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Abstract 

Background:  This study explored the feasibility of radiofrequency (RF)-based radi-
omics analysis techniques for the preoperative prediction of programmed cell death 
protein 1 (PD-1) in patients with hepatocellular carcinoma (HCC).

Methods:  The RF-based radiomics analysis method used ultrasound multifeature 
maps calculated from the RF signals of HCC patients, including direct energy attenu-
ation (DEA) feature map, skewness of spectrum difference (SSD) feature map, and 
noncentrality parameter S of the Rician distribution (NRD) feature map. From each of 
the above ultrasound maps, 345 high-throughput radiomics features were extracted. 
Then, the useful radiomics features were selected by the sparse representation method 
and input into support vector machine (SVM) classifier for PD-1 prediction.

Results and conclusion:  Among all the RF-based prediction models and the ultra-
sound grayscale comparative model, the RF-based model using all of the three 
ultrasound feature maps had the highest prediction accuracy (ACC) and area under the 
curve (AUC), which were 92.5% and 94.23%, respectively. The method proposed in this 
paper is effective for the meaningful feature extraction of RF signals and can effectively 
predict PD-1 in patients with HCC.

Highlights 

•		  We proposed RF-based radiomics analysis method by introducing three 
ultrasound features of direct energy attenuation (DEA), skewness of spectrum 
difference (SSD) and noncentrality parameter S of Rician distribution (NRD) as 
the feature extraction method from RF signals, investigated the effectiveness of 
RF-based radiomics analysis method in the immunocheckpoint prediction of 
programmed cell death protein 1 (PD-1), and validated the results with contrast 
testing of grayscale-based radiomics analysis method in this study. We also dem-
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onstrate a trend in prediction performance changes and its correlation with the 
number of ultrasound features.

•		  The results demonstrated that there were significant differences (p < 0.05) in 
radiomics scores between HCC patients with PD-1 and HCC patients without 
PD-1. RF-based radiomics analysis method performed well in PD-1 noninvasive 
preoperative prediction of HCC patients.

•		  In this study, the performance of RF-based radiomics analysis method was 
better than that of grayscale-based radiomics analysis method in the preoperative 
prediction of PD-1 in HCC patients. The AUC of DSNM, which was the RF-based 
radiomics analysis model with three ultrasound feature maps, reached 94.23% in 
the prediction of PD-1 cell protein in HCC patients.

Keywords:  RF, Radiomics, HCC, PD-1, Ultrasound multifeature map

Background
Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related 
death [1]. To date, there is no clinical evidence that most of the adjuvant agents studied 
can improve survival in any stage of HCC [2]. In addition, the prognosis of HCC patients 
is generally poor. As the most common option for HCC patients, resection with cura-
tive intent or ablation is associated with 5-year recurrence rates as high as 75% [3]. Pro-
grammed cell death protein 1 (PD-1) could act as an indicative marker for the prognosis 
of HCC patients after surgical resection and may have a positive impact on the choice of 
treatment for HCC patients [4]. However, the current detection of PD-1 mainly depends 
on the immunohistochemical method with pathological tissue obtained by resection or 
puncture. There is a clear need to find a noninvasive, accurate preoperative PD-1 predic-
tion technique for patients with HCC.

At present, anti-PD-1 antibody has been approved by the Food and Drug Administra-
tion (FDA) for the treatment of malignant melanoma and nonsmall cell lung cancer [5, 
6]. A recent study found that PD-1 was highly expressed in the peripheral and intra-
tumoral areas of HCC and could predict progression and postoperative recurrence [4]. 
However, PD-1 detection currently mainly depends on immunohistochemical staining 
of puncture or resected specimens. There are few studies on PD-1 prediction using other 
technologies. Although the trauma of puncture is small, the heterogeneity of the tumor 
and other reasons may cause inaccurate puncture results. Moreover, the puncture chan-
nel left in the liver tissue may damage the tumor microenvironment and stimulate the 
development and spread of the tumor. Therefore, it is urgent to develop a noninvasive 
and accurate method to predict PD-1 in HCC.

Ultrasonography is the first-line investigative technique for the surveillance of most 
diseases, as it has relatively low cost, noninvasive, and is widely available [7]. Sur-
veillance of HCC with ultrasonography at 6-month intervals is recommended by the 
current guidelines [2, 8]. Radiomics is a new research method developed in the past 
decade [9, 10], that uses the computing power of computers to mine medical data 
in depth and extracts abundant tumor pathophysiology information that cannot be 
effectively found by the human eye [11, 12]. Therefore, applying radiomics analysis 
technology in ultrasound to deeply mine pathological information has great clinical 
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development value. To date, it has performed well in breast cancer, HCC, liver fibro-
sis in chronic hepatitis B, nonsmall cell lung cancer, and so on [13–18]. This makes 
it possible and worth trying to research the performance of radiomics analysis tech-
niques combined with the ultrasound data of HCC patients for PD-1 preoperative 
prediction.

The radiofrequency (RF) signal is the original ultrasonic signal without signal 
postprocessing (brightness compensation, envelope detection, depth compensation, 
dynamic range adjustment, etc.). It contains most of the acoustic information includ-
ing attenuation, scattering, sound velocity, phase, and so on. In essence, it can provide 
more information than ultrasonic images [19]. In particular, large amount of high-fre-
quency information before detection is suitable for algorithm compilation. However, 
the large amount of information from the RF signal is also accompanied by excessive 
noise interference. Even if an existing deep learning network with good performance 
is used, it is usually unable to create a successful model because of the large amount 
of noise and the abstract labels. At the same time, there is a lack of an effective feature 
extraction method to establish a diagnostic model directly using RF signals. There-
fore, simplification can be considered by calculating as many physical parameters as 
possible. Then the intelligent model can be built on these physical parameter spectra, 
which is more likely to effectively realize the deep data mining of RF signals.

