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Many secretory proteins and peptides are synthesized as
inactive precursors that in addition to signal peptide cleav-
age undergo post-translational processing to become bio-
logically active polypeptides. Precursors are usually
cleaved at sites composed of single or paired basic amino
acid residues by members of the subtilisin/kexin-like pro-
protein convertase (PC) family. In mammals, seven mem-
bers have been identi®ed, with furin being the one ®rst
discovered and best characterized. Recently, the involve-
ment of furin in diseases ranging from Alzheimer's disease
and cancer to anthrax and Ebola fever has created add-
itional focus on proprotein processing. We have developed
a method for prediction of cleavage sites for PCs based on
arti®cial neural networks. Two different types of neural
networks have been constructed: a furin-speci®c network
based on experimental results derived from the literature,
and a general PC-speci®c network trained on data from
the Swiss-Prot protein database. The method predicts
cleavage sites in independent sequences with a sensitivity
of 95% for the furin neural network and 62% for the gen-
eral PC network. The ProP method is made publicly avail-
able at http://www.cbs.dtu.dk/services/ProP.
Keywords: furin/neural network/propeptide/protease
speci®city/secretory precursor

Introduction

Post-translational processing by limited proteolysis of inactive
secretory precursors to produce active proteins and peptides is
an ancient mechanism that enables cells to regulate the level of
speci®c bioactive polypeptides and to generate diverse pro-
ducts from precursor molecules. Many biologically active
proteins and peptides are initially synthesized as larger,
inactive precursors, usually in the form of pre-pro-proteins,
which are post-translationally modi®ed to generate the mature
molecule. The N-terminal pre-regions are signal peptides,
which direct the precursors to the appropriate cellular
compartment, while the prodomains can have several func-
tions. Some prodomains act as intramolecular chaperones that
mediate correct folding of the newly synthesized proteins,
while other prodomains are only indirectly involved in folding
and have other functions such as transport and localization,
oligomerization, regulation of activity (Shinde and Inouye,
2000) and quality control of folding (Bauskin et al., 2000).
Precursor cleavage frequently occurs at motifs containing
multiple basic residues, arginine or lysine, by limited
endoproteolysis of the corresponding precursor proteins imme-

diately C-terminally of the basic amino acid motifs (Seidah and
Chretien, 1999).

Most of the enzymes responsible for this type of processing
belong to a family of evolutionary conserved dibasic- and
monobasic-speci®c Ca2+-dependent serine proteases called
subtilisin/kexin-like proprotein convertases (PCs) (Seidah
et al., 1998). Since the identi®cation of the yeast enzyme
Kex2 (kexin), seven mammalian kexin-related proprotein
convertases have been identi®ed: PC1, PC2, furin, PC4, PC5,
PACE4 and PC7. Furin was the ®rst PC to be discovered; a
database search identi®ed furin as the ®rst mammalian kexin
homolog (Fuller et al., 1989), and furin was soon shown to
correctly process the precursors of von Willebrand factor and
beta-nerve growth factor (Bresnahan et al., 1990; van de Ven
et al., 1990).

The PCs are the major endoproteolytic processing enzymes
of the secretory pathway in mammals (Steiner, 1998). These
enzymes process precursors at sites, which usually contain the
consensus sequence [R/K]±Xn±[R/K]¯, where X indicates any
amino acid residue, n, the number of spacer amino acid
residues, is 0, 2, 4 or 6, [R/K] indicates either an arginine or a
lysine residue, and the arrow (¯) indicates the site of cleavage
(Seidah and Chretien, 1999). Furin has a more stringent
substrate speci®city and preferentially recognizes sites that
contain the sequence motif R±X±[R/K]±R¯ (Nakayama,
1997).

Recently, the ®rst reports on the crystal structure of members
of the PC family, namely furin and Kex2, were published
(Henrich et al., 2003; Holyoak et al., 2003). The detailed
analysis of the proteolytic domains explains the preference for
basic residues, in particular arginine, at the substrate cleavage
site P1. In addition, the preference observed for other positions,
in particular for P4 to P2 in furin, ®ts well with the observed
enzyme±substrate crystal structure.

