that if the inventory level is negative or zero, there are 16 to 20% 

chances of backorder for different lead time levels. For the low inventory level, if the lead 

time level is moderate, the product may become backorder in 14% of cases.

Figure  15 shows that if the inventory level is negative or zero, there are 16 to 19% 

chances of backorder for different sales levels. For the low inventory level, if the sales 

level is either high, low, or moderate, the product may be considered backorder in 16% 

of cases.

Fig. 10 GBM model’s inventory level distribution for backorder class

Fig. 11 GBM model’s lead time distribution for backorder class

Fig. 12 GBM model’s sales distribution for backorder class
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Figures 10, 11, 12, 13, 14, 15 show how the tree grows with backorder probability for 

different range levels. For simplicity, we have not included every part. Table 7 includes 

the probable causes of the backorder for the full tree.

The majority count rank-based data in Table  7 can be used to get more opti-

mal backorder scenarios as depicted in Fig.  16. As an example, consider any spe-

cific product item ‘A’ with a fast lead time. Suppose that the inventory level of ‘A’ is 

observed either in negative/zero/medium levels along with the high sales level and 

high forecast level. In this scenario, there are 20% chances that the product item ‘A’ 

will be backorder.

Conclusions

Early prediction of different business issues helps organizations to act in advance and 

retain the profit along with business goodwill. �e focus of this study is on the product 

backorder. In this research, the probable backorder items have been predicted using two 

machine learning techniques. Prediction using real-world data is sometimes challeng-

ing as it suffers from many problems such as high bias, redundancy, and missing values. 

Fig. 13 GBM model’s forecast distribution for backorder class

Fig. 14 GBM model’s inventory and lead time level distribution for backorder class

Fig. 15 GBM model’s inventory and sales level distribution for backorder class
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More specifically in our case, the impacts of negative values and high variance are well 

observed. Data pruning can be one of the solutions, but it requires the availability of 

experts which is costly more often. In this study, a ranged technique is proposed to solve 

this issue. �e actual data and the ranged data have been used in both machine learning 

models, and their performances have been compared. �e comparison result shows that 

the models’ performance increases by approximately 20% when they are trained with the 

ranged data.

As the market characteristics are varying rapidly based on the customers’ demands and 

expectations, flexibility in inventory control is required to maximize the profit. In this 

proposed method, the ranges of different inventory, lead time, sales, and forecast levels 

Table 7 Backorder cases where p ≥ 0.2

inv_level sales_level forecast_level leadtime_level Prediction >  = 0.2

Low Very low Moderate Very slow 0.2

Zero Very low very high Fast 0.2

Zero Low Low Fast 0.2

Negative Low High Fast 0.2

Zero High High Fast 0.2

Negative Moderate High Very slow 0.2

Negative Moderate Very low Fast 0.2

Negative High Moderate Fast 0.2

Zero High Very low Moderate 0.2

Low Very low High Fast 0.2

Medium High Moderate Moderate 0.2

Medium High Very low Moderate 0.2

High High Very low Moderate 0.2

Medium High High Very slow 0.2

Medium Very low High Very slow 0.2

Fig. 16 Distribution of probable backorder cases for 20% backorder probability
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are easily tunable. �ese ranges can be tuned based on business types, business require-

ments, and goals. �e correct identification of backorder probability and tuned range 

during inventory control may play a critical role in boosting up revenues and profits. 

�is method not only copes with negative inventory data but also minimizes the number 

of ties in the model building phase as well as in the prediction phase. Tie happens when 

exact prediction variables’ values are found among more than one class. Based on the 

majority of similar events of a tie, the model decides the class for those events. When 

the number of ties increases, computational complexity also increases. Decision mod-

els produce incorrect results when there are too many ties. Instead, the use of ranged 

data decreases the number of ties. �e ranged method may be time-efficient for big data 

records. �e decision authority of the respective business will have a broader picture 

of the backorder conditions as reported in Table  7 and may take necessary actions in 

advance.

In this paper, it has been shown that based on known inventory, lead time, sales, and 

forecasted sales, we can identify those products that will be backorder products. How-

ever, the relational factors such as local buyout quantity, past due stock, suppliers’ per-

formances, and different product risk flags have not been considered because of the lack 

of that information. We may focus on those factors in our future work. As the uncer-

tainty of demand plays a vital role to make the market volatile, the relationship between 

the predicted demand and the predicted backorder may also need attention. As future 

research, the mentioned perspectives can be considered to develop an integrated model 

and to understand more accurate backorder scenarios in advance.

Abbreviations

AUC : area under the curve; DRF: Distributed Random Forest; FN: false negative; FP: false positive; FPR: false positive rates; 

GBM: Gradient Boosting Machine; ML: machine learning; MAAPE: Mean Arctangent Absolute Percentage Error; MSE: 

mean square error; NN: neural networks; RBF: radial basis function; RF: random forest; ROC: receiver operating charac-

teristics; RMSE: root mean square error; SVM: support vector machine; SVR: support vector regression; SMOTE: synthetic 

minority oversampling technique; TN: true negative; TP: true positive; TPR: true positive rates.