The attenuation [20], skewness [21], and Rician distribution [22] are the traditional 
characteristic parameters in ultrasound. In this study, direct energy attenuation 
(DEA), skewness of spectrum difference (SSD), and noncentrality parameter S of the 
Rician distribution (NRD) were used to compose three feature maps. We established 
an RF-based radiomics analysis method to extract radiomics features from ultrasound 
feature maps obtained by RF and realized the noninvasive prediction of PD-1 in HCC 
patients. Our aim was to investigate the value of the RF-based radiomics analysis 
algorithm in the preoperative prediction of PD-1 in patients with HCC. In summary, 
the contributions of this paper are as follows:

1.	 We proposed the RF-based radiomics analysis method by introducing the three 
ultrasound features of DEA, SSD, and NRD as the feature extraction method from 
RF signals, investigated the effectiveness of the RF-based radiomics analysis method 
in the immune checkpoint prediction of PD-1, and validated the results with con-
trast testing of the grayscale-based radiomics analysis method in this study. We also 
demonstrate a trend in prediction performance changes and its correlation with the 
number of ultrasound features.

2.	 The results demonstrated that there were significant differences (p < 0.05) in radiom-
ics scores between HCC patients with PD-1 and HCC patients without PD-1. RF-
based radiomics analysis method can realize the noninvasive preoperative prediction 
of PD-1 in HCC patients.

3.	 In this study, the performance of the RF-based radiomics analysis method was bet-
ter than that of the grayscale-based radiomics analysis method in the preoperative 
prediction of PD-1 in HCC patients. The AUC of DSNM, which was the RF-based 
radiomics analysis model with three ultrasound feature maps, reached 94.23% in the 
prediction of PD-1 in HCC patients (Additional file 1).
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Results
Ultrasound features results

In this study, we extracted multiple ultrasound parameters from RF signals, includ-
ing DEA, SSD, and NRD. These three ultrasound parameters had varying degrees 
of positive roles in the preoperative prediction of PD-1. They were the basis of the 
ultrasound radiomics analysis method in this study. We compared the differences in 
the DEA, SSD, and NRD ultrasound feature parameters between patients with and 
without PD-1. ANOVA showed that there were no significant differences (p < 0.05) 
between patients with PD-1 and patients without PD-1 in DEA, SSD and NRD.

Radiomics features results

Through feature extraction, 345 radiomics features were obtained from every ultra-
sound grayscale image and the DEA, SSD, and NRD ultrasound feature maps. A 
total of 345 radiomics features were extracted from every patient in the PD-1 predic-
tion model based on ultrasound grayscale image (GM), 345 radiomics features were 
extracted from every patient in PD-1 prediction model based on ultrasound DEA fea-
ture map  (DM), 690 radiomics features were extracted from every patient in PD-1 
prediction model based on DEA and SSD feature maps  (DSM), and 1035 radiomics 
features were extracted from every patient in PD-1 prediction model based on DEA, 
SSD, and NRD feature maps (DSNM).

The SRC coefficient represented the importance of the features relative to predic-
tion. According to the above parameter, the high-throughput features of every model 
were sorted and the useful features were preliminarily selected. SRC feature selected 
part was the first time to reduce the feature dimension. After SRC feature selection, 
the feature numbers of GM, DM, DSM, and DSNM of the PD-1 prediction models 
were 241, 260, 432, and 564, respectively.

At this time, the feature number of every prediction model was still large. The pre-
liminarily selected features were put into the SVM classifier to realize further feature 
dimension reduction. When each model used the SVM classifier for training, the first 
feature of its preliminarily selected features was put into the classifier for training, 
and the evaluation parameters of ACC, AUC, SPEC, and SENS after training were cal-
culated. Then, the first two features of its preliminarily selected features were selected 
and put into the classifier for training, and the ACC and other evaluation parame-
ters were also calculated. In this way, different numbers of features were extracted in 
turn to train the SVM classifier, and the corresponding evaluation parameters were 
recorded. Finally, the best result was selected through the saved evaluation param-
eters. The number of features put into the classifier corresponding to the best result 
was the final feature dimension of this model after the second dimension reduction. 
These features were also the final features of every PD-1 classification prediction 
model. In this way, the final feature dimensions of the PD-1 prediction models of GM, 
DM, DSM, and DSNM were 33, 13, 13, and 10, respectively.
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Prediction model results

The performance of the GM PD-1 prediction model and other RF-based PD-1 pre-
diction models are shown in Table  1. As a contrast experiment, GM used grayscale 
images, and its AUC and ACC reached 80.77% and 80.00%, respectively. However, the 
SENS of this model was low, only 57.14%. The performance outcomes of the RF-based 
DM, DSM, and DSNM models were better than that of GM.

AUC, area under the receiver operating characteristic curve; ACC, accuracy; SENS, 
sensitivity; SPEC, specificity; GM, PD-1 prediction model based on ultrasound grayscale 
image; DM, PD-1 prediction model based on DEA feature map of RF signals; DSM, PD-1 
prediction model based on DEA and SSD feature maps; DSNM, PD-1 prediction model 
based on DEA, SSD, and NRD feature maps.

The ACC, AUC, and SENS of DSNM were the largest among the three RF-based pre-
diction models. The AUC of DSNM was 94.23% (95% confidence interval [CI] 0.820 to 
0.991). The AUCs of DSM and DM reached 88.46% (CI 0.744 to 0.964) and 83.52% (CI 
0.684 to 0.933), respectively. With the increase in the number of RF-based ultrasound 
feature maps, the performance of the PD-1 prediction models for HCC patients gradu-
ally improved.

The SVM classifier in the PD-1 prediction model was used to calculate the radiom-
ics score of each HCC patient. The model can predict the presence of PD-1 in HCC 
patients based on the radiomics score. Figure 1 shows a boxplot of the radiomics scores 
of the DSNM PD-1 prediction model for HCC patients with and without PD-1. ANOVA 

Table 1  Diagnostic performance of GM, DM, DSM, and DSNM for PD-1 classification

Model type AUC (%) ACC (%) SENS (%) SPEC (%)

GM 80.77 80.00 57.14 92.31

DM 83.52 85.00 71.43 92.31

DSM 88.46 87.50 78.57 92.31

DSNM 94.23 92.5 92.86 92.31

Fig. 1  Boxplot of the radiomics scores of DSNM PD-1 prediction model for HCC patients with and without 
PD-1
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showed that there was a significant difference (p < 0.05) between patients with PD-1 and 
patients without PD-1.