The PCs are involved in the activation of a large variety of
proteins like peptide hormones, neuropeptides, growth and
differentiation factors, adhesion factors, receptors, blood
coagulation factors, plasma proteins, extracellular matrix
proteins, proteases, exogenous proteins such as coat glycopro-
teins from infectious viruses (e.g. HIV-1 and in¯uenza virus)
and bacterial toxins (e.g. diphtheria and anthrax toxin). PCs not
only catalyze removal of prodomains, but are also involved in
processing of multifunctional precursors like POMC and
proglucagon. Both undergo differential processing, dependent
on their sites of production (Steiner, 2002). Therefore, PCs play
an essential role in many vital biological processes like
embryonic development and neural function, and in viral and
bacterial pathogenesis. In addition, PCs are implicated in a
number of pathologies such as cancer and neurodegenerative
diseases (Thomas, 2002).

From a medical and biotechnological viewpoint it can be of
interest to control the production of peptides involved in
various diseases by speci®cally inhibiting the enzymatic
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activity of the PCs (Bergeron et al., 2000; Thomas, 2002).
Several naturally occurring sequences are known to inhibit
PCs, including the prodomains of the proteases themselves and
the neuroendocrine proteins 7B2 and proSAAS (Cameron et al.,
2002; Rockwell et al., 2002).

We present here work on the characterization and prediction
of PC cleavage sites. Since not all single or paired basic amino
acid residues are potential cleavage sites of PCs, we examined
the sequence patterns characteristic of experimentally veri®ed
sites and describe a neural network based method for predicting
whether a given site is a potential cleavage site for the PC
enzymes. Not all furin cleavage sites contain the furin
consensus sequence and not all sites containing the consensus
sequence are cleavage sites for furin (Nakayama, 1997). Furin
also has a preference for basic amino acid residues at P3, P5
and P6 (even at P7 and P8), while other speci®c requirements
exist at P1¢ and P2¢. For instance, lysine residues are not
accepted at the latter positions (Henrich et al., 2003). Favorable
residues at P2 and P6 can compensate for less favorable ones at
P1 and P4 (Molloy and Thomas, 2002). Together, these facts
indicate that the furin recognition motif is non-linear and more
complicated than previously believed. Therefore, a method
capable of classifying complex patterns, such as a neural
network, may be more suitable than a simple consensus
sequence, which is not able to include correlated effects often
termed `exceptions'. In the case of non-furin cleavage sites,
that are primarily characterized by a dibasic motif, the problem
of false predictions by using a simple dibasic consensus pattern
becomes evident and necessitates the use of a more sophisti-
cated classi®er. The neural network based method described in
this paper can be used to predict PC cleavage sites in single
proteins, but may also be used when large databases are
scanned for novel growth factors, hormones and secreted
peptides containing propeptides or for automated annotation of
large protein sets.

Materials and methods

Two data sets were collected: (i) furin cleavage sites and (ii)
general PC cleavage sites. The latter should ideally represent
cleavage sites for all PCs. The furin cleavage data were taken
from the literature (Nakayama, 1997; Lehmann et al., 1998)
and consisted of 38 proteins, which contained reported furin
sites, including proteins from mammals and from pathogenic
bacteria and viruses.

The general proprotein convertase data set was based on
Swiss-Prot annotations (release 39.0, 05/00; Bairoch and
Apweiler, 2000) and also included the furin cleavage data
described above, totaling 235 sites in 227 proteins. The
following search criteria were used in the extraction of data
from the Swiss-Prot database: signal peptide present, experi-
mentally determined propeptide region not having comments
like `PROBABLE', `BY SIMILARITY', or `POTENTIAL'
(Junker et al., 1999), and a basic residue (K or R) at P1, i.e. the
®rst position N-terminal to the cleavage site. Proteins were
from eukaryotes and viruses only, and redundancy in the data
set was reduced by removal of doublet sequences, which had
identical 13-mer amino acid sequences centered around the
cleavage site.

Sequence logos of precursor proteins, aligned by their
cleavage sites, were used for displaying the position-speci®c
features of multiple sequence alignments (Schneider and
Stephens, 1990).

In order to avoid training and testing on homologous
sequences, each data set was divided into four partitions of
approximately equal size based on phylogenetic trees, which
were constructed using multiple alignments and the neighbour-
joining algorithm of the ClustalX program (Thompson et al.,
1997). This further eliminates the redundancy issue, and the
risk that the predictive performance is overestimated owing to
training and test set similarities.

The neural network architecture was feed-forward fully
connected, with zero or one layer of two, four, eight or 16
hidden units (Baldi and Brunak, 2001). The neural networks
were trained by back-propagation (Rumelhart et al., 1986), and
the sequence data were presented to the network using sparsely
encoded moving windows (Qian and Sejnowski, 1988; Brunak
et al., 1991). Only positions with lysine or arginine were used
during training and testing. Symmetric input windows with size
varying from ®ve to 23 positions were tested. The learning rate
was 0.005, and the decision threshold value for the output unit
was 0.5 for all networks.