Acknowledgements

The authors would like to thank the editor and reviewers for the great comments that improved the quality of the paper 

significantly. This research has been supported by the Natural Sciences and Engineering Research Council of Canada 

(NSERC).

Authors’ contributions

SI is the first author. SHA is the second author. He is the Ph.D. supervisor of SI. Both authors read and approved the final 

manuscript.

Funding

This research has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Availability of data and materials

The data will be available upon request.

Competing interests

There are no financial and non-financial competing interests.

Received: 7 May 2020   Accepted: 14 August 2020

References

 1. Clark KB, Fujimoto T. Product development performance: strategy, organization, and management in the world auto 

industry. 1991.

 2. Guo L, Wang Y, Kong D, Zhang Z, Yang Y. Decisions on spare parts allocation for repairable isolated system with depend-

ent backorders. Comput Ind Eng. 2019;127:8–20.



Page 21 of 22Islam and Amin  J Big Data            (2020) 7:65  

 3. Carter CR, Rogers DS. A framework of sustainable supply chain management: moving toward new theory. Int J Phys 

Distrib Logistics Manag. 2008;38(5):360–87.

 4. Mohebalizadehgashti F, Zolfagharinia H, Amin SH. Designing a green meat supply chain network: a multi-objective 

approach. Int J Prod Econ. 2020;219:312–27.

 5. Simchi-Levi D, Kaminsky P, Simchi-Levi E, Shankar R. Designing and managing the supply chain: concepts, strategies and 

case studies. New York: Tata McGraw-Hill Education; 2008.

 6. Yu L, Duan Y, Fan T. Innovation performance of new products in China’s high-technology industry. Int J Prod Econ. 

2020;219:204–15.

 7. Mitra A. Fundamentals of quality control and improvement. New York: Wiley; 2016.

 8. Xu Y, Bisi A, Dada M. A finite-horizon inventory system with partial backorders and inventory holdback. Oper Res Lett. 

2017;45(4):315–22.

 9. Sarker BR, Mukherjee S, Balan CV. An order-level lot size inventory model with inventory-level dependent demand and 

deterioration. Int J Prod Econ. 1997;48(3):227–36.

 10. Wan X, Sanders NR. The negative impact of product variety: forecast bias, inventory levels, and the role of vertical inte-

gration. Int J Prod Econ. 2017;186:123–31.

 11. Wan X, Britto R, Zhou Z. In search of the negative relationship between product variety and inventory turnover. Int J 

Prod Econ. 2019. https ://doi.org/10.1016/j.ijpe.2019.09.024.

 12. Rodger JA. Application of a fuzzy feasibility Bayesian probabilistic estimation of supply chain backorder aging, 

unfilled backorders, and customer wait time using stochastic simulation with Markov blankets. Expert Syst Appl. 

2014;41(16):7005–222.

 13. De Brito MP, Carbone V, Blanquart CM. Towards a sustainable fashion retail supply chain in Europe: organisation and 

performance. Int J Prod Econ. 2008;114(2):534–53.

 14. Tosarkani BM, Amin SH. An environmental optimization model to configure a hybrid forward and reverse supply chain 

network under uncertainty. Comput Chem Eng. 2019;121:540–55.

 15. Srivastav A, Agrawal S. Multi-objective optimization of hybrid backorder inventory model. Expert Syst Appl. 

2016;51:76–84.

 16. Ridgeway G. gbm: Generalized boosted regression models. R package version. 2006;1(3):55.

 17. Torgo L. Data mining with R: learning with case studies. New York: Chapman and Hall/CRC; 2011.

 18. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 

2002;16:321–57.

 19. Carbonneau R, Vahidov R, Laframboise K. Machine learning-Based Demand forecasting in supply chains. Int J Intell Inf 

Technol (IJIIT). 2007;3(4):40–57.

 20. Hearst MA, Susan TD, Edgar O, John P, Bernhard S. Support vector machines. In: IEEE intelligent systems and their appli-

cations. 1998. p. 18–28.

 21. Funahashi KI. On the approximate realization of continuous mappings by neural networks. Neural Netw. 

1989;2(3):183–92.

 22. Carbonneau R, Laframboise K, Vahidov R. Application of machine learning techniques for supply chain demand fore-

casting. Eur J Oper Res. 2008;184(3):1140–54.

 23. Guanghui WANG. Demand forecasting of supply chain based on support vector regression method. Procedia Eng. 

2012;29:280–4.

 24. Chen S, Cowan CF, Grant PM. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans 

Neural Netw. 1991;2(2):302–9.

 25. Shin K, Shin Y, Kwon JH, Kang SH. Development of risk based dynamic backorder replenishment planning framework 

using Bayesian Belief Network. Comput Ind Eng. 2012;62(3):716–25.

 26. Acar Y, Gardner ES Jr. Forecasting method selection in a global supply chain. Int J Forecast. 2012;28(4):842–8.

 27. de Santis RB, de Aguiar EP, Goliatt L. Predicting material backorders in inventory management using machine learning. 