The ROC curves of the grayscale-based and RF-based PD-1 prediction models are 
shown in Fig. 2. The total areas under the ROC curve can also represent the AUCs of 
the PD-1 prediction models. The area under the ROC curve of DSNM was 0.94 ± 0.04, 
which was the largest of the four PD-1 prediction models of HCC patients.

The PRCs of DSNM, DSM, DM, and GM are shown in Fig. 3. The break-even point 
(BEP) in the PRC is the basis for judging the performance of the PD-1 prediction mod-
els. The BEP is the value when the precision of the model is equal to the recall. The BEP 
of the DSNM model in Fig. 3 is the intersection of the red curve and the diagonal. Its 
value is larger than that at the intersections of the other three models and the diagonal. 
This indicates that the DSNM based on three ultrasound feature maps calculated from 
RF signals has the best performance of all four models in predicting the PD-1 in HCC 
patients.

Fig. 2  Comparison of the ROC curves of DSNM, DSM, DM, and GM PD-1 prediction models

Fig. 3  Precision-recall curves of the GM, DM, DSM, and DSNM PD-1 prediction models
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Discussion
This study demonstrated that the combination of ultrasound multifeature maps of RF 
signals and radiomics analysis was highly effective in predicting PD-1 of HCC patients. 
This is the first report of the preoperative prediction of PD-1 in HCC patients by using 
radiomics technology based on ultrasound multifeature maps of RF data. Three predic-
tion models based on RF signals and one prediction model based on grayscale images 
were established in this study. The results showed that the three prediction models based 
on RF all performed better than the model based on grayscale images in predicting PD-1 
in HCC. Among the above three RF-based prediction models, the DSNM model using 
DEA, SSD, and NRD, which are three kinds of ultrasound feature maps, performed best, 
with an AUC of 0.94 ± 0.04. The texture features and wavelet texture features extracted 
from the three ultrasound feature maps in DSNM model had the best accuracy for PD-1 
preoperative prediction. Thus, RF-based ultrasound multifeature map radiomics analysis 
had a positive effect on the prediction of this immune checkpoint inhibitor. In this study, 
the grayscale-based radiomics analysis contrast test and LOOCV ensured the correct-
ness of the DSNM prediction method.

In radiomics, changes in tumor microproteins, molecules, and genes are closely related 
to changes in macro medical imaging. Many studies on radiomics have confirmed this 
phenomenon in CT [9], PET [23, 24], and MRI [25–28] images. From the above images, 
researchers extracted features related to the proteins and genes studied. At the same 
time, radiomics technology based on the above imaging techniques provides assistance 
for disease diagnosis, clinical decision-making, and prognosis. At present, the develop-
ment of radiomics in ultrasound is in the initial stage. Since ultrasound is noninvasive, 
does not require radiation, is inexpensive, and is widely used, the development space 
of radiomics in ultrasound is very large. Qiao et  al. used B-mode ultrasound images 
to identify benign and malignant breast tumors [14]. Zhang et al. [13] extracted high-
throughput radiomics features from ultrasound elastic images for the diagnosis of breast 
tumors. These are examples of ultrasound image-based radiomics methods. In this 
study, we used the method similar to the above to establish the GM model to predict 
the immunosuppressive molecules PD-1 of HCC patients. The AUC of grayscale image-
based GM model was 80.77% in prediction of the cell surface receptor PD-1. This gray-
scale image-based model was established to compare with the RF-based models.

Grayscale images are most widely used in ultrasound radiomics. A recent study by 
Biermann et  al. proved that grayscale image-based radiomics model slightly outper-
formed ACR scoring by the less experienced radiologists in the classification of thyroid 
nodules [29]. The combination of multiple ultrasound images is one of the development 
trends of ultrasound radiomics. Xue et al. [30] confirmed that the combination of gray-
scale images and elasticity images in the transfer learning radiomics model was the most 
accurate prediction model in liver fibrosis grading (AUCs are 0.950, 0.932, and 0.930 
for classifying S4, ≥ S3, and ≥ S2, respectively). No matter grayscale images or elasticity 
images, they are all calculated from RF signals. RF signal itself contains more informa-
tion than these images. However, an effective feature extraction method of RF to estab-
lish the diagnostic model directly is lacking. The study of Wei et al. mentioned that using 
a single modality of RF signals for the liver fibrosis stage, the highest accuracy of the 
verification set was only 0.77 [31]. How to extract as much useful information as possible 
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and improve the utilization efficiency of RF signals is worthy of exploration. Wei et al. 
chose the method of combing multiparametric features, including ultrasound grayscale 
images, RF signals, and contrast-enhanced micro-flow images, and the highest classifica-
tion accuracy was 0.12 higher than that of the single modality of RF for the liver fibrosis 
stage [31]. In our study, we proposed to calculate three kinds of ultrasonic features from 
RF signals, including DEA, SSD, and NRD, and then extract effective features for the 
second time with radiomics method, so as to simplify and get useful information from 
RF signals as much as possible. The results showed that the performances of PD-1 pre-
diction models using DEA, SSD, and NRD ultrasound feature maps were generally better 
than that of using only ultrasound grayscale images. Moreover, the more the ultrasound 
feature maps used, the better the PD-1 prediction performance.

As shown in Figs. 2 and 3, the model using DEA, SSD, and NRD ultrasound feature 
maps simultaneously showed the best performance of all the RF-based models using 
ultrasound feature maps, with an AUC of 94.23%. The attenuation coefficient of bio-
logical tissue is closely related to its tissue properties and structural characteristics. The 
differences caused by high PD-1 expression in disease tissues may vary, such as sound 
velocity, acoustic impedance, and acoustic attenuation coefficients. In this study, the 
DEA coefficient was used as an ultrasound feature to establish a DM preoperative PD-1 
prediction model. The AUC of this model reached 83.52%. Studies on the frequency 
domain analysis of HCC mainly focus on the internal blood flow spectrum. The SSD fea-
ture map is a spectrum feature and reflects the frequency domain characteristics of the 
RF signals of the whole ROI of HCC lesions. In fact, the addition of the SSD ultrasound 
feature map to the DM model to form the DSM model improved the PD-1 prediction 
results. Statistical distribution models, such as Rician distribution, are still lacking in the 
detection of the PD-1 receptor. High-throughput feature extraction in radiomics tech-
nology is helpful to distinguish the ultrasound imaging changes caused by the accumula-
tion of the tumor PD-1 receptor. The combination of radiomics analysis technology and 
ultrasound feature maps composed of the ultrasound feature parameters DEA, SSD, and 
NRD achieved 92.5% ACC in the DSNM model for PD-1 prediction in HCC patients. 
With the increase in the types of ultrasound feature maps, the predictive performance 
of the model increased. This results suggest that more ultrasound features should be 
extracted from RF signals, combined with high-throughput imaging features, to fully 
develop the application of ultrasound at the molecular and protein levels.