A correlation coef®cient (Matthews, 1975) was calculated
from the numbers of correctly and incorrectly predicted
positive and negative sequence windows generated with the
selected threshold value. The correlation coef®cients of both
the training and test sets were monitored during training, and
the performance at the training cycle with the maximal test set
correlation was recorded for each training run. The test
performances were calculated by 4-fold cross-validation:
every network run was carried out with one part as the test
data and the other three parts as the training data. For each of
the four combinations, one neural network architecture was
chosen based on the test set correlation coef®cients. If more
than one network architecture gave rise to approximately the
same correlation coef®cient, we chose the smallest network
with respect to input window size and the number of hidden
units. The combined performance for each of the four subsets
when used as test sets was then calculated. The cross-validated
Matthews correlation coef®cient for the combined ensemble
was calculated from the total numbers of true positives, true
negatives, annotated cleavage sites and annotated non-cleav-
age sites.

The trained networks provide scores between zero and one
for each arginine (R) or lysine (L) residue in an amino acid
sequence. The combined prediction scores were then calcu-
lated as an average over the scores from the four networks. By
default, for scores above 0.5 we predict peptide bond cleavage
at the C-terminal side of the amino acid residue in question.

To illustrate the prediction performance for varying thresh-
olds and prediction sensitivities, we present receiver operating
characteristic (ROC) curves, plotting sensitivity on the x-axis
and false-positive rate on the y-axis.

Results

Sequence logos
The sequence pattern at the cleavage sites is shown as sequence
information logos in Figure 1. Sequence logos were generated
for each of the two data sets, with P1 as the central position and
seven ¯anking amino acid residues on each side. The sequence
logos emphasize amino acid residues that are frequently found
at the propeptide cleavage sites, but cannot reveal correlated
effects. Note that the data sets were redundancy reduced prior
to the logo analysis.
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Furin sequence logo
Furin preferentially recognizes the cleavage site sequence R±
X±[R/K]±R¯ (Nakayama, 1997). This consensus cleavage
sequence is clearly visible from the logo, and all furin cleavage
sites in the data set had an arginine residue at position P1. The
frequency of arginine at position P4 was 89%, while only one
of the cleavage motifs (3%) contained a lysine residue at P4. Of
the remaining amino acids only histidine (3%) and valine (5%)
were found at this position. At P2, R and K were the most
frequent, 32 and 58%, respectively, and the remaining amino
acids found at this position were alanine (5%), glycine (3%)
and proline (3%). Serine was the most frequent amino acid
residue at P1¢ (42%), while leucine, isoleucine and valine did
not occur at this position, but these amino acids were frequent
at P2¢, 55% in total. Both phenylalanine and tyrosine were
found at P1¢, four (11%) and three (8%), respectively, but not
tryptophan, arginine, lysine, asparagine, proline or threonine.
The acidic amino acids glutamic acid and aspartic acid
occurred at P1¢ in one (3%) and four (11%) of the cleavage
motifs, and histidine was found in one (3%) of the cleavage
motifs. At P2¢, arginine was absent, and only one lysine residue
was found at this position.

Of the 38 cleavage motifs in the furin data set, 31 (81%) had
the R±X±[R/K]±R consensus sequence. Eleven (29%) of these
were R±X±R±R and 20 (52%) were R±X±K±R. The P2 basic
amino acid residue is not essential, but can greatly enhance the
processing ef®ciency (Thomas, 2002). Therefore, the minimal
furin cleavage sequence is R±X±X±R, but a less favorable
amino acid residue at P4 can be compensated for by arginine or

lysine residues at P2 and P6. Three (8%) of the cleavage motifs
contained only the minimal furin cleavage sequence, while the
remaining four (11%) did not have an arginine residue at P4. In
earlier studies, the following general rules were proposed for
furin speci®city: (i) an arginine residue is essential at the P1
position; (ii) in addition to the P1 arginine residue, at least two
out of the three residues at P2, P4 and P6 are required to be
basic for ef®cient cleavage; (iii) at the P1¢ position, an amino
acid residue with a hydrophobic aliphatic side chain (i.e.
leucine, isoleucine or valine) is not suitable (Nakayama, 1997).