In 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI). 2017. p. 1–6.

 28. Prak D, Teunter R. A general method for addressing forecasting uncertainty in inventory models. Int J Forecast. 

2019;35(1):224–38.

 29. Dancho M. Use Machine Learning to Predict and Optimize Product Backorders. Business Science Article. Business Sci-

ence Article. 2017. https ://www.busin ess-scien ce.io/busin ess/2017/10/16/sales _backo rder_predi ction .html. Accessed 

15 Feb 2020.

 30. Petropoulos F, Wang X, Disney SM. The inventory performance of forecasting methods: evidence from the M3 competi-

tion data. Int J Forecast. 2019;35(1):251–65.

 31. Zhang GP. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing. 2003;50:159–75.

 32. Yu L, Zhao Y, Tang L, Yang Z. Online big data-driven oil consumption forecasting with Google trends. Int J Forecast. 

2019;35(1):213–23.

 33. Hyndman RJ, Koehler AB. Another look at measures of forecast accuracy. Int J Forecast. 2006;22(4):679–88.

 34. Kim S, Kim H. A new metric of absolute percentage error for intermittent demand forecasts. Int J Forecast. 

2016;32(3):669–79.

 35. Martínez A, Schmuck C, Pereverzyev S Jr, Pirker C, Haltmeier M. A machine learning framework for customer purchase 

prediction in the non-contractual setting. Eur J Oper Res. 2020;281(3):588–96.

 36. De Baets S, Harvey N. Forecasting from time series subject to sporadic perturbations: effectiveness of different types of 

forecasting support. Int J Forecast. 2018;34(2):163–80.

 37. Kotsiantis SB. Decision trees: a recent overview. Artif Intell Rev. 2013;39(4):261–83.

 38. Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic E. Deep learning applications and chal-

lenges in big data analytics. J Big Data. 2015;2(1):1.

 39. Khosravi K, Pham BT, Chapi K, Shirzadi A, Shahabi H, Revhaug I, Bui DT. A comparative assessment of decision trees 

algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci Total Environ. 2018;627:744–55.

 40. Chiabaut J. U.S. Patent No. 8,761,022. Washington: U.S. Patent and Trademark Office. 2014.

https://doi.org/10.1016/j.ijpe.2019.09.024
https://www.business-science.io/business/2017/10/16/sales_backorder_prediction.html


Page 22 of 22Islam and Amin  J Big Data            (2020) 7:65 

 41. Rutkowski L, Jaworski M, Pietruczuk L, Duda P. The CART decision tree for mining data streams. Inf Sci. 2014;266:1–15.

 42. Ye Y, Wu Q, Huang JZ, Ng MK, Li X. Stratified sampling for feature subspace selection in random forests for high dimen-

sional data. Pattern Recogn. 2013;46(3):769–87.

 43. Alsolami F, Azad M, Chikalov I, Moshkov M. Multi-pruning and Restricted Multi-pruning of Decision Trees. Decision and 

Inhibitory Trees and Rules for Decision Tables with Many-valued Decisions. Cham: Springer; 2020. p. 153–174.

 44. Lee S, Gonzalez J, Wright M. Interpretable few-shot image classification with neural-backed decision trees. 2020.

 45. Araz OM, Olson D, Ramirez-Nafarrate A. Predictive analytics for hospital admissions from the emergency department 

using triage information. Int J Prod Econ. 2019;208:199–207.

 46. Biau G, Cadre B, Rouvière L. Accelerated gradient boosting. Machine Learning. 2019;108(6):971–92.

 47. Ernst D, Geurts P, Wehenkel L. Tree-based batch mode reinforcement learning. J Mach Learn Res. 2005;6:503–56.

 48. Yang Y, Qian W, Zou H. Insurance premium prediction via gradient tree-boosted tweedie compound poisson models. J 

Bus Econ Stat. 2018;36(3):456–70.

 49. Spearman C. The proof and measurement of association between two things. Am J Psychol. 1987;100(3/4):441–71.

 50. Ernst R, Powell SG. Manufacturer incentives to improve retail service levels. Eur J Oper Res. 1998;104(3):437–50.

 51. Appelqvist P, Gubi E. Postponed variety creation: case study in consumer electronics retail. Int J Retail Distrib Manag. 

2005;33(10):734–48.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Prediction of probable backorder scenarios in the supply chain using Distributed Random Forest and Gradient Boosting Machine learning techniques
	Abstract 
	Introduction
	Literature review
	Dataset and exploratory analysis
	Hypothesis testing

	Methodology
	Prediction outline
	Inventory level
	Lead time
	Sales
	Forecasted sale

	Prediction equations and notations

	Experiment
	Experimental environment setup
	Model construction
	Model evaluation
	Making predictions

	Results on test data
	Model performance
	Confusion matrix
	Comparison table for four models
	ROC-AUC curve
	Tree investigation for probable backorder cases

	Conclusions
	Acknowledgements
	References