ANOVA showed that there were no significant differences in DEA, SSD, and NRD 
(p < 0.05) between patients with PD-1 and patients without PD-1. However, the radiom-
ics scores of HCC patients based on the DSNM PD-1 prediction model in the boxplot 
of Fig. 1 shows that there were significant differences between HCC patients with and 
without PD-1. This explains why the numerical value of ultrasound feature maps cal-
culated from RF in this research cannot directly and effectively predict the presence of 
PD-1 in HCC patients. After radiomics processing, the extracted texture features and 
wavelet-based texture features achieved a prediction accuracy of more than 85% in all 
three prediction models of DM, DSM, and DSNM. In addition to the traditional numeri-
cal value of ultrasound feature parameters, the numerical distribution characteristics 
and texture features of the ultrasound feature parameters themselves also provide use-
ful clues worthy of study. It is suggested that the combination of radiomics processing 
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methods can further mine the information contained in ultrasound RF signals and 
expand the application scope of ultrasound diagnosis. In this paper, an effective feature 
extraction method from RF signals for PD-1 prediction in HCC patients was established.

Texture features are one of the most widely utilized features in radiomics and perform 
well in terms of benign and malignant identification [32], protein [26], gene predic-
tion [33, 34], and molecular typing [35]. Pham et al. [32] extracted two kinds of texture 
features from CT images of lung cancer patients to differentiate of mediastinal lymph 
nodes. Dang et al. [26] extracted texture features from MRI images to predict the tumor 
suppressor protein p53 in head and neck squamous cell carcinoma, with an accuracy of 
0.813. Yang et  al. extracted 97 texture features from MRI images and combined them 
with a random forest classifier to carry out molecular typing classification and survival 
prediction of glioma [35]. In this study, we extracted 345, 345, 690, and 1035 texture fea-
tures and wavelet-based texture features from the GM, DM, DSM, and DSNM models, 
respectively. These texture features were simplified after SRC feature selection and sec-
ondary dimension reduction in SVM classification, which supports the successful pre-
diction of PD-1. The preoperative prediction ACCs of the cell receptor PD-1 for HCC 
patients in the GM, DM, DSM, and DSNM models were 80%, 85%, 87.5%, and 92.5%, 
respectively. Texture features, as important visual features that are difficult to describe 
in detail for doctors, still have significant advantages in effective feature extraction from 
RF-based ultrasonic feature maps.

However, some limitations should be noted in this study. First, only 40 available 
patients were screened from 129 patients. Independent testing is difficult for small sam-
ple sizes. For this reason, this study designed a grayscale image-based comparative test 
to verify the prediction accuracy of the RF signal-based model while using the LOOCV 
method. Second, research at a single center cannot verify the generalization ability of 
the model. The next step of the research will be to achieve multicenter research results. 
Third, the current prediction results of this study can only predict PD-1 negative and 
positive results for HCC patients. Tumor heterogeneity makes it difficult to represent the 
nature of the whole pathological tissue. This makes the results of immunohistochemistry 
and tumor molecular typing less reliable for the development of the follow-up treatment 
plan. It also increases the uncertainty of prognosis. Studying how to predict the distribu-
tion, proportion, and area of PD-1 in the ROI may provide strong technical support for 
the selection of puncture sites. The treatment plan and prognosis may be more accurate 
with this information.

Conclusion
In conclusion, we propose an RF-based radiomics analysis method for predicting 
PD-1 in HCC patients. The DSNM model using RF-based ultrasound multifeature 
maps and the radiomics analysis method has the best performance of all four models 
and is expected to become a robust method for the noninvasive and fast preopera-
tive prediction of PD-1 in HCC patients. Although the RF signal contains more infor-
mation than the traditional grayscale image, an effective feature extraction method 
to establish the diagnostic model directly is lacking. The application of the ultra-
sound multifeature map extraction method and radiomics feature extraction effec-
tively improves the utilization value of ultrasound RF signals and provides deeper 
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diagnostic and treatment information from ultrasound. RF signals can provide richer 
diagnostic information than ultrasound images. The proposed method can provide 
a valuable reference for the combination of ultrasound and radiomics analysis and 
facilitate the development of more accurate algorithms and clinical diagnostic aids.

Materials and methods
Patients

From January 2018 to December 2018, we enrolled 129 liver cancer patients preop-
eratively diagnosed with HCC in a designated institution. Finally, 40 eligible patients 
(33 men and 7 women; age range: 23–80  years; mean: 55 ± 12  years) were selected 
for this study. The inclusion criteria were (1) patients with HCC confirmed by patho-
logical examination and operation; (2) patients with a solitary tumor; (3) patients who 
underwent preoperative grayscale ultrasound examinations within 1 week before sur-
gery and had useful RF data; and (4) patients with confirmation by histopathological 
examination and PD-1 evaluation.

The exclusion criteria included (1) patients without HCC confirmed by pathological 
examination; (2) patients with preoperative biopsy or adjuvant therapy; (3) patients 
with an incomplete or not clearly visible HCC lesion area reconstructed by RF data; 
and (4) patients without histopathological examination and PD-1 evaluation results.

PD-1 evaluation was performed by two pathologists with at least 10 years of experi-
ence in hepatopathology reviewing all the specimen slices. Both investigators were 
blinded to the clinical and imaging information of the patients.

Ultrasound data acquisition

All examinations, including conventional ultrasound and RF ultrasound, were per-
formed on an EPIQ-7 ultrasound system (Philips Medical Systems, Amsterdam, 
Holland). A C5-1 curved transducer with frequencies of 1–5  MHz (Philips Medical 
Systems, Amsterdam, Holland) was used for data acquisition, including ultrasound 
grayscale images and corresponding RF data.