These rules are consistent with most of the furin cleavage
sites in the data set: arginine was always present at P1 and
leucine, isoleucine or valine were never observed at P1¢. In
contrast, two of the cleavage sites did not follow the rule of at
least two basic amino acid residues at P2, P4 and P6, namely
human insulin-like growth factor IA precursor (LKPAKSAR¯)
and shiga toxin A-chain precursor (HHASRVAR¯). In these
cases, a lysine at P7 or two histidines at P7 and P8,
respectively, may have compensatory effects.

General PC sequence logo
The general PC sequence logo is based on 234 of the 235
cleavage sites, which were selected as having R or K at P1. One
of the 235 cleavage sites is located only three residues from the
C-terminus of the protein and therefore, for that single site, it
was not possible to extract seven residues C-terminally of the
cleavage site as required for generating the sequence logo in
Figure 1B.

Arginine was by far the most frequent amino acid residue at
P1, corresponding to 92%. At P2 the frequencies of R and K
were 22 and 43%, respectively, while the frequency of R was
50% at P4. Only six lysine residues were found at this position,
corresponding to 3%. At the P1¢ position the frequency of
serine was 24%, while the frequency of the hydrophobic,
aliphatic amino acids leucine, isoleucine and valine was 17% in
total. The furin consensus sequence R±X±[R/K]±R can also be
recognized in this logo, but to at much lesser extent than in the
furin logo (Figure 1A). The furin consensus sequence was
found in 104 (44%) of the cleavage sites, and the minimal furin
consensus sequence R±X±X±R appeared in 117 (50%) of the
cleavage sites. These observations indicate that up to 50% of
the cleavage sites in the general data set may be substrates of
non-furin PCs.

Performance of the neural networks
The furin network was trained on a data set containing 38
experimentally veri®ed cleavage sites out of a total number of
3004 sites containing R or K at the P1 position, of which 1589
had an R at P1. Using a 4-fold cross-validated training
approach, the values for the optimal symmetric window size/
hidden units were 13/2, 19/4, 17/8 and 11/2, respectively, for
the four networks. Thus, optimal window size range from 11 to
19 residues, which correspond well to the contact area of other
known protein±protein interactions, e.g. kinase±substrate con-
tact (10±11 residues; Blom et al., 1999). The fact that there
were at least two hidden units in the networks indicates that the
PC cleavage site prediction problem is indeed non-linearly
separable only owing to the correlations and compensatory
effects in the cleavage motifs (Baldi and Brunak, 2001). The
number of true positives predicted reached 94.7% with a
speci®city of 83.7%, equivalent to a Matthews correlation
coef®cient of 0.89.

From a practical point of view, the most important aspect of
a prediction method is its ability to make correct predictions.

Fig. 1. Sequence logos of aligned propeptide cleavage sites centered at P1,
where cleavage takes place between P1 and P1¢. Shannon information is
shown in units of bits: (A) 38 experimentally determined furin sites found in
the literature; (B) 234 general PC sites extracted from the Swiss-Prot
database.
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As prediction methods are never perfect, one is always faced
with the dilemma of choosing between making few false-
positive predictions and having a high sensitivity, i.e. correctly
identifying as many positive examples as possible. This trade-
off can be visualized as what is known as the ROC curve in
which the rate of false positives is plotted as a function of the
sensitivity by varying the score threshold used for making
positive predictions. Figure 2A shows the ROC curve for the
furin site predictor, where the standard threshold of 0.5
corresponds to a false-positive rate of 0.2% at a sensitivity
of 94.7%. When the sensitivity is increased further, the false-
positive rate rises steeply and reaches ~30% at a sensitivity of
100%, i.e. when all cleavage sites are predicted correctly. For
neural networks without hidden units, the highest correlation
coef®cient was 0.83, and the speci®city of the corresponding
network was 76.1% at the default threshold of 0.5.

Four of the known cleavage sites in the furin data set
lacked the arginine residue at the P4 position characteristic of
the furin consensus sequence. Two of these sites were correctly
learned by the neural network and classi®ed correctly, even
when being part of an independent test set: human vitamin-K-
dependent protein C precursor (KKRSHLKR199¯DTED;
score 0.797) and human parathyroid hormone precursor
(DGKSVKKR31¯SVSE; score 0.851). These ®ndings indicate
that the neural network has picked up sequence correlations,
which indicate furin cleavage in non-consensus cleavage sites.
This also may explain the fact that a hidden layer of neurons is
required for optimal performance of the neural network.