All patients fasted for at least 8 h before ultrasound examinations. Then, the gray-
scale ultrasound features of the hepatic lesions were assessed according to a standard-
ized protocol: number of lesions (solitary or multiple), size of the lesion (mm), and 
echogenicity (hyperechoic, isoechoic, hypoechoic, or mixed compared to surround-
ing liver tissue). Ultrasound grayscale examinations were performed by a single expe-
rienced radiologist (with more than 18 years of experience in ultrasound of the liver).

RF data processing

For the RF data obtained in this study, the specific RF data processing flow, which we 
call the RF-based radiomics analysis method, is shown in Fig. 4. We first conducted 
RF analysis to extract ultrasound multifeature maps. Then, combined with the widely 
used radiomics analysis method, high-throughput radiomics features were extracted, 
selected, and used to build effective PD-1 classification prediction models.
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Ultrasound multifeature map extraction

The extraction of ultrasound multifeature maps was a unique design in this study and 
effectively improved the performance of ultrasound RF data in making classifications 
and predictions of the PD-1 protein level. This will be mentioned later in the analy-
sis of the experimental results. To improve the calculation efficiency of ultrasound 
multifeature map extraction, we extracted the RF data of the region of interest (ROI) 
and used these data instead of the whole echo RF dataset to calculate the multifeature 
maps. Then, smooth filtering, Hilbert transformation, logarithmic compression, sec-
tor transformation, and other processing method were carried out on the RF data to 
achieve B-mode reconstruction, as shown in Fig. 5a. By referring to the lesion loca-
tion marked with a white dotted circle by the doctor in the corresponding grayscale 

Fig. 4  Experimental flow diagram of the RF-based radiomics analysis method

Fig. 5  a B-mode image of a patient reconstructed by RF data. b B-mode image saved during data acquisition 
in the hospital with a white dotted circle marked by the doctor during diagnosis
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image saved during data acquisition, as shown in Fig. 5b, we can determine and seg-
ment the ROI, which is shown in Fig. 2a with a red circle, to obtain the RF data of the 
ROI.

The RF data of the ROI were used to calculate the three feature parameters of direct 
energy attenuation (DEA), skewness of spectrum difference (SSD), and noncentrality 
parameter S of Rician distribution (NRD), which were composed of the corresponding 
DEA , SSD, and NRD ultrasound feature maps, as shown in Fig. 6. There are many kinds of 
ultrasound features that can characterize RF signals, including time domain features, fre-
quency domain features, geometric features, and statistical features. When there is PD-1 
protein in the liver of HCC patients, the microscopic scattering differences may manifest 
in the time domain, frequency domain, and so on. In this study, the DEA, SSD, and NRD 
ultrasound features we chose belong to the time domain feature, frequency domain feature, 
and statistical feature, respectively.

DEA refers to the direct energy attenuation of ultrasound propagation in the medium. 
As shown in Fig. 3a, two 1-D RF data blocks with a gated window length of 64 and window 
interval of 16 were extracted by moving down one data point each time. Fourier transforms 
were applied to obtain the average energy E0 of the 1-D RF data block directly above and E1 
of the 1-D RF data block directly below. Formula (1) was used to calculate the DEA coef-
ficient in this study:

where D represents the gated window length, which is 64 data points; C equals 1540 m/s, 
which represents the sound speed of the ultrasound wave in tissue; and fS represents the 

(1)DEA = 10 ∗ log (E0/E1)/
(

D ∗ C/fS/2
)

,

Fig. 6  Schematic diagram of the extraction method of the a 1-D RF data block and b 2-D RF data block of 
the ROI in ultrasound feature map calculation. c Direct energy attenuation (DEA) ultrasound feature map. d 
Skewness of spectrum difference (SSD) ultrasound feature map. e Noncentrality parameter S of the Rician 
distribution (NRD) ultrasound feature map
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sample rate, which is 32 MHz. The DEA value calculated is that of the point (window 
length + window interval)/2 on the 1-D RF data block directly above.

SSD represents the skewness of the spectrum difference of the ultrasound RF echo sig-
nal. Skewness is calculated by the following formula (2):

where S is the skewness (dimensionless); the letter ‘i’ is the i-th number; X  is the average 
of the samples; n is the number of samples; and xi is the i-th sample value.

A schematic diagram how the 1-D RF data block of the ROI was extracted during the 
SSD calculation is shown in Fig. 3a. Two 1-D RF data blocks with window lengths of 64 
were extracted by moving down one data point each time. The window interval between 
the two RF data blocks was 40. Fourier transform was applied on the two 1-D RF data 
blocks. Then make a subtraction between the two blocks obtained by Fourier transform, 
and the skewness of the data after subtraction was calculated by using the function of 
‘skewness’ in the MATLAB toolbox. The calculated SSD value is that of the point (win-
dow length + window interval)/2 on 1-D RF data block located directly above.

NRD is the noncentrality parameter S of the Rician distribution. The Rician distribu-
tion has the following density formula (3):

with noncentrality parameter s ≥ 0 and scale parameter σ > 0, for x > 0, which is the sam-
ple value. I0 is the zero-order modified Bessel function of the first kind. In this study, the 
noncentrality parameter S of the midpoint of each 2-D RF data block was calculated by 
the function of ‘fitdist’ in the MATLAB toolbox. The 2-D data block selection method 
is shown in Fig. 3b. The size of each selected 2-D data block was 37 × 8. The S value of 
the Rician distribution of the selected data block was calculated as the NRD value of the 
midpoint of the current 2-D data block. Then, the gated windows were moved down one 
data point by one data point, and all the NRD values of each point in the ROI could be 
calculated.

The above three ultrasound feature parameters are widely used and representative and 
include most of the features of RF signals. These parameters compose the three ultra-
sound feature maps of the DEA, SSD, and NRD. The three ultrasound feature maps are 
shown in Fig. 3c–e.

Radiomics feature extraction and selection

Radiomics feature extraction was used to extract texture features and wavelet-based 
texture features from the three ultrasound feature maps of DEA, SSD, and NRD. Tex-
ture is ubiquitous in medical images and is an important visual clue of imaging doctors 
for diagnose. Each ultrasound feature map was extracted 69 texture features, including 
histogram features, gray-level co-occurrence matrix (GLCM) features, gray-level run-
length matrix (GLRLM) features, grey-level size-zone matrix (GLSZM) features, and 
neighborhood gray-tone difference matrix (NGTDM) features.