Two of the known cleavage sites in the furin data set were
not predicted correctly, i.e. they were false negatives when
being part of an independent test set: human insulin-like
growth factor IA precursor (LKPAKSAR119¯SVRA) and
human serum albumin precursor (YSRGVFRR24¯DAHK).
The cleavage scores produced by the furin-speci®c neural
network were low, 0.100 and 0.128, respectively. In the case of
human insulin-like growth factor IA precursor cleavage has
been observed in furin-de®cient cell types indicating that
another processing enzyme may be acting in vivo (Duguay
et al., 1995). For human serum albumin precursor, PCs other
than furin, namely PACE4 and PC7, have been suggested to be
involved in processing (Mori et al., 1999), and this may explain
the low cleavage site score of the furin-speci®c network. In this
sense, the network may be more correct than the statistics on
the experimental data indicate.

Another caveat when using the furin-type cleavage site
method is that prediction of processing by furin does not mean
that the substrate is actually cleaved by furin in vivo. Three
other proprotein convertases, PACE4, PC5 and PC7, have
sequence speci®cities similar to that of furin (Nakayama,
1997). Since there seems to be a considerable overlap in
substrate speci®city between the different PC members,
predictions for a given PC, e.g. furin, should be interpreted
with this in mind.

After implementation of the neural network prediction
method for furin-type cleavage sites, we scanned the published
literature for recent reports on furin-mediated cleavage in
proteins, which were not used in our training data. We found
three examples reported as furin cleavage sites and correctly
predicted by our furin-type network. All reported sites matched
the R±X±[R/K]±R consensus: human ectodysplasin-A
RVRRNKR159¯SK (score 0.819) (Chen et al., 2001),
Marburg virus glycoprotein VYFRRKR435¯SI (score 0.712)
(Volchkov et al., 2000) and mouse ZP3 glycoprotein

LVSRNRR353¯HV (score 0.762) (Williams and Wassarman,
2001). More interestingly, our neural network method was able
to correctly classify consensus-matching non-cleavage sites in
two of these proteins, namely human ectodysplasin-A
ESRRVRR156¯NK (score 0.482) and Marburg virus glycopro-
tein LVCRLRR561¯LA (score 0.446). Again, these ®ndings
indicate that the neural network algorithm is able to incorporate

Fig. 2. The predictive performance shown as sensitivity versus false-positive
rate in a ROC diagram. The plot was constructed from results obtained for
the independent test sets, and corresponds to the expected performance for
novel, unrelated proteins. (A) The furin network performance; (B) the
general PC network. For a given category, e.g. the combined data for the
general PC neural network, a sensitivity of 80% can be achieved with a
false-positive rate of 20%, corresponding to 80% correct prediction on both
categories, i.e. true positives and true negatives. Random performance would
correspond to a line along the diagonal.
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sequence features other than consensus sequence alone and
may be well suited for rejecting putative furin cleavage sites
which match the consensus sequence perfectly.

It was recently claimed, based on the crystal structure of
Kex2, that substrates with a glutamate residue at P3 might be
selected against (Holyoak et al., 2003). In our data set of
negative furin sites we found an example of a site that
strongly matches the furin consensus site but nevertheless is
predicted as being non-cleaved. In human integrin alpha-3
precursor (ITA3_HUMAN) the site RDRR525¯PP (score
0.207) contains a glutamate (D) at P3, which may, in addition
to a non-favored proline at P1¢, result in the correct, non-
cleaved classi®cation.

The general PC network was trained on 235 cleavage sites
out of a total of 11 399 R or K residues. Of these, 372 were false
positives eliminated during the learning process in order to
enhance performance (339 R and 33 K), leaving 10 792
negative sites with R or K at position P1. The elimination of
potentially false positives, which had a detrimental effect on
the predictive performance, was done by monitoring in which
order the network did learn the positives and negatives (Blom
et al., 1999). A 4-fold cross-validated training gave the
following optimal network architecture (window size versus
number of hidden units): 13/16, 13/4, 13/4 and 11/8, respect-
ively, for the four networks. At the standard threshold of 0.5,
the sensitivity was 61.7%, the speci®city was 59.7%, and the
Matthews correlation coef®cient was 0.60 for the best ensem-
ble of networks. The ROC curve (Figure 2B) showed that the
0.5 threshold was a good choice, since the false-positive rate
was 0.9% at a sensitivity of 61.7%. The rise in false-positive
rate is moderate until a sensitivity of ~75%, where the false-
positive rate is ~7%, but this is still a high number because the
number of true negative sites is much larger than the number of
true positive sites. The importance of hidden units is again
evidenced by the fact that the highest correlation coef®cient for
a network without hidden units was 0.41, and the speci®city of
this network was only 28.9%.