(2)S =

1
n

∑n
i=1 (xi − x)3

(

1
n

∑n
i=1 (xi − x)2

)
3
2

,

(3)p(R) = I0

( xs

σ 2

) x

σ 2

−

(

x2+s2

2σ2

)

,
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In addition, texture features often show multiscale characteristics. Wavelet transform, 
as a multiscale analysis tool, can adaptively obtain the effective signals of different fre-
quency components of the original image. We used wavelet transform to obtain 4 differ-
ent frequency components of each ultrasound feature map and extracted the above 69 
texture features from these maps, respectively. Then, another 276 wavelet-based texture 
features of each ultrasound feature map were obtained.

The detailed radiomics features are shown in Table 2. A total of 345 radiomics features 
were extracted from each ultrasound feature map and its 4 frequency components.

GLCM (gray-level co-occurrence matrix), GLRLM (gray-level run-length matrix), 
GLSZM (grey-level size-zone matrix), and NGTDM (neighborhood gray-tone difference 
matrix)

The method of feature selection was based on sparse representation coefficient (SRC), 
which was proposed by Li [36]. The hypothesis of sparse representation was that all sig-
nals in the world are sparse and can be expressed sparsely, that is, they can be expressed 
linearly by finite features. The basic principle of sparse representation can be described 
by the following formula (4):

Suppose ϕiǫRN , i = 1, 2, . . . , M is the base signal (atom) of the N*1 dimension, 
∅ = [ϕ1,ϕ2,...ϕM] is the matrix composed of M base signals, which is called the diction-
ary, where M > N, β is the coefficient vector of the M*1 dimension, and s is the target 
signal of N*1. The goal is to select as few atoms as possible in ∅ to make ∅β = s tenable, 
that is, to find a β to make ∅β = s tenable, while the number of nonzero elements in β is 
as small as possible. β can be solved by the OMP algorithm [37]. The elements in β are 
called the SRCs. The SRC value can reflect the importance of these features. All the radi-
omics features extracted were arranged in descending order by SRC according to their 
importance to the label in selecting the required number of useful features.

Establishment and evaluation of the prediction model

The currently widely used SVM classifier with excellent performance was used to 
build the PD-1 prediction model. This classifier can deal with the classification prob-
lem by the kernel method when the relationship between class labels and radiomics 

(4)s = ∅β .

Table 2  Detailed radiomics features extracted from each ultrasound feature map and its 4 
frequency components

Kinds of high-
throughput 
radiomics 
features

Texture 
features 
from each 
ultrasound 
feature map

Wavelet-based 
texture features 
from frequency 
component 1

Wavelet-based 
texture features 
from frequency 
component 2

Wavelet-based 
texture features 
from frequency 
component 3

Wavelet-based 
texture features 
from frequency 
component 4

Histogram 16 16 16 16 16

GLCM 13 13 13 13 13

GLRLM 22 22 22 22 22

GLSZM 13 13 13 13 13

NGTDM 5 5 5 5 5

Total 69 276
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features is nonlinear. The kernel function method maps the linearly inseparable fea-
tures of low-dimensional space to high-dimensional space through feature transfor-
mation to obtain the optimal separation hyperplane and realize linear classification. 
The Gaussian radial basis function was the preferred kernel function in this experi-
ment. This function can map the original feature vector to the infinite dimension 
space to find the optimal hyperplane. There are few adjustable parameters using 
the Gaussian radial basis function, and only γ and the penalty parameter C can be 
changed. By using cross-validation to find the appropriate parameters C and γ , the 
classifier can correctly predict the test set data. In this experiment, C was 0.8 and γ 
was 1. The SVM software package used in this experiment was the ‘libsvm’ toolkit 
designed by Lin Zhiren, Associate Professor of Taiwan University.

Three PD-1 radiomics prediction models based on RF were established using SVM, 
including a PD-1 prediction model that used the DEA feature map (DM), a PD-1 pre-
diction model that used the DEA and SSD feature maps (DSM) and a PD-1 prediction 
model that used the DEA, SSD, and NRD feature maps (DSNM), which are shown in 
Fig. 7.

Grayscale image compression test

Ultrasound grayscale image-based radiomics analysis is a relatively traditional 
method and was compared with RF-based radiomics analysis methods in terms of 
the performance of PD-1 prediction in HCC patients. After segmenting the ROI of 
the grayscale image, the same radiomics analysis processing steps as that of RF data 
were carried out on the grayscale image. Ultrasound grayscale image-based radiomics 
analysis compression tests directly extracted 345 radiomics features from ROIs of the 
grayscale images. They were also selected by the SRC and were used to build the PD-1 
prediction model based on grayscale images, which was called GM.

Fig. 7  Three PD-1 radiomics prediction models based on RF included a PD-1 prediction model that used the 
DEA feature map (DM), a PD-1 prediction model that used the DEA and SSD feature maps (DSM), and a PD-1 
prediction model that used the DEA, SSD, and NRD feature maps (DSNM)
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Statistical analysis

The performance of the prediction model was evaluated by the LOOCV statistical 
analysis method. The Tukey’s test, in conjunction with analysis of variance (ANOVA), 
was used to test the significance between any two pairs of the three ultrasound fea-
tures. Receiver operating characteristic (ROC) curves and precision-recall curves 
(PRCs) were employed to show the overall performance of the model. Other assess-
ment indicators included the area under the ROC curve (AUC), accuracy (ACC), 
sensitivity (SENS), and specificity (SPEC). Descriptive statistics are summarized as 
mean ± SD.

Abbreviations
RF: Radiofrequency; PD-1: Programmed cell death protein 1; HCC: Hepatocellular carcinoma; ROI: Region of interest; SR: 
Sparse representation; SVM: Support vector machine; LOOCV: Leave-one-out cross-validation; DEA: Direct energy attenu-
ation; NRD: Noncentrality parameter S of Rician distribution; SSD: Skewness of spectrum difference; GM: Programmed 
cell death protein 1 prediction model based on ultrasound grayscale image; DM: Programmed cell death protein 1 
prediction model based on direct energy attenuation; DSM: Programmed cell death protein 1 prediction model based 
on direct energy attenuation and Skewness of spectrum difference; DSNM: Programmed cell death protein 1 prediction 
model based on direct energy attenuation, noncentrality parameter S of Rician distribution and skewness of spectrum 
difference; AUC​: Area under the curve; ACC​: Accuracy; SENS: Sensitivity; SPEC: Specificity; MRI: Magnetic resonance imag-
ing; CT: Computed tomography; FFT: Fast Fourier transform; GLCM: Gray-Level Co-Occurrence Matrix; GLRLM: Gray-Level 
Run-Length Matrix; GLSZM: Grey-Level Size-Zone Matrix; NGTDM: Neighborhood Gray-Tone Difference Matrix; ROC: 
Receiver operating characteristic curve; PRC: Precision-recall curve; BEP: Break-even point.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12938-​021-​00927-y.

Additional file 1. Radiomics scores of the patients in all models.

Acknowledgements
The authors are grateful to all study participants.

Authors’ contributions
YX and JY conceived and designed this study; YD, QZ, TX, and SZ collected experimental data and provided clinical guid-
ance; QW and LL implemented the algorithm; QW analyzed the experimental results and wrote the paper; YW and WW 
reviewed the manuscript. All the authors read and approved the final manuscript.

Funding
This research was supported by Shanghai science and technology action innovation plan (19441903100) and National 
Natural Science Foundation of China (No. 81571676, No. 81501471).

Availability of data and materials
The datasets used and analyzed during the current study are available from the corresponding author on reasonable 
request.

Declarations

Ethics approval and consent to participate
This prospective study was approved by the Research Ethics Committee of our institution. Informed consent was waived 
before CEUS examination. The procedure followed was in accordance with the Declaration of Helsinki.

Consent for publication
Agreed by the authors.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Electronic Engineering, Fudan University, Shanghai 200433, China. 2 Department of Ultrasound, 
Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China. 3 Institute of Biomedical and Health 
Engineering Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Ave., Shenzhen, 
University Town, Shenzhen 518055, China. 

https://doi.org/10.1186/s12938-021-00927-y


Page 17 of 18Wang et al. BioMedical Engineering OnLine           (2022) 21:24 	

Received: 1 February 2021   Accepted: 28 August 2021

References
	1.	 Ringelhan M, Reisinger F, Yuan D, Weber A, Heikenwalder M. Modeling human liver cancer heterogeneity: virally 

induced transgenic models and mouse genetic models of chronic liver inflammation. Curr Protoc Pharmacol. 
2014;67:14–31.

	2.	 Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecassis MM, Roberts LR, et al. AASLD guidelines for the treatment of 
hepatocellular carcinoma. Hepatology. 2018;67:358–80.

	3.	 Maurizio P, Antonio S, Nicoletta DM, Alessandro C, Francesco A, Bruno F, et al. Long-term effectiveness of resection 
and radiofrequency ablation for single hepatocellular carcinoma ≤ 3cm. Results of a multicenter Italian survey. J 
Hepatol. 2013;59(1):89–97.

	4.	 Feng S, Ming S, Zhen Z, Rui-Zhao Q, Zhen-Wen L, Ji-Yuan Z, et al. PD-1 and PD-L1 upregulation promotes 
CD81 T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. INT J CANCER. 
2011;128(4):887–96.

	5.	 Lu YY, Guo XL. Advance development of immunotherapy on malignant melanoma with targeting inhibition of 
PD-L1/ PD-1. Chin Pharm J. 2015;50:1931–5.

	6.	 Feld E, Horn L. Targeting PD-L1 for non-small-cell lung cancer. Immunotherapy-UK. 2016;8(6):747–58.
	7.	 Prapruttam D, Suksai J, Kitiyakara T, Phongkitkarun S. Ultrasound surveillance for hepatocellular carcinoma of at-risk 

patients in Ramathibodi Hospital. J Med Assoc Thailand. 2014;97(11):1199–208.
	8.	 Manini MA, Sangiovanni A, Fornari F, Piscaglia F, Biolato M, Fanigliulo L, et al. Clinical and economical impact of 2010 

AASLD guidelines for the diagnosis of hepatocellular carcinoma. J HEPATOL. 2014;60(5):995–1001.
	9.	 Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, et al. Decoding global gene expression programs in liver cancer 

by noninvasive imaging. Nat Biotechnol. 2007;25(6):675–80.
	10.	 Depeursinge A, Foncubierta-Rodriguez A, Ville DVD, Müller H. Three-dimensional solid texture analysis in biomedical 

imaging: review and opportunities. Med Image Anal. 2014;18(1):176–96.
	11.	 Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains 

B, Rietveld D, Hoebers F. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics 
approach. Nat Commun. 2014;5:1–9.

	12.	 Choi E, Lee HY, Jeong JY, Choi Y, Kim J, Bae J, et al. Quantitative image variables reflect the intratumoral pathologic 
heterogeneity of lung adenocarcinoma. Oncotarget. 2016;7(41):67302–13.

	13.	 Zhang Q, Xiao Y, Suo J, Shi J, Yu J, Guo Y, et al. Sonoelastomics for breast tumor classification: a radiomics approach 
with clustering-based feature selection on sonoelastography. Ultrasound Med Biol. 2017;43(5):1058–69.

	14.	 Qiao M, Hu Y, Guo Y, Wang Y, Yu J. Breast tumor classification based on a computerized breast imaging reporting and 
data system feature system. J Ultrasound Med Offl J Am Instit Ultrasound Med. 2017;37(2):403–15.

	15.	 Yao Z, Dong Y, Wu G, Zhang Q, Yang D, Yu J, et al. Preoperative diagnosis and prediction of hepatocellular carci-
noma: radiomics analysis based on multi-modal ultrasound images. BMC Cancer. 2018. https://​doi.​org/​10.​1186/​
s12885-​018-​5003-4.

	16.	 Wang K, Lu X, Zhou H, Gao Y, Zheng J, Tong M, et al. Deep learning Radiomics of shear wave elastography signifi-
cantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre 
study. Gut. 2019;68(4):729–41.