We estimate that furin-like sites are frequently represented
in the general PC data set, since the furin consensus sequence,
R±X±[R/K]±R, is present in 44% of the cleavage sites. This
may explain the dif®culties when predicting PC1 and PC2
sites, as can be seen from the following examples. Comparing
our prediction performance on PC1 and PC2 proprotein
processing sites, which were reported late in our study, we
observed that not all reported sites could be correctly predicted
(Cameron et al., 2002). In particular, of the 12 PC1/PC2 sites in
rat proenkephalin and six sites in rat proglucagon, our method
correctly predicts ®ve sites and one site, respectively. Almost
all sites contain a dibasic motif at P2 and P1, but lack a basic
residue on P4. Thus, assuming that our general data set is
dominated by furin-type cleavage sites, we do not expect very
high prediction performance on bona ®de PC1/PC2 cleavage
sites.

Discussion

Proteases are highly relevant both as biotechnological tools and
as pharmaceutical targets. In both aspects, a deeper under-
standing of protease speci®city and the ability to rapidly scan
thousands of protein sequences for potential candidates are
desirable.

One of the obstacles when mammalian cells are designed for
overproduction of secreted bioactive proteins and peptides is

the relatively low level of endogenous proprotein convertases
(Seidah and Chretien, 1997). Recombinant furin has been used
successfully to increase the yield of over-expressed secreted
bioactive proteins in engineered eukaryotic cells (Seidah and
Chretien, 1997; Himmelspach et al., 2000). Design of
recombinant proteins containing highly ef®cient furin cleavage
sites, while still retaining native sequence after cleavage, may
be facilitated by the fast methods described in this paper.

Understanding substrate speci®city may in particular be
useful for designing speci®c PC inhibitors. PC inhibitors may
be designed for treatment of diseases dependent on normal or
aberrant PC function, such as anthrax, Ebola virus infections or
cancer (Bergeron et al., 2000; Rockwell et al., 2002; Thomas,
2002). Being able to predict and rapidly screen large sets of
synthetic cleavage substrates of certain proteases such as the
PCs may substantially speed up the selection of highly ef®cient
cleavable peptides. The sequence and deduced structure of
these peptides may be used as lead structures for the
development of peptidomimetic protease inhibitors.

In addition, the recently published structures on related PC
enzymes will allow for a more focused search for lead
structures for potential PC inhibitors (Henrich et al., 2003;
Holyoak et al., 2003). A deeper understanding of the structural
requirements of PC substrates may also be used to improve on
the predictions of potential substrates, e.g. by penalizing side
chains which are incompatible with the protease structure.

Ideally, one would like to train neural networks for each of
the PC members. However, the amount of experimentally
veri®ed sites, where the bona ®de PC is known, is still limited.
This stems from the fact that it is much easier to identify the
site of cleavage in a protein, e.g. by N-terminal sequencing,
than to identify the nature of the physiologically active PC.
Since we were able to extract only a limited number of veri®ed
cleavage sites for PCs other than furin, we decided to include
all basic proprotein cleavage sites in our general approach. This
situation is in many ways similar to our earlier experiences in
characterizing phosphorylation sites at a time when few kinase-
speci®c data were available (Blom et al., 1999).

The performance values obtained for the general type PC
network compared with the furin-speci®c network con®rmed
our expectations. Although a basic cleavage site preference is
observed for all PCs, slight differences in substrate speci®city
imply that a single method is not able to predict all PC sites
with the same performance. In particular, we expect that the
performance of the general network on PC1 and PC2 sites may
be sub-optimal owing to an under-representation of these sites
in the data set. A natural development from this will be to
design PC1 and PC2 data sets, individual or combined, and
train speci®c neural networks on these data.

Three other PCs, PC5, PACE4 and PC7, have substrate
speci®cities which are similar to furin (Nakayama, 1997) and
may be quite dif®cult to identify in vitro owing to cross-
speci®city and redundancy. Sites predicted by the furin
network may therefore, in some cases, be physiological
substrates of a furin-like PC.

The prediction of protease cleavage sites may also be used as
functional ®ngerprints, for example, as an additional functional
feature input to systems biology approaches attempting to
classify the function of orphan proteins (Jensen et al., 2002).
Also, in systematic screenings for novel secreted factors, the
presence of a strong predicted processing site may be used as a
search criterion.
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