	17.	 Zhou Y, He L, Huang Y, Chen S, Wu P, Ye W, et al. CT-based radiomics signature: a potential biomarker for preopera-
tive prediction of early recurrence in hepatocellular carcinoma. Abdom Radiol. 2017;42(6):1695–704.

	18.	 Liang J-Y, Wang Z, Huang X-W, Zhang C-Q, Ruan S-M, Xie X-Y, et al. Multiparametric ultrasomics of significant liver 
fibrosis: a machine learning-based analysis. Eur Radiol. 2019;29(3):1496–506.

	19.	 Chunrui L, Linzhou X, Wentao K, Xiaoling L, Dong Z, Min W, et al. Prediction of suspicious thyroid nodule using 
artificial neural network based on radiofrequency ultrasound and conventional ultrasound: a preliminary study. 
Ultrasonics. 2019;99:105951.

	20.	 Barrere V, Sanchez M, Cambronero S, Dupré A, Rivoire M, Melodelima D. Evaluation of ultrasonic attenuation in 
primary and secondary human liver tumors and its potential effect on high-intensity focused ultrasound treatment. 
Ultrasound Med Biol. 2021;47:1761–74.

	21.	 Mahmoud AM, Mukdadi OM, Teng B, Mustafa SJ. High-resolution quantitative ultrasound imaging for soft tissue 
classification. Biomedical Engineering; 2011. https://​doi.​org/​10.​1109/​MECBME.​2011.​57520​71.

	22.	 Eltoft T. The Rician inverse Gaussian distribution: A new model for non-Rayleigh signal amplitude statistics. IEEE T 
Image Process. 2005;14(11):1722–35.

	23.	 Yoon HJ, Sohn I, Cho JH, Lee HY, Kim J, Choi Y, et al. Decoding tumor phenotypes for ALK, ROS1, and RET fusions in 
lung adenocarcinoma using a radiomics approach. Medicine. 2015;94(41):e1753.

	24.	 Gevaert O, Echegaray S, Khuong A, Hoang CD, Shrager JB, Jensen KC, et al. Predictive radiogenomics modeling of 
EGFR mutation status in lung cancer. Sci Rep. 2017;7:41674.

	25.	 Yu J, Shi Z, Lian Y, Li Z, Liu T, Gao Y, et al. Noninvasive IDH1 mutation estimation based on a quantitative radiomics 
approach for grade II glioma. Eur Radiol. 2016;27(8):3509–22.

	26.	 Dang M, Lysack JT, Wu T, Matthews TW, Chandarana SP, Brockton NT, et al. MRI Texture analysis predicts p53 status in 
head and neck squamous cell carcinoma. AJNR Am J Neuroradiol. 2014;36(1):166–70.

	27.	 Zhu Y, Li H, Guo W, Drukker K, Ji Y. TU-CD-BRB-06: deciphering genomic underpinnings of quantitative MRI-based 
radiomic phenotypes of invasive breast carcinoma. Sci Rep-UK. 2015;42(6):3603.

	28.	 Li H, Zhu Y, Burnside ES, Huang E, Drukker K, Hoadley KA, et al. Quantitative MRI radiomics in the prediction of 
molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. Npj Breast Cancer. 2016;2:16012.

https://doi.org/10.1186/s12885-018-5003-4
https://doi.org/10.1186/s12885-018-5003-4
https://doi.org/10.1109/MECBME.2011.5752071


Page 18 of 18Wang et al. BioMedical Engineering OnLine           (2022) 21:24 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	29.	 Biermann M, Reisæter LR. Automated analysis of gray-scale ultrasound images of thyroid nodules (“radiomics”) may 
outperform image interpretation by less experienced thyroid radiologists. Clin Thyroidol. 2018;30(7):332–6.

	30.	 Xue LY, Jiang ZY, Fu TT, Wang QM, Zhu YL, Dai M, et al. Transfer learning radiomics based on multimodal ultrasound 
imaging for staging liver fibrosis. Eur Radiol. 2020;30(5):2973–83.

	31.	 Wei LI, Huang Y, Zhuang BW, Liu G, Wang W. Multiparametric ultrasomics of significant liver fibrosis: a machine 
learning-based analysis. Eur Radiol. 2018;29(3):1469–506.

	32.	 Pham TD, Watanabe Y, Higuchi M, Suzuki H. Texture analysis and synthesis of malignant and benign mediastinal 
lymph nodes in patients with lung cancer on computed tomography. Sci Rep-UK. 2017;7:43209.

	33.	 Wan T, Bloch BN, Plecha D, Thompson CL, Gilmore H, Jaffe C, et al. A radio-genomics approach for identifying high 
risk estrogen receptor-positive breast cancers on DCE-MRI: preliminary results in predicting OncotypeDX risk scores. 
SCI REP-UK. 2016;6:21394.

	34.	 Li H, Zhu Y, Burnside ES, Drukker K, Hoadley KA, Fan C, et al. MR imaging radiomics signatures for predicting the risk 
of breast cancer recurrence as given by research versions of mammaprint, Oncotype DX, and PAM50 gene assays. 
Radiology. 2016;281(2):152110.

	35.	 Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A. Evaluation of tumor-derived MRI-texture features for dis-
crimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys. 
2015;42(11):6725–35.

	36.	 Li Y, Namburi P, Yu Z, Guan C, Feng J, Gu Z. Voxel selection in fMRI data analysis based on sparse representation. IEEE 
Trans Biomed Eng. 2009;56(10):2439–51.

	37.	 Mallat S, Zhang Z. Matching pursuit with time-frequency dictionary. IEEE Trans Signal Process. 1993;41:3397–415.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Prediction of programmed cell death protein 1 in hepatocellular carcinoma patients using radiomics analysis with radiofrequency-based ultrasound multifeature maps
	Abstract 
	Background: 
	Methods: 
	Results and conclusion: 

	Highlights 
	Background
	Results
	Ultrasound features results
	Radiomics features results
	Prediction model results

	Discussion
	Conclusion
	Materials and methods
	Patients
	Ultrasound data acquisition
	RF data processing
	Ultrasound multifeature map extraction
	Radiomics feature extraction and selection
	Establishment and evaluation of the prediction model

	Grayscale image compression test
	Statistical analysis

	Acknowledgements
	References




